2018 Webist Lnbip (20)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects and Opportunities of Native Code Extensions For
Effects and Opportunities of Native Code Extensions for Computationally Demanding Web Applications DISSERTATION zur Erlangung des akademischen Grades Dr. Phil. im Fach Bibliotheks- und Informationswissenschaft eingereicht an der Philosophischen Fakultät I Humboldt-Universität zu Berlin von Dipl. Inform. Dennis Jarosch Präsident der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Philosophischen Fakultät I: Prof. Michael Seadle, Ph.D. Gutachter: 1. Prof. Dr. Robert Funk 2. Prof. Michael Seadle, Ph.D. eingereicht am: 28.10.2011 Tag der mündlichen Prüfung: 16.12.2011 Abstract The World Wide Web is amidst a transition from interactive websites to web applications. An increasing number of users perform their daily computing tasks entirely within the web browser — turning the Web into an important platform for application development. The Web as a platform, however, lacks the computational performance of native applications. This problem has motivated the inception of Microsoft Xax and Google Native Client (NaCl), two independent projects that fa- cilitate the development of native web applications. Native web applications allow the extension of conventional web applications with compiled native code, while maintaining operating system portability. This dissertation determines the bene- fits and drawbacks of native web applications. It also addresses the question how the performance of JavaScript web applications compares to that of native appli- cations and native web applications. Four application benchmarks are introduced that focus on different performance aspects: number crunching (serial and parallel), 3D graphics performance, and data processing. A performance analysis is under- taken in order to determine and compare the performance characteristics of native C applications, JavaScript web applications, and NaCl native web applications. -
Garder Le Contrôle Sur Sa Navigation Web
Garder le contrôle sur sa navigation web Christophe Villeneuve @hellosct1 @[email protected] 21 Septembre 2018 Qui ??? Christophe Villeneuve .21 Septembre 2018 La navigation… libre .21 Septembre 2018 Depuis l'origine... Question : Que vous faut-il pour aller sur internet ? Réponse : Un navigateur Mosaic Netscape Internet explorer ... .21 Septembre 2018 Aujourd'hui : ● Navigations : desktop VS mobile ● Pistage ● Cloisonnement .21 Septembre 2018 Ordinateur de bureau .21 Septembre 2018 Les (principaux) navigateurs de bureau .21 Septembre 2018 La famille… des plus connus .21 Septembre 2018 GAFAM ? ● Acronyme des géants du Web G → Google A → Apple F → Facebook A → Amazon M → Microsoft ● Développement par des sociétés .21 Septembre 2018 Exemple (R)Tristan Nitot .21 Septembre 2018 Firefox : ● Navigateur moderne ● Logiciel libre, gratuit et populaire ● Développement par la Mozilla Fondation ● Disponible pour tous les OS ● Respecte les standards W3C ● Des milliers d'extensions ● Accès au code source ● Forte communauté de développeurs / contributeur(s) .21 Septembre 2018 Caractéristiques Mozilla fondation ● Prise de décisions stratégiques pour leur navigateur Mozilla ● Mozilla Fondation n'a pas d'actionnaires ● Pas d'intérêts non Web (en-tête) ● Manifesto ● Etc. 2004 2005 2009 2013 2017 .21 Septembre 2018 Manifeste Mozilla (1/) ● Internet fait partie intégrante de la vie moderne → Composant clé dans l’enseignement, la communication, la collaboration,les affaires, le divertissement et la société en général. ● Internet est une ressource publique mondiale → Doit demeurer ouverte et accessible. ● Internet doit enrichir la vie de tout le monde ● La vie privée et la sécurité des personnes sur Internet → Fondamentales et ne doivent pas être facultatives https://www.mozilla.org/fr/about/manifesto/ .21 Septembre 2018 Manifeste Mozilla (2/) ● Chacun doit pouvoir modeler Internet et l’usage qu’il en fait. -
The Web. Webgl, Webvr and Gltf GDC, February 2017
Reaching the Largest Gaming Platform of All: The Web. WebGL, WebVR and glTF GDC, February 2017 Neil Trevett Vice President Developer Ecosystem, NVIDIA | President, Khronos | glTF Chair [email protected] | @neilt3d © Copyright Khronos Group 2017 - Page 1 Khronos News Here at GDC 2017 • WebGL™ 2.0 Specification Finalized and Shipping - https://www.khronos.org/blog/webgl-2.0-arrives • Developer preview on glTF™ 2.0 - https://www.khronos.org/blog/call-for-feedback-on-gltf-2.0 • Announcing OpenXR™ for Portable Virtual Reality - https://www.khronos.org/blog/the-openxr-working-group-is-here • Call for Participation in the 3D Portability Exploratory Group - A native API for rendering code that can run efficiently over Vulkan, DX12 and Metal khronos.org/3dportability • Adoption Grows for Vulkan®; New Features Released - Details here © Copyright Khronos Group 2017 - Page 2 OpenXR – Portable Virtual Reality © Copyright Khronos Group 2017 - Page 3 OpenXR Details OpenXR Working Group Members Design work has started in December Estimate 12-18 months to release WebVR would use WebGL and OpenXR © Copyright Khronos Group 2017 - Page 4 3D Portability API – Call For Participation ‘WebGL Next’ - Lifts ‘Portability API’ to A Portability Solution JavaScript and WebAssembly needs to address APIs and - Provides foundational graphics shading languages and GPU compute for the Web ‘Portability Solution’ Portability API Spec + Shading Language open source tools API MIR MSL Overlap ‘Portability API’ DX IL Specification Analysis HLSL GLSL Open source compilers/translators for shading and intermediate languages © Copyright Khronos Group 2017 - Page 5 Speakers and Topics for This Session Google WebGL 2.0 Zhenyao Mo, Kai Ninomiya, Ken Russell Three.js Three.js Ricardo Cabello (Mr.doob) Google WebVR Brandon Jones NVIDIA - Neil Trevett glTF Microsoft - Saurabh Bhatia All Q&A © Copyright Khronos Group 2017 - Page 6 WebGL 2.0 Zhenyao Mo, Kai Ninomiya, Ken Russell Google, Inc. -
Introduction to Scalable Vector Graphics
Introduction to Scalable Vector Graphics Presented by developerWorks, your source for great tutorials ibm.com/developerWorks Table of Contents If you're viewing this document online, you can click any of the topics below to link directly to that section. 1. Introduction.............................................................. 2 2. What is SVG?........................................................... 4 3. Basic shapes............................................................ 10 4. Definitions and groups................................................. 16 5. Painting .................................................................. 21 6. Coordinates and transformations.................................... 32 7. Paths ..................................................................... 38 8. Text ....................................................................... 46 9. Animation and interactivity............................................ 51 10. Summary............................................................... 55 Introduction to Scalable Vector Graphics Page 1 of 56 ibm.com/developerWorks Presented by developerWorks, your source for great tutorials Section 1. Introduction Should I take this tutorial? This tutorial assists developers who want to understand the concepts behind Scalable Vector Graphics (SVG) in order to build them, either as static documents, or as dynamically generated content. XML experience is not required, but a familiarity with at least one tagging language (such as HTML) will be useful. For basic XML -
Visualisation of Resource Flows Technical Report
Visualisation of Resource Flows Technical Report Jesper Karjalainen (jeska043) Erik Johansson (erijo926) Anders Kettisen (andke020) Tobias Nilsson (tobni908) Alexander Eriksson (aleer034) Contents 1. Introduction 1 1.1. Problem description . .1 1.2. Tools . .1 2. Background/Theory 1 2.1. Sphere models . .1 2.2. Vector Graphics . .2 2.3. Cubic Beziers . .2 2.4. Cartesian Mapping of Earth . .3 2.5. Lines in 3D . .3 2.6. Rendering Polygons . .4 2.6.1 Splitting polygons . .4 2.6.2 Tessellate polygons . .4 2.6.3 Filling Polygon by the Stencil Method . .5 2.7. Picking . .5 3. Method 5 3.1. File Loading . .5 3.2. Formatting new files . .6 3.3. Data Management . .6 3.4. Creating the sphere . .6 3.4.1 Defining the first vertices . .6 3.4.2 Making the sphere smooth . .7 3.5. Texturing a Sphere . .8 3.6. Generating Country Borders . .8 3.7. Drawing 3D lines . 10 3.8. Assigning widths to flow lines . 12 3.8.1 Linear scaling . 12 3.8.2 Logarithmic scaling . 12 3.9. Drawing Flow Lines . 12 3.10.Picking . 13 3.10.1 Picking on Simple Geometry . 13 3.10.2 Picking on Closed Polygon . 14 3.11.Rendering Polygons . 14 3.11.1 Concave Polygon Splitting into Convex Parts . 14 3.11.2 Filling by the Stencil Buffer Method . 16 3.12.Shader Animations . 16 3.12.1 2D-3D Transition Animation . 16 3.12.2 Flowline Directions . 17 3.13.User interface . 17 3.13.1 Connecting JavaScript and C++ . 17 3.13.2 Filling the drop-down lists with data . -
Progressive Imagery with Scalable Vector Graphics -..:: VCG Rostock
Progressive imagery with scalable vector graphics Georg Fuchsa, Heidrun Schumanna, and Ren´eRosenbaumb aUniversity of Rostock, Institute for Computer Science, 18051 Rostock, Germany; bUC Davis, Institute of Data Analysis & Visualization, Davis, CA 95616 U.S.A. ABSTRACT Vector graphics can be scaled without loss of quality, making them suitable for mobile image communication where a given graphics must be typically represented in high quality for a wide range of screen resolutions. One problem is that file size increases rapidly as content becomes more detailed, which can reduce response times and efficiency in mobile settings. Analog issues for large raster imagery have been overcome using progressive refinement schemes. Similar ideas have already been applied to vector graphics, but an implementation that is compliant to a major and widely adopted standard is still missing. In this publication we show how to provide progressive refinement schemes based on the extendable Scalable Vector Graphics (SVG) standard. We propose two strategies: decomposition of the original SVG and incremental transmission using (1) several linked files and (2) element-wise streaming of a single file. The publication discusses how both strategies are employed in mobile image communication scenarios where the user can interactively define RoIs for prioritized image communication, and reports initial results we obtained from a prototypically implemented client/server setup. Keywords: Progression, Progressive refinement, Scalable Vector Graphics, SVG, Mobile image communication 1. INTRODUCTION Vector graphics use graphic primitives such as points, lines, curves, and polygons to represent image contents. As those primitives are defined by means of geometric coordinates that are independent of actual pixel resolutions, vector graphics can be scaled without loss of quality. -
SVG Exploiting Browsers Without Image Parsing Bugs
SVG Exploiting Browsers without Image Parsing Bugs Rennie deGraaf iSEC Partners 07 August 2014 Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 1 / 55 Outline 1 A brief introduction to SVG What is SVG? Using SVG with HTML SVG features 2 Attacking SVG Attack surface Security model Security model violations 3 Content Security Policy A brief introduction CSP Violations 4 Conclusion Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 2 / 55 A brief introduction to SVG What is SVG? What is SVG? Scalable Vector Graphics XML-based W3C (http://www.w3.org/TR/SVG/) Development started in 1999 Current version is 1.1, published in 2011 Version 2.0 is in development First browser with native support was Konqueror in 2004; IE was the last major browser to add native SVG support (in 2011) Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 3 / 55 A brief introduction to SVG What is SVG? A simple example Source code <? xml v e r s i o n = ” 1 . 0 ” encoding = ”UTF-8” standalone = ” no ” ? > <svg xmlns = ” h t t p : // www. w3 . org / 2 0 0 0 / svg ” width = ” 68 ” h e i g h t = ” 68 ” viewBox = ”-34 -34 68 68 ” v e r s i o n = ” 1 . 1 ” > < c i r c l e cx = ” 0 ” cy = ” 0 ” r = ” 24 ” f i l l = ”#c8c8c8 ” / > < / svg > Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 4 / 55 A brief introduction to SVG What is SVG? A simple example As rendered Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 5 / 55 A brief introduction to SVG What is SVG? A simple example I am not an artist. -
473335 1 En Bookfrontmatter 1..29
Advances in Intelligent Systems and Computing Volume 931 Series Editor Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland Advisory Editors Nikhil R. Pal, Indian Statistical Institute, Kolkata, India Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba Emilio S. Corchado, University of Salamanca, Salamanca, Spain Hani Hagras, Electronic Engineering, University of Essex, Colchester, UK László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil Ngoc Thanh Nguyen, Faculty of Computer Science and Management, Wrocław University of Technology, Wrocław, Poland Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural -
Apps Vs. Open Web: the Battle of the Decade
Apps vs. Open Web: The Battle of the Decade Tommi Mikkonen Antero Taivalsaari Department of Software Systems Advanced Development & Technology Tampere University of Technology Nokia Corporation Tampere, Finland Tampere, Finland [email protected] [email protected] Abstract—Today, both desktop and mobile software systems In this paper, we anticipate that in the 2010’s we will are usually built to leverage resources available on the World witness a major battle between two types of technologies: (1) Wide Web. However, in recent years desktop and mobile native web apps and (2) Open Web applications that run in a software have evolved in different directions. On desktop web browser or some other standards-compliant web runtime computers, the most popular application for accessing content environment. The former approach implies the use of binary and applications on the Web is the web browser. In mobile software and traditional software engineering practices, devices, in contrast, the majority of web content is consumed while the latter approach implies that conventional software via custom-built native web apps. This divergence will not engineering methods and practices will be replaced by continue indefinitely. We anticipate that in the 2010’s we will technologies created for web development. This “Battle of witness a major battle between two types of technologies: (1) the Decade”, as we call it, will determine not only the future native web apps and (2) Open Web applications that run in a web browser or some other standards-compliant web runtime of the software industry, but the future of software environment. This ―Battle of the Decade‖ will determine the engineering research as well. -
Interactive Topographic Web Mapping Using Scalable Vector Graphics
University of Nebraska at Omaha DigitalCommons@UNO Student Work 12-1-2003 Interactive topographic web mapping using scalable vector graphics Peter Pavlicko University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Pavlicko, Peter, "Interactive topographic web mapping using scalable vector graphics" (2003). Student Work. 589. https://digitalcommons.unomaha.edu/studentwork/589 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. INTERACTIVE TOPOGRAPHIC WEB MAPPING USING SCALABLE VECTOR GRAPHICS A Thesis Presented to the Department of Geography-Geology and the Faculty of the Graduate College University of Nebraska in Partial Fulfillment of the Requirements for the Degree Master of Arts University of Nebraska at Omaha by Peter Pavlicko December, 2003 UMI Number: EP73227 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation WWisMng UMI EP73227 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ACCEPTANCE Acceptance for the faculty of the Graduate College, University of Nebraska, in Partial fulfillment of the requirements for the degree Master of Arts University of Nebraska Omaha Committee ----------- Uf.A [JL___ Chairperson. -
Lock-In-Pop: Securing Privileged Operating System Kernels By
Lock-in-Pop: Securing Privileged Operating System Kernels by Keeping on the Beaten Path Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos, New York University https://www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen This paper is included in the Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC ’17). July 12–14, 2017 • Santa Clara, CA, USA ISBN 978-1-931971-38-6 Open access to the Proceedings of the 2017 USENIX Annual Technical Conference is sponsored by USENIX. Lock-in-Pop: Securing Privileged Operating System Kernels by Keeping on the Beaten Path Yiwen Li Brendan Dolan-Gavitt Sam Weber Justin Cappos New York University Abstract code needed to run such a system increases the odds that Virtual machines (VMs) that try to isolate untrusted flaws will be present, and, in turn, that tens of millions code are widely used in practice. However, it is often of user machines could be at risk [25]. Furthermore, iso- possible to trigger zero-day flaws in the host Operating lation will not work if a malicious program can access System (OS) from inside of such virtualized systems. In even a small portion of the host OS’s kernel that contains this paper, we propose a new security metric showing a zero-day flaw [12]. Both of these drawbacks reveal the strong correlation between “popular paths” and kernel key underlying weakness in designing OSVM systems – vulnerabilities. We verify that the OS kernel paths ac- a lack of information as to which parts of the host kernel cessed by popular applications in everyday use contain can be safely exported to user programs. -
X3D Progress and Prospects, FCVW 2010
X3D Progress and Prospects Common Problems versus Stable Growth Federal Consortium for Virtual Worlds (FCVW) 12-14 May 2010 Don Brutzman Naval Postgraduate School Monterey California USA Our Topics for Today • Polys: 30,000' overview X3D and Web3D • Brutzman: Technical rationale and review • Polys: 4D presentation, Medical study MMVR • Brutzman: X3D-Edit authoring, teaching • Colleen, remote: RayGun multiuser demo • Brutzman: X3D report card for federal use • Brutzman and Polys: demo DIS network recording and playback, X3D and HTML5 • Questions and discussion Setting the Stage Many intellectual and political assets brought us here Historical background: VRML Virtual Reality Modeling Language (VRML) began in 1994, seeking to create 3D markup for Web • Numerous candidates considered by an open community of interested practitioners • SGI's OpenInventor won the initial competition • VRML 1.0 developed over the next year • VRML 2.0 restructured some nodes, added features VRML advanced to International Standard 14772 by ISO in 1997 XML file encoding The Extensible Markup Language (XML) is a plain-text format used by many Web languages • Including Hypertext Markup Language (HTML) XML is used to define other data-oriented languages • Thus XML is not a language by itself, rather it is a language about languages, a metalanguage • Common XML basis enables better interoperability, opens a “path of least resistance” for data flow XML has many benefits and is well-suited for X3D XML in 10 Points http://www.w3.org/XML/1999/XML-in-10-points XML is for structuring data XML is new but not that new XML looks a bit like HTML XML leads HTML to XHTML XML is text, but isn't meant to XML is modular be read XML is basis for RDF and the XML is verbose by design Semantic Web XML is a family of technologies XML is license-free, platform-independent and XML in 10 Points is a key reference for understanding the common underlying well-supported design principles underlying the great diversity of XML.