Biosynthesis of Mycobacterial Methylmannose Polysaccharides Requires a Unique 1-O-Methyltransferase Specific for 3-O-Methylated Mannosides

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis of Mycobacterial Methylmannose Polysaccharides Requires a Unique 1-O-Methyltransferase Specific for 3-O-Methylated Mannosides Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1-O-methyltransferase specific for 3-O-methylated mannosides Jorge Ripoll-Rozadaa,b,1, Mafalda Costac,d,1, José A. Mansoa,b, Ana Maranhac, Vanessa Mirandae, André Sequeirae, M. Rita Venturae, Sandra Macedo-Ribeiroa,b, Pedro José Barbosa Pereiraa,b,2, and Nuno Empadinhasc,f,2 aInstituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; bInstituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; dPhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal; eBioorganic Chemistry Group, Instituto de Tecnologia Química Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; and fInstitute for Interdisciplinary Research (IIIC), University of Coimbra, 3030-789 Coimbra, Portugal Edited by Chi-Huey Wong, Academia Sinica, Taipei, Taiwan, and approved December 4, 2018 (received for review August 3, 2018) Mycobacteria are a wide group of organisms that includes strict bacteria also produce a number of intracellular glycoconjugates, pathogens, such as Mycobacterium tuberculosis, as well as environ- including rare polymethylated polysaccharides (PMPSs), which can mental species known as nontuberculous mycobacteria (NTM), some be divided in two classes: 6-O-methylglucose lipopolysaccharides of which—namely Mycobacterium avium—are important opportu- (MGLP) and 3-O-methylmannose polysaccharides (MMP). While nistic pathogens. In addition to a distinctive cell envelope mediating MGLP have been found in all mycobacterial species examined thus critical interactions with the host immune system and largely respon- far and in other related bacteria of the Nocardia genus, MMP are sible for their formidable resistance to antimicrobials, mycobacteria absent from species of the Mycobacterium tuberculosis complex, synthesize rare intracellular polymethylated polysaccharides impli- having a scattered distribution across mycobacteria and an appar- cated in the modulation of fatty acid metabolism, thus critical players ently biased association to rapidly growing species (5). in cell envelope assembly. These are the 6-O-methylglucose Although their physiological functions are still not fully understood, lipopolysaccharides (MGLP) ubiquitously detected across the PMPSs have been proposed to form stable, thermodynamically BIOCHEMISTRY Mycobacterium genus, and the 3-O-methylmannose polysaccha- favored complexes with long-chain fatty acids and palmityol-CoA, rides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltrans- Significance ferases essential for their optimal function. Although the knowl- edge of MGLP biogenesis is greater than that of MMP biosynthesis, Mycobacteria are priority pathogens in terms of drug resistance the methyltransferases of both pathways remain uncharacterized. worldwide and efforts aimed at deciphering their unique meta- Here, we report the identification and characterization of a unique bolic pathways and unveiling new targets for innovative drugs S-adenosyl-L-methionine–dependent sugar 1-O-methyltransferase should be intensified. Mycobacterial polymethylated polysac- (MeT1) from Mycobacterium hassiacum that specifically blocks charides, 6-O-methylglucose lipopolysaccharides (MGLP) and 3-O- the 1-OH position of 3,3′-di-O-methyl-4α-mannobiose, a probable methylmannose polysaccharides (MMP), identified half a century early precursor of MMP, which we chemically synthesized. The high- ago, have been implicated in the metabolism of precursors of cell resolution 3D structure of MeT1 in complex with its exhausted co- envelope lipids crucial for stress resistance and pathogenesis. factor, S-adenosyl-L-homocysteine, together with mutagenesis Although the functions of MGLP and MMP remain to be con- studies and molecular docking simulations, unveiled the enzyme’s firmed experimentally, their tight interactions with fatty acids are reaction mechanism. The functional and structural properties of intrinsically associated to unique and extensive methylation this unique sugar methyltransferase further our knowledge of patterns, resulting from the action of hitherto uncharacterized MMP biosynthesis and provide important tools to dissect the role methyltransferases. Herein, we identify and characterize func- of MMP in NTM physiology and resilience. tionally and structurally a rare sugar methyltransferase for spe- cific methylation of the MMP reducing end, shedding light onto Mycobacterium | polymethylated polysaccharides | sugar an unexplored mycobacterial pathway. methyltransferase | S-adenosyl-L-methionine | 3D structure Author contributions: J.R.-R., M.R.V., S.M.-R., P.J.B.P., and N.E. designed research; J.R.-R., lthough water sanitation is among the greatest health M.C., J.A.M., A.M., V.M., A.S., P.J.B.P., and N.E. performed research; J.R.-R., M.C., J.A.M., Aachievements of all time, opportunistic nontuberculous A.M., M.R.V., S.M.-R., P.J.B.P., and N.E. analyzed data; and J.R.-R., P.J.B.P., and N.E. wrote the paper. mycobacteria (NTM) persist as ubiquitous residents of drinking water globally, including high-income countries. NTM are pre- The authors declare no conflict of interest. dominantly environmental saprophytes whose association with This article is a PNAS Direct Submission. opportunistic infection has steadily increased in recent decades Published under the PNAS license. (1). Some risk factors predisposing to NTM disease are associated Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, https://www.wwpdb.org (PDB ID codes 6H40, 6G7D, 6G80); the SAXS with host immune fragilities, although reports of infections in ap- data have been deposited in the Small Angle Scattering Biological Data Bank https:// parently immunocompetent individuals are also on the rise (2). As sasbdb.org (SASBDB entry SASDDJ6); and the X-ray diffraction images have been depos- the growing incidence of NTM disease appears to correlate with a ited in the SBGrid Database, https://data.sbgrid.org (SBGrid Database entries 10.15785/ SBGRID/593, 10.15785/SBGRID/594, 10.15785/SBGRID/597, 10.15785/SBGRID/598, 10.15785/ high prevalence of chronic diseases, understanding NTM biology, SBGRID/599, and 10.15785/SBGRID/595). namely how they build and uphold their unique cell envelope, a 1J.R.-R. and M.C. contributed equally to this work. remarkable barrier to antibiotics, is a global health priority. 2To whom correspondence may be addressed. Email: [email protected] or numenius@ Mycobacteria are rich in extracellular cell wall-anchored carbo- cnc.uc.pt. hydrates that, together with diverse complex lipids and lipoglycans, This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. confer on them pathogenic properties and an effective shield from 1073/pnas.1813450116/-/DCSupplemental. host immunity (3, 4). In addition to these carbohydrates, myco- Published online January 3, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1813450116 PNAS | January 15, 2019 | vol. 116 | no. 3 | 835–844 Downloaded by guest on September 26, 2021 potentially protecting their hydrophobic chains from degradation by cytoplasmic thioesterases (6–8). PMPSs have also been described as modulators of fatty acid biosynthesis by facilitating the release of the long-chain acyl-CoA products from fatty acid synthase I, thus preventing product inhibition (4). It was initially proposed that fatty acyl-CoAs can induce a helical conformation in PMPSs, favoring the formation of a methyl group-lined hy- drophobic channel where the apolar acyl-CoA ligand is accom- modated (8, 9). Although this postulated architecture of MMP– lipid tight interactions has been recently challenged, a possible biological role in storage of fatty acid precursors for the diverse mycobacterial lipids remains undisputed (10). These properties of PMPSs likely impact the assembly of cell envelope lipids, namely mycolic acids, distinctive components of the mycomembrane (11). Identification of key biosynthetic genes allowed the construction of Mycobacterium smegmatis mutants deficient in MGLP and in which the levels of fatty acids remained unaltered, possibly due to the presence of the apparently isofunctional MMP (12, 13). Still, a role for MGLP in the maintenance of the mycomembrane under temperature stress or other conditions requiring abrupt lipid synthesis or turnover was anticipated. MMP exists as a mixture of linear chains of 11–14 units of α-1,4– linked 3-O-methyl-D-mannose, which unlike the abundant β-1,4– linked mannans have not been identified thus far in biological systems, emphasizing the chemical and structural exceptionality of MMP and the uniqueness of its biosynthetic enzymes (14). The terminal residue at the nonreducing end is unsubstituted, while the reducing end is blocked with an α-methyl aglycon (Fig. 1A)(14).A similar polysaccharide of 11 units of α-1,4–linked 3-O-methyl-D- mannose has been identified in Streptomyces griseus (15, 16) but in this unique structure some units were acetylated at O-6 positions, a feature common to MGLP. Recently, the wastewater bacterium Oligotropha carboxidovorans was also found to synthesize a related polysaccharide of 35–40 3-O-methyl-D-mannose units, but in this case assembled with α-1,2 linkages
Recommended publications
  • S1 Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm
    Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System C. Kimloi Gomez-Smith 1,2 , Timothy M. LaPara 1, 3, Raymond M. Hozalski 1,3* 1Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota 55455 United States 2Water Resources Sciences Graduate Program, University of Minnesota, St. Paul, Minnesota 55108, United States 3BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States Pages: 9 Figures: 2 Tables: 3 Inquiries to: Raymond M. Hozalski, Department of Civil, Environmental, and Geo- Engineering, 500 Pillsbury Drive SE, Minneapolis, MN 554555, Tel: (612) 626-9650. Fax: (612) 626-7750. E-mail: [email protected] S1 Table S1. Reference sequences used in the newly created alignment and taxonomy databases for hsp65 Illumina sequencing. Sequences were obtained from the National Center for Biotechnology Information Genbank database. Accession Accession Organism name Organism name Number Number Arthrobacter ureafaciens DQ007457 Mycobacterium koreense JF271827 Corynebacterium afermentans EF107157 Mycobacterium kubicae AY373458 Mycobacterium abscessus JX154122 Mycobacterium kumamotonense JX154126 Mycobacterium aemonae AM902964 Mycobacterium kyorinense JN974461 Mycobacterium africanum AF547803 Mycobacterium lacticola HM030495 Mycobacterium agri AY438080 Mycobacterium lacticola HM030495 Mycobacterium aichiense AJ310218 Mycobacterium lacus AY438090 Mycobacterium aichiense AF547804 Mycobacterium
    [Show full text]
  • Opportunist Mycobacteria
    Thorax: first published as 10.1136/thx.44.6.449 on 1 June 1989. Downloaded from Thorax 1989;44:449454 Editorial Treatment of pulmonary disease caused by opportunist mycobacteria During the early 1950s it was recognised that recommended that surgical treatment for opportunist mycobacteria other than Mycobacterium tuberculosis mycobacterial infection should be given to those could cause pulmonary disease in man.' Over 30 years patients who are suitable surgical candidates.'7 The later there is no general agreement about the treatment failure of chemotherapy was often attributed to drug of patients with these mycobacterial infections. The resistance,'2 18 but the importance of prolonging the greatest controversy surrounds the treatment of in- duration of chemotherapy in opportunist mycobac- fection caused by the M aviwn-intracellulare- terial disease beyond that which would normally be scrofulaceum complex (MAIS), for which various required in tuberculosis was not appreciated. In treatments have been advocated, including chemo- several surgically treated series preoperative chemo- therapy with three23 or more' drugs or, alternatively, therapy was given on average for only four to seven surgical resection of the affected lung.78 Although the months,'3 19-22 some patients receiving as little as eight treatment of infection caused by M kansasii is less weeks of treatment before surgery.2324 In contrast, controversial there is no uniform approach to treat- chemotherapy alone, with isoniazid, p-aminosalicyclic ment. Disease caused by M xenopi has been described acid, and streptomycin for 24 months, produced by some as easy to treat with chemotherapy,9 whereas successful results in 80-100% of patients with M others have found the response to drug treatment to be kansasii infection despite reports of in vitro resistance unpredictable.'' " to these agents.2125 This diversity ofopinion and approach to treatment has arisen for two reasons.
    [Show full text]
  • Mycobacterium Goodii Endocarditis Following Mitral Valve Ring Annuloplasty Rohan B
    Parikh and Grant Ann Clin Microbiol Antimicrob (2017) 16:14 DOI 10.1186/s12941-017-0190-4 Annals of Clinical Microbiology and Antimicrobials CASE REPORT Open Access Mycobacterium goodii endocarditis following mitral valve ring annuloplasty Rohan B. Parikh1 and Matthew Grant2* Abstract Background: Mycobacterium goodii is an infrequent human pathogen which has been implicated in prosthesis related infections and penetrating injuries. It is often initially misidentified as a gram-positive rod by clinical microbio- logic laboratories and should be considered in the differential diagnosis. Case presentation: We describe here the second reported case of M. goodii endocarditis. Species level identification was performed by 16S rDNA (ribosomal deoxyribonucleic acid) gene sequencing. The patient was successfully treated with mitral valve replacement and a prolonged combination of ciprofloxacin and trimethoprim/sulfamethoxazole. Conclusion: Confirmation of the diagnosis utilizing molecular techniques and drug susceptibility testing allowed for successful treatment of this prosthetic infection. Keywords: Mycobacterium goodii, Endocarditis, Gene sequencing, Prostheses related infections Background appreciated at the apex, and a drain was in place for a Mycobacterium goodii is a rapidly growing non-tubercu- groin seroma related to recent left heart catheterization. lous mycobacterium (NTM) belonging to the Mycobac- He had an unsteady gait and exhibited mild left lower terium smegmatis [1] group. Its importance has become extremity weakness (4/5). His brain magnetic resonance increasingly appreciated as a pathogen over the last imaging showed multiple ring-enhancing lesions in the 20 years, with a predilection towards infecting tissues at pons and posterior fossa suggestive of septic emboli. the site of penetrating injuries. Antibacterial treatment Transthoracic echocardiography showed moderate strategies against this pathogen are diverse but reported mitral regurgitation without any vegetation.
    [Show full text]
  • An Abstract of the Dissertation of Melanie J. Harriff
    AN ABSTRACT OF THE DISSERTATION OF MELANIE J. HARRIFF for the degree of Doctor of Philosophy in Molecular and Cellular Biology presented on June 8, 2007. Title: Mechanisms for the Interaction of Environmental Mycobacteria with Host Cells Abstract approved: Luiz E. Bermudez Michael L. Kent Environmental mycobacteria are important opportunistic pathogens for many hosts, including humans, cattle, and fish. Two well-studied species are Mycobacterium avium subsp. avium, a significant cause of disseminated bacterial disease in patients with AIDS, and Mycobacterium avium subsp. paratuberculosis, the cause of Johne’s disease in cattle. Many other species that are considerable sources of infections in fish, such as Mycobacterium chelonae and Mycobacterium marinum, also have zoonotic potential. To gain knowledge about the invasion of epithelial cells by environmental mycobacteria, selected genes and proteins involved in the uptake of M. avium by HEp-2 cells were analyzed by a variety of methods. Two transcriptional regulators (MAV_3679 and MAV_5138) were identified as being involved in invasion. A mycobacterial protein (CipA) with an amino acid sequence suggestive of an ability to be a part of the scaffolding complex that forms during cell signaling leading to actin polymerization was found to putatively interact with host cell Cdc42. Fusion of CipA to GFP, expressed in Mycobacterium smegmatis, revealed that CipA localizes to a structure on the surface of bacteria approaching HEp-2 cells. To establish whether species of environmental mycobacteria isolated from different hosts use similar mechanisms to M. avium for interaction with the mucosa, and for survival in macrophages, assays to determine invasion and replication were performed in different cell types, and a custom DNA microarray containing probes for known mycobacterial virulence determinants was developed.
    [Show full text]
  • RAPIDLY GROWING, ACID FAST BACTERIA' Original 21 of This Species
    RAPIDLY GROWING, ACID FAST BACTERIA' II. SPEcIES' DESCRPTION OF Mycobacteriumfortuitum CRUZ RUTH E. GORDON AND MILDRED M. SMITH Institute of Microbiology, Rutgers University, the State University of New Jersey, New Brunswick, New Jersey Received for publication October 13, 1954 The taxonomic study of the acid fast bacteria the following medium, a modification of Koser's capable of comparatively rapid growth on citrate agar (1924): NaCl, 1 g; MgSO4, 0.2 g; ordinary media, first reported in 1953 by Gordon (NH4)2HP04, 1 g; KH2PO4, 0.5 g; Na benzoate, and Smith, has been continued. Additional 2 g; agar, 15 g; distilled water, 1,000 ml. The strains have been examined and other tests ap- pH of the agar was adjusted to 7.0, and 20 ml plied to all the strains. A few supplementary of a 0.04 per cent solution of phenol red were characteristics of the two previously delineated added. An alkaline reaction of the medium in- species, Mycobacterium phlei Lehmann and dicated use of the benzoate. Neumanm and Mycobacterium smgmatis (Trevi- Acid from carbohydrats. Maltose and trehalose san) Lehmann and Neumann, are presented, and were used in conjunction with the carbohydrates the strains newly assigned to these species are previously listed. listed. As the work progresed, a third group of strains DESCRIPONS OF SPECIES emerged. The strains of this taxon seemed The collection2 of mycobacteria forming the closely related to each other and sufficiently basis of this taxonomic study increased from distinct from the other strains of the collection 124 of first to 195. The to warrant their separation into a species.
    [Show full text]
  • Nontuberculous Mycobacteria in Respiratory Samples from Patients with Pulmonary Tuberculosis in the State of Rondônia, Brazil
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(4): 457-462, June 2013 457 Nontuberculous mycobacteria in respiratory samples from patients with pulmonary tuberculosis in the state of Rondônia, Brazil Cleoni Alves Mendes de Lima1,2/+, Harrison Magdinier Gomes3, Maraníbia Aparecida Cardoso Oelemann3, Jesus Pais Ramos4, Paulo Cezar Caldas4, Carlos Eduardo Dias Campos4, Márcia Aparecida da Silva Pereira3, Fátima Fandinho Onofre Montes4, Maria do Socorro Calixto de Oliveira1, Philip Noel Suffys3, Maria Manuela da Fonseca Moura1 1Centro Interdepartamental de Biologia Experimental e Biotecnologia, Universidade Federal de Rondônia, Porto Velho, RO, Brasil 2Laboratório Central de Saúde Pública de Rondônia, Porto Velho, RO, Brasil 3Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz 4Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública-Fiocruz, Rio de Janeiro, RJ, Brasil The main cause of pulmonary tuberculosis (TB) is infection with Mycobacterium tuberculosis (MTB). We aimed to evaluate the contribution of nontuberculous mycobacteria (NTM) to pulmonary disease in patients from the state of Rondônia using respiratory samples and epidemiological data from TB cases. Mycobacterium isolates were identified using a combination of conventional tests, polymerase chain reaction-based restriction enzyme analysis of hsp65 gene and hsp65 gene sequencing. Among the 1,812 cases suspected of having pulmonary TB, 444 yielded bacterial cultures, including 369 cases positive for MTB and 75 cases positive for NTM. Within the latter group, 14 species were identified as Mycobacterium abscessus, Mycobacterium avium, Mycobacterium fortuitum, Myco- bacterium intracellulare, Mycobacterium gilvum, Mycobacterium gordonae, Mycobacterium asiaticum, Mycobac- terium tusciae, Mycobacterium porcinum, Mycobacterium novocastrense, Mycobacterium simiae, Mycobacterium szulgai, Mycobacterium phlei and Mycobacterium holsaticum and 13 isolates could not be identified at the species level.
    [Show full text]
  • Identification of Mycobacterium Avium Pathogenicity Island Important For
    MICROBIOLOGY. For the article ‘‘Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection,’’ by Lia Danelishvili, Martin Wu, Bernadette Stang, Melanie Harriff, Stuart Cirillo, Jeffrey Cirillo, Robert Bildfell, Brian Arbogast, and Luiz E. Bermudez, which appeared in issue 26, June 26, 2007, of Proc Natl Acad Sci USA (104:11038– 11043; first published June 19, 2007; 10.1073͞pnas.0610746104), the author name Stuart Cirillo should have appeared as Suat L. G. Cirillo, and the author name Jeffrey Cirillo should have appeared as Jeffrey D. Cirillo. The online version has been corrected. The corrected author line appears below. Addition- ally, the present address for both these authors should be: Department of Microbial and Molecular Pathogenesis, Texas A&M University College of Medicine, College Station, TX 77843-1114. The authors also note that Fig. 1 did not print at high resolution. The corrected figure and its legend appear below. Lia Danelishvili, Martin Wu, Bernadette Stang, Melanie Harriff, Suat L. G. Cirillo, Jeffrey D. Cirillo, Robert Bildfell, Brian Arbogast, and Luiz E. Bermudez Fig. 1. Chromosome regions. (A) Organization of the chromosome region inactivated in the 8H8 clone of M. avium involved in the glycosylation of the lipopeptide core. (B) Organization of the chromosome region inactivated in the M. avium 9B9 clone. The M. avium gene names correspond to MAP numbers from the M. avium subsp. paratuberculosis genome sequence. (C) Genetic organization of M. avium 104 PI associated with low invasion of macrophages and virulence in mice. The M. avium 104 (b) sequence and gene organization of this region are presented in comparison with M.
    [Show full text]
  • Pathogenicity of Mycobacterium Fortuitum and Mycobacterium Smegmatis to Goldfish, Carassius Auratus Adel M
    Veterinary Microbiology 66 (1999) 151±164 Pathogenicity of Mycobacterium fortuitum and Mycobacterium smegmatis to goldfish, Carassius auratus Adel M. Talaata,b,1, Michele Trucksisa,c, Andrew S. Kaneb, Renate Reimschuesselb,* aCenter for Vaccine Development, Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA bDepartment of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA cMedical Service, Veterans' Affairs Medical Center, Baltimore, MD 21201, USA Received 3 June 1998; accepted 22 December 1998 Abstract Despite the ubiquitous presence of atypical mycobacteria in the environment and the potential risk of infection in humans and animals, the pathogenesis of diseases caused by infection with atypical mycobacteria has been poorly characterized. In this study, goldfish, Carassius auratus were infected either with the rapidly growing fish pathogen, Mycobacterium fortuitum or with another rapidly growing mycobacteria, Mycobacterium smegmatis. Bacterial persistence and pathological host response to mycobacterial infection in the goldfish are described. Mycobacteria were recovered from a high percentage of inoculated fish that developed a characteristic chronic granulomatous response similar to that associated with natural mycobacterial infection. Both M. fortuitum and M. smegmatis were pathogenic to fish. Fish infected with M. smegmatis ATCC 19420 showed the highest level of giant cell recruitment compared to fish inoculated with M. smegmatis mc2155 and M. fortuitum. Of the three strains of mycobacteria examined, M. smegmatis ATCC 19420 was the most virulent strain to goldfish followed by M. fortuitum and M. smegmatis mc2155, respectively. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Fish; Virulence; Mycobacteria; Mycobacterium fortuitum; Mycobacterium smegmatis; Pathogenesis * Corresponding author.
    [Show full text]
  • Phenotypic Changes in Mycobacteria Grown in Oxygen-Limited Conditions
    J. Med. Microbiol. - Vol. 21 (1986), 251-255 0 1986 The Pathological Society of Great Britain and Ireland Phenotypic changes in mycobacteria grown in oxygen-limited conditions JANE GILLESPIE, L. L. BARTON* and E. W. RYPKAt Department of Biology, University of New Mexico, Albuquerque, NM 87737 and tSection of Microbiology, 1o velace Medical Center, Albuquerque, NM 87 7 08 USA Summary. Laboratory strains of Mycobacterium phlei, M. smegmatis, M.fortuitum, M.gordonae, M.kansasi, M.bovis, M. tuberculosis and M. intracellulare were adapted to grow in an anaerobic environment. Concomitant with the transition to anaerobic growth was loss of acid-fastness, loss or modification of colonial pigmentation, and loss of ability to grow on a malachite green-containing medium. The mycobacteria grown anaerobically produced acid from a greater range of carbohydrates than aerobically grown cultures, lost iron-uptake activity, and showed a reduction of urease, catalase and nitratase activity. Back adaption of mycobacteria from an anaerobic to an aerobic environment resulted in the acquisition of acid-fastness, pigmentation, and other characteristics used in the taxonomy of mycobacteria. These results suggest that mycobacterial cultures, if grown in an anaerobic environment, may be erroneously identified in clinical laboratories. Introduction ATCC 354, M. smegmatis ATCC 14468, M. ,fortuitum TMC 1529, M. gordonae TMC 1318, M. kansasi TMC Mycobacteria are considered to be obligate aer- 1201, M. intracellulare TMC 1403, M. tuberculosis obes that can grow in oxygen tensions that range H37Ra TMC 201, M.bovis BCG Pasteur TMC 101 1 and from atmospheric to microaerophilic (Jenkins, et M.phlei HMS, a smooth strain supplied by Dr J.
    [Show full text]
  • Detection of and Efflux Pump Genes Among Clinical Isolates of Non-Pigmented Rapidly Growing Mycobacteria J
    Detection of and efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria J. Esteban, N.Z. Martín-De-Hijas, A. Ortiz, T.J. Kinnari, A. Bodas Sánchez, I. Gadea, R. Fernández-Roblas To cite this version: J. Esteban, N.Z. Martín-De-Hijas, A. Ortiz, T.J. Kinnari, A. Bodas Sánchez, et al.. Detection of and ef- flux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria. International Journal of Antimicrobial Agents, Elsevier, 2009, 34 (5), pp.454. 10.1016/j.ijantimicag.2009.06.026. hal-00556354 HAL Id: hal-00556354 https://hal.archives-ouvertes.fr/hal-00556354 Submitted on 16 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Detection of lfrA and tap efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria Authors: J. Esteban, N.Z. Mart´ın-de-Hijas, A. Ortiz, T.J. Kinnari, A. Bodas Sanchez,´ I. Gadea, R. Fernandez-Roblas´ PII: S0924-8579(09)00348-3 DOI: doi:10.1016/j.ijantimicag.2009.06.026 Reference: ANTAGE 3083 To appear in: International Journal of Antimicrobial Agents Received date: 8-6-2009 Revised date: 16-6-2009 Accepted date: 19-6-2009 Please cite this article as: Esteban J, Mart´ın-de-Hijas NZ, Ortiz A, Kinnari TJ, Sanchez´ AB, Gadea I, Fernandez-Roblas´ R, Detection of lfrA and tap efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria, International Journal of Antimicrobial Agents (2008), doi:10.1016/j.ijantimicag.2009.06.026 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • The Impact of Chlorine and Chloramine on the Detection and Quantification of Legionella Pneumophila and Mycobacterium Spp
    The impact of chlorine and chloramine on the detection and quantification of Legionella pneumophila and Mycobacterium spp. Maura J. Donohue Ph.D. Office of Research and Development Center of Environmental Response and Emergency Response (CESER): Water Infrastructure Division (WID) Small Systems Webinar January 28, 2020 Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. A Tale of Two Bacterium… Legionellaceae Mycobacteriaceae • Legionella (Genus) • Mycobacterium (Genus) • Gram negative bacteria • Nontuberculous Mycobacterium (NTM) (Gammaproteobacteria) • M. avium-intracellulare complex (MAC) • Flagella rod (2-20 µm) • Slow grower (3 to 10 days) • Gram positive bacteria • Majority of species will grow in free-living • Rod shape(1-10 µm) amoebae • Non-motile, spore-forming, aerobic • Aerobic, L-cysteine and iron salts are required • Rapid to Slow grower (1 week to 8 weeks) for in vitro growth, pH: 6.8 to 7, T: 25 to 43 °C • ~156 species • ~65 species • Some species capable of causing disease • Pathogenic or potentially pathogenic for human 3 NTM from Environmental Microorganism to Opportunistic Opponent Genus 156 Species Disease NTM =Nontuberculous Mycobacteria MAC = M. avium Complex Mycobacterium Mycobacterium duvalii Mycobacterium litorale Mycobacterium pulveris Clinically Relevant Species Mycobacterium abscessus Mycobacterium elephantis Mycobacterium llatzerense. Mycobacterium pyrenivorans, Mycobacterium africanum Mycobacterium europaeum Mycobacterium madagascariense Mycobacterium rhodesiae Mycobacterium agri Mycobacterium fallax Mycobacterium mageritense, Mycobacterium riyadhense Mycobacterium aichiense Mycobacterium farcinogenes Mycobacterium malmoense Mycobacterium rufum M. avium, M. intracellulare, Mycobacterium algericum Mycobacterium flavescens Mycobacterium mantenii Mycobacterium rutilum Mycobacterium alsense Mycobacterium florentinum. Mycobacterium marinum Mycobacterium salmoniphilum ( M. fortuitum, M.
    [Show full text]
  • MYCOBACTERIOSIS in FARMED SEA BREAM (Sparus Aurata) CAUSED by Mycobacterium Frederiksbergense in TURKEY
    Acta Veterinaria-Beograd 2018, 68 (4), 391-400 UDK: 597.556.331.1-12:[616.98:579.873.2(560) Research article DOI: 10.2478/acve-2018-0032 MYCOBACTERIOSIS IN FARMED SEA BREAM (Sparus aurata) CAUSED BY Mycobacterium frederiksbergense IN TURKEY URKU Cigdem1*, GENC Gonca Erkose2, WITTWER Franziska3, ERTURAN Zayre2, PFYFFER Gaby3 1Department of Fish Disease, Faculty of Aquatic Sciences, University of Istanbul, 34470, Ordu Cad. No: 200 Laleli- Istanbul/ Turkey; 2Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34093, Istanbul/ Turkey; 3Department of Medical Microbiology, Luzerner Kantonsspital, 6000 Luzern 16, Switzerland (Received 10 September, Accepted 19 November 2018) Over the past decades, different mycobacteriosis agents have become important fi sh pathogens. The present study describes a different mycobacteriosis in farmed sea bream (Sparus aurata) caused by Mycobacterium frederiksbergense in Turkey. Affected 15 fi sh, weighing 15 to 20 g, showed lethargy, stunted growth, pale skin, dorsal fi n necrosis, and a signifi cant level of mortality (40 %) in fi sh stocks. Internally, no multifocal white- colored granulomas in the visceral organs were observed. Inoculation of the visceral organs onto Löwenstein-Jensen medium and Tryptic Soy Agar (1.5% NaCl) slants produced only fast-growing (2-3 weeks), orange to yellow-colored, photochromogenic acid-fast colonies. Ziehl-Nielsen positive bacterial isolates were identifi ed using a commercially available line probe assay (Genotype Mycobacterium CM/AS assay) and with 16S rRNA gene sequencing analysis based on 16S rRNA gene sequencing, fi fteen isolates were identifi ed as Mycobacterium frederiksbergense. Histopathologically, epithelioid cell granulomas were not observed in any vicseral organs but acid-fast bacteria were detected in the liver, kidney, spleen, and heart tissue.
    [Show full text]