Sheaves, Cosheaves and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Sheaves, Cosheaves and Applications SHEAVES, COSHEAVES AND APPLICATIONS Justin Michael Curry ADISSERTATION in Mathematics Presented to the Faculties of The University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2014 Robert W. Ghrist, Andrea Mitchell University Professor Professor of Mathematics Professor of Electrical and Systems Engineering Supervisor of Dissertation David Harbater, Christopher H. Browne Distinguished Professor Professor of Mathematics Graduate Group Chairperson Dissertation Committee: Robert Ghrist, Andrea Mitchell University Professor of Mathematics Robert MacPherson, Hermann Weyl Professor of Mathematics Tony Pantev, Professor of Mathematics SHEAVES, COSHEAVES AND APPLICATIONS © 2014 Justin Michael Curry Dedicated to Michael Loyd Curry iii ACKNOWLEDGEMENTS At the current moment in time, a PhD is the highest academic degree awarded in the United States. As such, this thesis reflects over two decades of formal education and schooling across multiple institutions. It also reflects the author’s life experience to date, which is formed in many informal and non-academic ways. Accounting for all of these influences and giving credit where credit is due is an impossible task; however, I would like to take some time to thank the many hands which helped this thesis come to be. Given the public nature of this document, I will not always name names, but I will make clear the contributions of my colleagues and teachers. First and foremost I must thank my parents for bringing me into the world. While my father was in the Navy, my mother had the strongest influence on my education. Instilling a love of reading is, besides giving me life itself, the greatest gift she has given to me. I remember distinctly being told that, given our socio-economic status, receiving a scholarship was the only way I would make it to a university one day, and that reading would take me there. My sense of reverence for reading, among other things, is entirely due to my mother. In contrast, my father engaged me in philosophical dialog at a young age, which is how I gained my first experience with critical thinking. He was never much of a reader; he preferred to sort things out for himself. My entire family — aunts, uncles, cousins and grandparents included — have supported me every step of the way and they know I owe them a great deal. If anyone thinks that obtaining a PhD comes after an endless stream of successes, they are mistaken. I failed many times, and fortunately I was given many second chances. The educators in the Virginia Beach public school system gave me my first second chance by letting me retake a placement exam for the gifted and talented program. Mr. Ausberry, at Thomas Harrison Middle School, requested that I be accelerated a year in mathemat- ics. Mr. Frutuozo made being a scientist seem fashionable, by being a rock star himself. At Harrisonburg High School, I had many excellent instructors, but I felt the strongest direction and guidance from Henry Buhl, Myron Blosser, Andrew Jackson, Patrick Lint- ner and David Loughran. Without these hardworking and underpaid teachers, I don’t think I would have gotten to go to MIT. Attending MIT as an undergrad was one of the most formative experiences of my life. It certainly tested and broke the mental toughness that I thought I had. Sitting as a fresh- man in Denis Auroux’s 18.100B and getting my first taste of point-set topology was like stepping in to another dimension. It was too much, too fast, and for a moment I thought that the gate of mathematics was closed to me. Gerald Sussman helped steer me back to- wards mathematics by preaching the value of the MIT quadrivium: logic/programming, analysis, algebra, geometry, topology, relativity and quantum mechanics. Haynes Miller iv gave me my second second chance by overlooking my shabby mathematical prepara- tion and letting me study for the Part 1B tripos at Churchill College, as part of the Cambridge-MIT exchange program. Cambridge exposed me to one of the greatest math- ematical cultures to ever exist. The integrated nature of the classes and the year-long preparation for the tripos helped me gain independence and synthesize my lessons into a unified whole. It was in the Churchill buttery, where Part II and III students waxed poetic about Riemann surfaces and topoi before I even knew what a ring was, that I decided I had to pursue mathematics for graduate school. Returning to MIT, Haynes exposed me to even more advanced mathematics through summer projects and an IAP project with Aliaa Barakat on integrable systems. Working with Aliaa and, later, Victor Guillemin gave me lots of practice with writing mathematics. All of this has served me well for graduate school. The University of Pennsylvania appealed to my theory-building nature, but it was having to retake the preliminary exams that helped me become a better problem-solver. While drudging through the Berkeley Problems in Mathematics [dSS04] book, my classes gave me something to look forward to. Tony Pantev made the first-year algebra sequence geometric for me, by introducing us to the Serre-Swan correspondence, categories, sim- plicial sets, spectra and sheaves. Jonathan Block balanced the algebraic and the geometric in Penn’s lengthy topology sequence and introduced us to “Brave New Algebra.” The graduate student body at Penn helped contextualize my mathematical lessons, while my roommate, Elaine So, gave me lessons in how to be a better human. My advisor, Robert Ghrist, believed in me when I did not believe in myself. He taught me to have good taste in mathematics and introduced me to Morse theory, Euler calculus, integral geometry and much more. When I first became his student, the idea that no mathematical object is too abstract to be incarnate resonated deeply with me then, as it does today. Rob outlined a beautiful vision for applied mathematics and worked very hard to realize his ambitious plan. By bringing Yasu Hiraoka, Sanjeevi Krishnan, David Lipsky, Michael Robinson and Radmila Sazdanovic together, Rob augmented my graduate training in profound ways. Given this investment, Rob was extremely generous to let me wander geographically and intellectually. Because of him and Penn’s Exchange Scholar program, I was able to live in Princeton for the last few years of my graduate career. At Princeton, I approached Bob MacPherson in person, who luckily was thinking about applied sheaf theory because of my advisor and Amit Patel, and he agreed to organize a seminar at the Institute for Advanced Study. Listening and watching Bob lec- ture was like getting to peer through a telescope into the far reaches of the mathematical kingdom. The attendees of this seminar were a motley crew of thinkers and Bob was our shepherd. Bob never said more than was necessary, never wanted his own perspec- tive or understanding to crowd out a newly forming one, and did his best to cultivate each individual’s diverse set of mental connections, life experiences and accompanying insights. v Many people helped me directly and indirectly while finishing my thesis. Mark Goresky taught me the subtleties of stratification theory, set a high standard for mathe- matical precision and was enthusiastic and supportive of all my efforts. David Treumann and Jon Woolf both clarified details concerning this work via email. Greg Henselman, Sefi Ladkani, Michael Lesnick, and Jim McClure all provided editorial comments on early drafts of this thesis. Vin de Silva, Matthew Kahle, Dmitriy Morozov, Vidit Nanda, Primoz Skraba and Mikael Vejdemo-Johansson all provided moral support. Ryan and Cate Hodgen kept me sane during my frequent trips to Virginia, where I helped my Dad through the painful process of fighting, and losing to, bladder cancer. My fiancée, Sasha Rahlin, encouraged me to pursue a math major when we first started dating as sopho- mores, made my junior year abroad doubly wonderful, navigated the stressful two-body aspect of picking a graduate school as a senior, helped me through all of the ups and downs of graduate school along with losing my father, and continues to dazzle me with her focus, drive, beauty and brains. You and Simone are the best. vi ABSTRACT SHEAVES, COSHEAVES AND APPLICATIONS Justin Michael Curry Robert W. Ghrist This thesis develops the theory of sheaves and cosheaves with an eye towards applica- tions in science and engineering. To provide a theory that is computable, we focus on a combinatorial version of sheaves and cosheaves called cellular sheaves and cosheaves, which are finite families of vector spaces and maps parametrized by a cell complex. We develop cellular (co)sheaves as a new tool for topological data analysis, network coding and sensor networks. We utilize the barcode descriptor from persistent homology to interpret cellular cosheaf homology in terms of Borel-Moore homology of the barcode. We associate barcodes to network coding sheaves and prove a duality theorem there. A new approach to multi-modal sensing is introduced, where sheaves and cosheaves model detection and evasion sets. A foundation for multi-dimensional level-set persis- tent homology is laid via constructible cosheaves, which are equivalent to representa- tions of MacPherson’s entrance path category. By proving a van Kampen theorem, we give a direct proof of this equivalence. A cosheaf version of the ith derived pushforward of the constant sheaf along a definable map is constructed directly as a representation of this category. We go on to clarify the relationship of cellular sheaves to cosheaves by providing a formula that takes a cellular sheaf and produces a complex of cellular cosheaves. This formula lifts to a derived equivalence, which in turn recovers Verdier duality. Compactly-supported sheaf cohomology is expressed as the coend with the im- age of the constant sheaf through this equivalence.
Recommended publications
  • Topological Pattern Recognition for Point Cloud Data∗
    Acta Numerica (2014), pp. 289–368 c Cambridge University Press, 2014 doi:10.1017/S0962492914000051 Printed in the United Kingdom Topological pattern recognition for point cloud data∗ Gunnar Carlsson† Department of Mathematics, Stanford University, CA 94305, USA E-mail: [email protected] In this paper we discuss the adaptation of the methods of homology from algebraic topology to the problem of pattern recognition in point cloud data sets. The method is referred to as persistent homology, and has numerous applications to scientific problems. We discuss the definition and computation of homology in the standard setting of simplicial complexes and topological spaces, then show how one can obtain useful signatures, called barcodes, from finite metric spaces, thought of as sampled from a continuous object. We present several different cases where persistent homology is used, to illustrate the different ways in which the method can be applied. CONTENTS 1 Introduction 289 2 Topology 293 3 Shape of data 311 4 Structures on spaces of barcodes 331 5 Organizing data sets 343 References 365 1. Introduction Deriving knowledge from large and complex data sets is a fundamental prob- lem in modern science. All aspects of this problem need to be addressed by the mathematical and computational sciences. There are various dif- ferent aspects to the problem, including devising methods for (a) storing massive amounts of data, (b) efficiently managing it, and (c) developing un- derstanding of the data set. The past decade has seen a great deal of devel- opment of powerful computing infrastructure, as well as methodologies for ∗ Colour online for monochrome figures available at journals.cambridge.org/anu.
    [Show full text]
  • Stable Higgs Bundles on Ruled Surfaces 3
    STABLE HIGGS BUNDLES ON RULED SURFACES SNEHAJIT MISRA Abstract. Let π : X = PC(E) −→ C be a ruled surface over an algebraically closed field k of characteristic 0, with a fixed polarization L on X. In this paper, we show that pullback of a (semi)stable Higgs bundle on C under π is a L-(semi)stable Higgs bundle. Conversely, if (V,θ) ∗ is a L-(semi)stable Higgs bundle on X with c1(V ) = π (d) for some divisor d of degree d on C and c2(V ) = 0, then there exists a (semi)stable Higgs bundle (W, ψ) of degree d on C whose pullback under π is isomorphic to (V,θ). As a consequence, we get an isomorphism between the corresponding moduli spaces of (semi)stable Higgs bundles. We also show the existence of non-trivial stable Higgs bundle on X whenever g(C) ≥ 2 and the base field is C. 1. Introduction A Higgs bundle on an algebraic variety X is a pair (V, θ) consisting of a vector bundle V 1 over X together with a Higgs field θ : V −→ V ⊗ ΩX such that θ ∧ θ = 0. Higgs bundle comes with a natural stability condition (see Definition 2.3 for stability), which allows one to study the moduli spaces of stable Higgs bundles on X. Higgs bundles on Riemann surfaces were first introduced by Nigel Hitchin in 1987 and subsequently, Simpson extended this notion on higher dimensional varieties. Since then, these objects have been studied by many authors, but very little is known about stability of Higgs bundles on ruled surfaces.
    [Show full text]
  • Topology and Data
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 2, April 2009, Pages 255–308 S 0273-0979(09)01249-X Article electronically published on January 29, 2009 TOPOLOGY AND DATA GUNNAR CARLSSON 1. Introduction An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate. This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology. It is also clear that the nature of the data we are obtaining is significantly different. For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones. A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it. The data obtained is also often much noisier than in the past and has more missing information (missing data). This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources. Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced. In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data.
    [Show full text]
  • Chapter 1 Introduction 1.1 Algebraic Setting
    Towards a Functor Between Affine and Finite Hecke Categories in Type A by Kostiantyn Tolmachov Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 Massachusetts Institute of Technology 2018. All rights reserved. -Signature redacted A uthor .. ....................... Department of Mathematics May 1, 2018 Certified by. Signature redacted.................... Roman Bezrukavnikov Professor of Mathematics Thesis Supervisor Accepted by. Signature redacted ................ -.. - -William Minicozzi G duate Co-Chair Department of Mathematics MASSACHUlS INSITUTE OF TECHNOLOGY MAY 3 0 2018 LIBRARIES fRCHIVES Towards a Functor Between Affine and Finite Hecke Categories in Type A by Kostiantyn Tolmachov Submitted to the Department of Mathematics on May 1, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis we construct a functor from the perfect subcategory of the coherent version of the affine Hecke category in type A to the finite constructible Hecke ca- tegory, partly categorifying a certain natural homomorphism of the corresponding Hecke algebras. This homomorphism sends generators of the Bernstein's commutative subalgebra inside the affine Hecke algebra to Jucys-Murphy elements in the finite Hecke algebra. Construction employs the general strategy devised by Bezrukavnikov to prove the equivalence of coherent and constructible variants of the affine Hecke category. Namely, we identify an action of the category Rep(GL,) on the finite Hecke category, and lift this action to a functor from the perfect derived category of the Steinberg variety, by equipping it with various additional data. Thesis Supervisor: Roman Bezrukavnikov Title: Professor of Mathematics 3 4 Acknowledgments I would like to thank my advisor, Roman Bezrukavnikov, for his support and guidance over these years, as well as for many helpful discussions and sharing his expertise.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • Lecture Notes in Mathematics
    Lecture Notes in Mathematics For information about Vols. 1-1145 please contact your bookseller Vol. 1173: H. DeHs, M. Knebusch, Locally Semialgebraic Spaces. XVI, or Springer-Verlag. 329 pages. 1g95, Vol. 1146: 5eminaire d'Aigebre Paul Dubreil et Marie-Paula Malliavin. Vol. 1174: Categories in Continuum Physics, Buffalo 1982. Seminar. Proceedings, 1g63-1984. Edite par M.-P. Malliavin. IV, 420 pages. Edited by F.W. Lawvere and S.H. Schanuel. V, t26 pages. t986. 1985. Vol. 1175: K. Mathiak, Valuations of Skew Fields and Projective Vol. 1147: M. Wschebor, Surfaces Aleatoires. VII, 11t pages. 1985. Hjelmslev Spaces. VII, 116 pages. 1986. Vol. 1t48: Mark A. Kon, Probability Distributions in Quantum Statistical Vol. 1176: R.R. Bruner, J.P. May, J.E. McClure, M. Steinberger, Mechanics. V, 12t pages. 1985. Hoo Ring Spectra and their Applications. VII, 388 pages. 1988. Vol. 1149: Universal Algebra and Lattice Theory. Proceedings, 1984. Vol. 1t77: Representation Theory I. Finite Dimensional Algebras. Edited by S. D. Comer. VI, 282 pages. 1985. Proceedings, t984. Edited by V. Dlab, P. Gabriel and G. Michler. XV, 340 pages. 1g86. Vol. 1150: B. Kawohl, Rearrangements and Convexity of Level Sets in Vol. 1178: Representation Theory II. Groups and Orders. Proceed­ PDE. V, 136 pages. 1985. ings, 1984. Edited by V. Dlab, P. Gabriel and G. Michler. XV, 370 Vol 1151: Ordinary and Partial Differential Equations. Proceedings, pages. 1986. 1984. Edited by B.D. Sleeman and R.J. Jarvis. XIV, 357 pages. 1985. Vol. 1179: Shi J .-Y. The Kazhdan-Lusztig Cells in Certain Affine Weyl Vol. 1152: H. Widom, Asymptotic Expansions for Pseudodifferential Groups.
    [Show full text]
  • Group Invariant Solutions Without Transversality 2 in Detail, a General Method for Characterizing the Group Invariant Sections of a Given Bundle
    GROUP INVARIANT SOLUTIONS WITHOUT TRANSVERSALITY Ian M. Anderson Mark E. Fels Charles G. Torre Department of Mathematics Department of Mathematics Department of Physics Utah State University Utah State University Utah State University Logan, Utah 84322 Logan, Utah 84322 Logan, Utah 84322 Abstract. We present a generalization of Lie’s method for finding the group invariant solutions to a system of partial differential equations. Our generalization relaxes the standard transversality assumption and encompasses the common situation where the reduced differential equations for the group invariant solutions involve both fewer dependent and independent variables. The theoretical basis for our method is provided by a general existence theorem for the invariant sections, both local and global, of a bundle on which a finite dimensional Lie group acts. A simple and natural extension of our characterization of invariant sections leads to an intrinsic characterization of the reduced equations for the group invariant solutions for a system of differential equations. The char- acterization of both the invariant sections and the reduced equations are summarized schematically by the kinematic and dynamic reduction diagrams and are illustrated by a number of examples from fluid mechanics, harmonic maps, and general relativity. This work also provides the theoretical foundations for a further detailed study of the reduced equations for group invariant solutions. Keywords. Lie symmetry reduction, group invariant solutions, kinematic reduction diagram, dy- namic reduction diagram. arXiv:math-ph/9910015v2 13 Apr 2000 February , Research supported by NSF grants DMS–9403788 and PHY–9732636 1. Introduction. Lie’s method of symmetry reduction for finding the group invariant solutions to partial differential equations is widely recognized as one of the most general and effective methods for obtaining exact solutions of non-linear partial differential equations.
    [Show full text]
  • Composable Geometric Motion Policies Using Multi-Task Pullback Bundle Dynamical Systems
    Composable Geometric Motion Policies using Multi-Task Pullback Bundle Dynamical Systems Andrew Bylard, Riccardo Bonalli, Marco Pavone Abstract— Despite decades of work in fast reactive plan- ning and control, challenges remain in developing reactive motion policies on non-Euclidean manifolds and enforcing constraints while avoiding undesirable potential function local minima. This work presents a principled method for designing and fusing desired robot task behaviors into a stable robot motion policy, leveraging the geometric structure of non- Euclidean manifolds, which are prevalent in robot configuration and task spaces. Our Pullback Bundle Dynamical Systems (PBDS) framework drives desired task behaviors and prioritizes tasks using separate position-dependent and position/velocity- dependent Riemannian metrics, respectively, thus simplifying individual task design and modular composition of tasks. For enforcing constraints, we provide a class of metric-based tasks, eliminating local minima by imposing non-conflicting potential functions only for goal region attraction. We also provide a geometric optimization problem for combining tasks inspired by Riemannian Motion Policies (RMPs) that reduces to a simple least-squares problem, and we show that our approach is geometrically well-defined. We demonstrate the 2 PBDS framework on the sphere S and at 300-500 Hz on a manipulator arm, and we provide task design guidance and an open-source Julia library implementation. Overall, this work Fig. 1: Example tree of PBDS task mappings designed to move a ball along presents a fast, easy-to-use framework for generating motion the surface of a sphere to a goal while avoiding obstacles. Depicted are policies without unwanted potential function local minima on manifolds representing: (black) joint configuration for a 7-DoF robot arm general manifolds.
    [Show full text]
  • Three Keynote Lectures Delivered By: ▫ Prof. Gunnar Carlsson, Stanford
    Three keynote lectures delivered by: . Prof. Gunnar Carlsson, Stanford University, USA . Prof. Samad Hedayat, University of Illinois at Chicago, USA . Prof. Edriss Titi, Texas A&M University, USA Gunnar Carlsson: Gunnar Carlsson is a Professor of Mathematics at Stanford University. A highly influential mathematician, he is most well-known for his proof of the Segal Burnside Ring conjecture and for his work on applied algebraic topology, especially topological data analysis. He was a Professor at Princeton University before joining the Stanford Mathematics Department in 1991 where he also served as a Chairman. He was invited at the International Congress of Mathematicians to speak about his work in homotopy theory. More recently his work on persistent homology and topological data analysis has opened up new fields of research with a large number of followers. Whether through his numerous publications or keynote addresses, Gunnar Carlsson has been having an enormous influence on present day mathematical research and its applications to as far afield as cancer treatment. He has co-authored two books on mathematical education. He served as a consultant to the education boards of the State of Texas and State of California concerning the Content Standards in Mathematics and currently is a member of Texas Instruments California Advisory Board on K-12 education. He is the recipient of many awards and grants including the Alfred P. Sloan Fellowship, NSF grants, DARPA and Air Force Office of Scientific Research grants. He is the editor of several internationally respected mathematics journals in topology and algebra. More information about Professor Gunnar Carlsson can be found at http://math.stanford.edu/~gunnar/ Samad Hedayat Professor Samad Hedayat is a UIC Distinguished Professor at Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago (UIC).
    [Show full text]
  • 4 Fibered Categories (Aaron Mazel-Gee) Contents
    4 Fibered categories (Aaron Mazel-Gee) Contents 4 Fibered categories (Aaron Mazel-Gee) 1 4.0 Introduction . .1 4.1 Definitions and basic facts . .1 4.2 The 2-Yoneda lemma . .2 4.3 Categories fibered in groupoids . .3 4.3.1 ... coming from co/groupoid objects . .3 4.3.2 ... and 2-categorical fiber product thereof . .4 4.0 Introduction In the same way that a sheaf is a special sort of functor, a stack will be a special sort of sheaf of groupoids (or a special special sort of groupoid-valued functor). It ends up being advantageous to think of the groupoid associated to an object X as living \above" X, in large part because this perspective makes it much easier to study the relationships between the groupoids associated to different objects. For this reason, we use the language of fibered categories. We note here that throughout this exposition we will often say equal (as opposed to isomorphic), and we really will mean it. 4.1 Definitions and basic facts φ Definition 1. Let C be a category. A category over C is a category F with a functor p : F!C. A morphism ξ ! η p(φ) in F is called cartesian if for any other ζ 2 F with a morphism ζ ! η and a factorization p(ζ) !h p(ξ) ! p(η) of φ p( ) in C, there is a unique morphism ζ !λ η giving a factorization ζ !λ η ! η of such that p(λ) = h. Pictorially, ζ - η w - w w 9 w w ! w w λ φ w w w w - w w w w ξ w w w w w w p(ζ) w p(η) w w - w h w ) w (φ w p w - p(ξ): In this case, we call ξ a pullback of η along p(φ).
    [Show full text]
  • Gunnar Carlsson Professor, Department of Mathematics Stanford University
    Colorado State University’s Information Science and Technology Center (ISTeC) presents two lectures by Gunnar Carlsson Professor, Department of Mathematics Stanford University ISTeC Distinguished Lecture In conjunction with the Mathematics Department, the Electrical and Computer Engineering Department, and the Computer Science Department ”The Shape of Data” Monday, October 20, 2014 Reception with refreshments: 10:30 am Lecture: 11:00 am – 12:00 noon Location: LSC Grey Rock • Mathematics Department, Electrical and Computer Engineering Department , and Computer Science Department Special Seminar Sponsored by ISTeC “The Algebraic Geometry of Persistence Barcodes” Tuesday, October 21, 2014 Lecture: 1:00 – 2:00 pm Reception with refreshments: 2:00 pm Location: 221 TILT ISTeC (Information Science and Technology Center) is a university-wide organization for promoting, facilitating, and enhancing CSU’s research, education, and outreach activities pertaining to the design and innovative application of computer, communication, and information systems. For more information please see ISTeC.ColoState.EDU. Abstracts The Shape of Data “Big data” is a term which describes many varied problems in the management of data. These relate to storage, query ca- pability, analysis, and numerous other aspects of the general problem of how to make most effective use of the enormous amounts of data currently being gathered. We will talk about a collection of recently developed methods for the analysis of large, high dimensional, and most importantly, complex data sets. These methods us the mathematical notion of shape, as encoded in topological methods, as a new tool in data analysis. We will discuss these methods, with numerous examples. The Algebraic Geometry of Persistence Barcodes Persistent homology associates to a finite metric space an invariant called a persistence barcode, which often allows one to infer the homology of and underlying space from which the finite sample is obtained.
    [Show full text]
  • David Donoho COMMENTARY 52 Cliff Ord J
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society January 2018 Volume 65, Number 1 JMM 2018 Lecture Sampler page 6 Taking Mathematics to Heart y e n r a page 19 h C th T Ru a Columbus Meeting l i t h i page 90 a W il lia m s r e lk a W ca G Eri u n n a r C a rl ss on l l a d n a R na Da J i ll C . P ip her s e v e N ré F And e d e r i c o A rd ila s n e k c i M . E d al Ron Notices of the American Mathematical Society January 2018 FEATURED 6684 19 26 29 JMM 2018 Lecture Taking Mathematics to Graduate Student Section Sampler Heart Interview with Sharon Arroyo Conducted by Melinda Lanius Talithia Williams, Gunnar Carlsson, Alfi o Quarteroni Jill C. Pipher, Federico Ardila, Ruth WHAT IS...an Acylindrical Group Action? Charney, Erica Walker, Dana Randall, by omas Koberda André Neves, and Ronald E. Mickens AMS Graduate Student Blog All of us, wherever we are, can celebrate together here in this issue of Notices the San Diego Joint Mathematics Meetings. Our lecture sampler includes for the first time the AMS-MAA-SIAM Hrabowski-Gates-Tapia-McBay Lecture, this year by Talithia Williams on the new PBS series NOVA Wonders. After the sampler, other articles describe modeling the heart, Dürer's unfolding problem (which remains open), gerrymandering after the fall Supreme Court decision, a story for Congress about how geometry has advanced MRI, “My Father André Weil” (2018 is the 20th anniversary of his death), and a profile on Donald Knuth and native script by former Notices Senior Writer and Deputy Editor Allyn Jackson.
    [Show full text]