Homeomorphism Groups of Finite Topological Spaces 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Structure Theorem in Finite Topology
Canad. Math. Bull. Vol. 26 (1), 1983 A STRUCTURE THEOREM IN FINITE TOPOLOGY BY JOHN GINSBURG ABSTRACT. Simple structure theorems or representation theorems make their appearance at a very elementary level in subjects such as algebra, but one infrequently encounters such theorems in elemen tary topology. In this note we offer one such theorem, for finite topological spaces, which involves only the most elementary con cepts: discrete space, indiscrete space, product space and homeomorphism. Our theorem describes the structure of those finite spaces which are homogeneous. In this short note we will establish a simple representation theorem for finite topological spaces which are homogeneous. We recall that a topological space X is said to be homogeneous if for all points x and y of X there is a homeomorphism from X onto itself which maps x to y. For any natural number k we let D(k) and I(k) denote the set {1, 2,..., k} with the discrete topology and the indiscrete topology respectively. As usual, if X and Y are topological spaces then XxY is regarded as a topological space with the product topology, which has as a basis all sets of the form GxH where G is open in X and H is open in Y. If the spaces X and Y are homeomorphic we write X^Y. The number of elements of a set S is denoted by \S\. THEOREM. Let X be a finite topological space. Then X is homogeneous if and only if there exist integers m and n such that X — D(m)x/(n). -
Group Actions on Dendrites and Curves Tome 68, No 5 (2018), P
R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Bruno DUCHESNE & Nicolas MONOD Group actions on dendrites and curves Tome 68, no 5 (2018), p. 2277-2309. <http://aif.cedram.org/item?id=AIF_2018__68_5_2277_0> © Association des Annales de l’institut Fourier, 2018, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 68, 5 (2018) 2277-2309 GROUP ACTIONS ON DENDRITES AND CURVES by Bruno DUCHESNE & Nicolas MONOD (*) Abstract. — We establish obstructions for groups to act by homeomorphisms on dendrites. For instance, lattices in higher rank simple Lie groups will always fix a point or a pair. The same holds for irreducible lattices in products of connected groups. Further results include a Tits alternative and a description of the topolog- ical dynamics. We briefly discuss to what extent our results hold for more general topological curves. Résumé. — Nous établissons des obstructions à l’existence d’actions de groupes par homéomorphismes sur des dendrites. Par exemple, les réseaux de groupes de Lie simples en rang supérieur à 2 fixent toujours un point ou une paire de points. -
Actions of Mapping Class Groups Athanase Papadopoulos
Actions of mapping class groups Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Actions of mapping class groups. L. Ji, A. Papadopoulos and S.-T. Yau. Handbook of Group Actions, Vol. I, 31, Higher Education Press; International Press, p. 189-248., 2014, Advanced Lectures in Mathematics, 978-7-04-041363-2. hal-01027411 HAL Id: hal-01027411 https://hal.archives-ouvertes.fr/hal-01027411 Submitted on 21 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACTIONS OF MAPPING CLASS GROUPS ATHANASE PAPADOPOULOS Abstract. This paper has three parts. The first part is a general introduction to rigidity and to rigid actions of mapping class group actions on various spaces. In the second part, we describe in detail four rigidity results that concern actions of mapping class groups on spaces of foliations and of laminations, namely, Thurston’s sphere of projective foliations equipped with its projective piecewise-linear structure, the space of unmeasured foliations equipped with the quotient topology, the reduced Bers boundary, and the space of geodesic laminations equipped with the Thurston topology. In the third part, we present some perspectives and open problems on other actions of mapping class groups. -
Finite Preorders and Topological Descent I George Janelidzea;1 , Manuela Sobralb;∗;2 Amathematics Institute of the Georgian Academy of Sciences, 1 M
Journal of Pure and Applied Algebra 175 (2002) 187–205 www.elsevier.com/locate/jpaa Finite preorders and Topological descent I George Janelidzea;1 , Manuela Sobralb;∗;2 aMathematics Institute of the Georgian Academy of Sciences, 1 M. Alexidze Str., 390093 Tbilisi, Georgia bDepartamento de Matematica,Ã Universidade de Coimbra, 3000 Coimbra, Portugal Received 28 December 2000 Communicated by A. Carboni Dedicated to Max Kelly in honour of his 70th birthday Abstract It is shown that the descent constructions of ÿnite preorders provide a simple motivation for those of topological spaces, and new counter-examples to open problems in Topological descent theory are constructed. c 2002 Published by Elsevier Science B.V. MSC: 18B30; 18A20; 18D30; 18A25 0. Introduction Let Top be the category of topological spaces. For a given continuous map p : E → B, it might be possible to describe the category (Top ↓ B) of bundles over B in terms of (Top ↓ E) using the pullback functor p∗ :(Top ↓ B) → (Top ↓ E); (0.1) in which case p is called an e)ective descent morphism. There are various ways to make this precise (see [8,9]); one of them is described in Section 3. ∗ Corresponding author. Dept. de MatemÃatica, Univ. de Coimbra, 3001-454 Coimbra, Portugal. E-mail addresses: [email protected] (G. Janelidze), [email protected] (M. Sobral). 1 This work was pursued while the ÿrst author was visiting the University of Coimbra in October=December 1998 under the support of CMUC=FCT. 2 Partial ÿnancial support by PRAXIS Project PCTEX=P=MAT=46=96 and by CMUC=FCT is gratefully acknowledged. -
Minimal Actions of Homeomorphism Groups
MINIMAL ACTIONS OF HOMEOMORPHISM GROUPS YONATAN GUTMAN Abstract. Let X be a closed manifold of dimension 2 or higher or the Hilbert cube. Following Uspenskij one can consider the action of X Homeo(X) equipped with the compact-open topology on Φ ⊂ 22 , the space of maximal chains in 2X , equipped with the Vietoris topology. We show that if one restricts the action to M ⊂ Φ, the space of maximal chains of continua then the action is minimal but not transitive. Thus one shows that the action of Homeo(X) on UHomeo(X), the universal minimal space of Homeo(X) is not transitive (improving a result of Us- penskij in [Usp00]). Additionally for X as above with dim(X) ≥ 3 we characterize all the minimal subspaces of V (M), the space of closed sub- sets of M, and show that M is the only minimal subspace of Φ. For the case dim(X) ≥ 3, we also show that (M; Homeo(X)) is strongly proximal. 2000 Mathematics Subject Classification: Primary 37B05; Secondary 54H15, 22F50. 1. Introduction We consider here compact G{spaces with G a Polish group and the action assumed to be continuous as a function of both variables. Such a G{space X is said to be minimal if X and ; are the only G-invariant closed subsets of X. By Zorn's lemma each G{space contains a minimal G-subspace. These minimal objects are in some sense the most basic ones in the category of G{spaces. For various topological groups G they have been the object of vast study. -
Automatic Continuity for Homeomorphism Groups and Applications
Automatic continuity for homeomorphism groups and applications Kathryn Mann Appendix with Fr´ed´ericLe Roux Abstract Let M be a compact manifold, possibly with boundary. We show that the group of homeomorphisms of M has the automatic continuity property: any homomorphism from Homeo(M) to any separable group is necessarily continuous. This answers a question of C. Rosendal. If N ⊂ M is a submanifold, the group of homeomorphisms of M that preserve N also has this property. Various applications of automatic continuity are discussed, including applications to the topology and structure of groups of germs of homeomorphisms. In an appendix with Fr´ed´ericLe Roux we also show, using related techniques, that the group of germs at a point of homeomorphisms of Rn is strongly uniformly simple. 1 Introduction Definition 1.1. A topological group G has the automatic continuity property if every homomorphism from G to any separable group H is necessarily continuous. One should think of automatic continuity as a very strong form of rigidity. Many familiar topological groups fail to have the property, for example • Automorphisms of R as a vector space over Q (other than homotheties) are discon- tinuous homomorphisms R ! R. • Applying a wild automorphism of C to all matrix entries gives a discontinuous homomorphism GL(n; C) ! GL(n; C). • More generally, for any field F of cardinality at most continuum, Kallman [11] gives injective homomorphisms from GL(n; F ) to S1, the group of permutations of an infinite countable set. As S1 admits a separable, totally disconnected topology, GL(n; F ) fails to have automatic continuity as soon as F is not totally disconnected. -
The Range of Ultrametrics, Compactness, and Separability
The range of ultrametrics, compactness, and separability Oleksiy Dovgosheya,∗, Volodymir Shcherbakb aDepartment of Theory of Functions, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine bDepartment of Applied Mechanics, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine Abstract We describe the order type of range sets of compact ultrametrics and show that an ultrametrizable infinite topological space (X, τ) is compact iff the range sets are order isomorphic for any two ultrametrics compatible with the topology τ. It is also shown that an ultrametrizable topology is separable iff every compatible with this topology ultrametric has at most countable range set. Keywords: totally bounded ultrametric space, order type of range set of ultrametric, compact ultrametric space, separable ultrametric space 2020 MSC: Primary 54E35, Secondary 54E45 1. Introduction In what follows we write R+ for the set of all nonnegative real numbers, Q for the set of all rational number, and N for the set of all strictly positive integer numbers. Definition 1.1. A metric on a set X is a function d: X × X → R+ satisfying the following conditions for all x, y, z ∈ X: (i) (d(x, y)=0) ⇔ (x = y); (ii) d(x, y)= d(y, x); (iii) d(x, y) ≤ d(x, z)+ d(z,y) . + + A metric space is a pair (X, d) of a set X and a metric d: X × X → R . A metric d: X × X → R is an ultrametric on X if we have d(x, y) ≤ max{d(x, z), d(z,y)} (1.1) for all x, y, z ∈ X. -
FINITE TOPOLOGICAL SPACES 1. Introduction: Finite Spaces And
FINITE TOPOLOGICAL SPACES NOTES FOR REU BY J.P. MAY 1. Introduction: finite spaces and partial orders Standard saying: One picture is worth a thousand words. In mathematics: One good definition is worth a thousand calculations. But, to quote a slogan from a T-shirt worn by one of my students: Calculation is the way to the truth. The intuitive notion of a set in which there is a prescribed description of nearness of points is obvious. Formulating the “right” general abstract notion of what a “topology” on a set should be is not. Distance functions lead to metric spaces, which is how we usually think of spaces. Hausdorff came up with a much more abstract and general notion that is now universally accepted. Definition 1.1. A topology on a set X consists of a set U of subsets of X, called the “open sets of X in the topology U ”, with the following properties. (i) ∅ and X are in U . (ii) A finite intersection of sets in U is in U . (iii) An arbitrary union of sets in U is in U . A complement of an open set is called a closed set. The closed sets include ∅ and X and are closed under finite unions and arbitrary intersections. It is very often interesting to see what happens when one takes a standard definition and tweaks it a bit. The following tweaking of the notion of a topology is due to Alexandroff [1], except that he used a different name for the notion. Definition 1.2. A topological space is an A-space if the set U is closed under arbitrary intersections. -
Homeomorphism Groups and Coset Spaces^)
HOMEOMORPHISM GROUPS AND COSET SPACES^) BY LESTER R. FORD, JR. 1. Introduction. This paper considers the problem of giving a topology to a homeomorphism group. This problem was considered by Arens [l ](2) for a group of homeomorphisms of a locally compact space. The present paper at- tempts to obtain similar results for arbitrary completely regular spaces. All spaces hereafter will be taken as Hausdorff spaces. The numbers here refer to sections. In (2) we give a (usually) nontrivial topology for an arbitrary homeomorphism group of any completely regular space. Since the convergence notion used is that of uniform convergence, the topology is easily seen to be admissible in the sense of Arens [l]. In (3) we restrict our considerations to transitive homeomorphism groups. We define a "reasonable" topology for the group to be one which makes the space homeo- morphic to the space of cosets of the group modulo that subgroup leaving some particular element fixed. We develop some of the properties of reason- ability. In (4) we present a sufficient condition (Definition 4.1) for a space to possess a homeomorphism group with a reasonable topology, and show that certain well known spaces, in particular the manifolds, possess this property. In (5) we give two examples. The first shows that the sufficient condition is not a necessary condition. The second shows, however, that some further condition is necessary. This latter example has some interesting connec- tivity properties in its own right. 2. Homeomorphism groups of completely regular spaces. The main theorem of this section is Theorem 2.2 which makes any group of homeo- morphisms of a completely regular space into a topological group under a topology induced by a notion of uniform convergence. -
Notices of the American Mathematical Society ABCD Springer.Com
ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook Collection of the American Mathematical Society August 2009 Volume 56, Number 7 Guido Castelnuovo and Francesco Severi: NEW NEW NEW Two Personalities, Two The objective of this textbook is the Blackjack is among the most popular This second edition of Alexander Soifer’s Letters construction, analysis, and interpreta- casino table games, one where astute How Does One Cut a Triangle? tion of mathematical models to help us choices of playing strategy can create demonstrates how different areas of page 800 understand the world we live in. an advantage for the player. Risk and mathematics can be juxtaposed in the Students and researchers interested in Reward analyzes the game in depth, solution of a given problem. The author mathematical modelling in math- pinpointing not just its optimal employs geometry, algebra, trigono- ematics, physics, engineering and the strategies but also its financial metry, linear algebra, and rings to The Dixmier–Douady applied sciences will find this text useful. performance, in terms of both expected develop a miniature model of cash flow and associated risk. mathematical research. Invariant for Dummies 2009. Approx. 480 p. (Texts in Applied Mathematics, Vol. 56) Hardcover 2009. Approx. 140 p. 23 illus. Hardcover 2nd ed. 2009. XXX, 174 p. 80 illus. Softcover page 809 ISBN 978-0-387-87749-5 7 $69.95 ISBN 978-1-4419-0252-8 7 $49.95 ISBN 978-0-387-74650-0 7 approx. $24.95 For access check with your librarian Waco Meeting page 879 A Primer on Scientific Data Mining in Agriculture Explorations in Monte Programming with Python A. -
Free Subgroups of the Homeomorphism Group of the Reals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 24 (1986) 243-252 243 North-Holland FREE SUBGROUPS OF THE HOMEOMORPHISM GROUP OF THE REALS Andreas BLASS and James M. KISTER Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003, USA Received 22 April 1985 Revised 24 September 1985 After proving the known result that the homeomorphism group X(H) of the reals has a free subgroup of rank equal to the cardinality of the continuum, we apply similar techniques to give criteria for the existence of many (a comeager set in a natural complete metric topology) homeomorphisms independent of a given subgroup of X(H). AMS(MOS) Subj. Class.: Primary 57825, 54E52; Secondary 26A48 homeomorphism group of the reals compact metric topology comeager set In this note we give a short self-contained proof of a result attributed to Ehren- feucht by Mycielski [3] that the homeomorphism group of the real line, Z(W), contains a subgroup which is free of rank 2K0 (Theorem 1). Our methods allow us to show that, in many cases, a subgroup G of X(lR) can be enlarged by the choice of an independent generator h to get a subgroup of X(1w) isomorphic to the free product G * Z (Theorem 2). In fact ‘most’ (in the sense of Baire category) choices of h will work. Our interest in the problem began with trying (and failing) to exhibit just two explicit elements of %‘(Iw) which generate a free subgroup. -
Metric and Topological Spaces
METRIC AND TOPOLOGICAL SPACES Part IB of the Mathematical Tripos of Cambridge This course, consisting of 12 hours of lectures, was given by Prof. Pelham Wilson in Easter Term 2012. This LATEX version of the notes was prepared by Henry Mak, last revised in June 2012, and is available online at http://people.pwf.cam.ac.uk/hwhm3/. Comments and corrections to [email protected]. No part of this document may be used for profit. Course schedules Metrics: Definition and examples. Limits and continuity. Open sets and neighbourhoods. Characterizing limits and continuity using neighbourhoods and open sets. [3] Topology: Definition of a topology. Metric topologies. Further examples. Neighbourhoods, closed sets, convergence and continuity. Hausdorff spaces. Homeomorphisms. Topological and non-topological properties. Completeness. Subspace, quotient and product topologies. [3] Connectedness: Definition using open sets and integer-valued functions. Examples, in- cluding intervals. Components. The continuous image of a connected space is connected. Path-connectedness. Path-connected spaces are connected but not conversely. Connected open sets in Euclidean space are path-connected. [3] Compactness: Definition using open covers. Examples: finite sets and Œ0; 1. Closed subsets of compact spaces are compact. Compact subsets of a Hausdorff space must be closed. The compact subsets of the real line. Continuous images of compact sets are compact. Quotient spaces. Continuous real-valued functions on a compact space are bounded and attain their bounds. The product of