Enartis News Wine Tartrate Stability

Total Page:16

File Type:pdf, Size:1020Kb

Enartis News Wine Tartrate Stability ENARTIS NEWS WINE TARTRATE STABILITY The presence of tartrate crystals in a bottle is commonly and alcohol, are concentrated and the precipitation perceived as a fault by consumers. Crystals are mostly that happens is not related to wine concentration composed of potassium bitartrate but precipitation of condition. Furthermore, ice formation damages calcium tartrate is becoming more and more frequent. protective colloids structure that consequently lose While the formation of potassium salts can be their stabilizing effect. For this reason, its use is not prevented with the use of protective colloids, calcium recommended. stabilization requires specific interventions. Potassium bitartrate stabilization There are various methods that can be used during POTASSIUM BITARTRATE the winemaking process to reduce potassium Testing wine potassium tartrate stability bitartrate (KHT) precipitation in bottled wines. Some The Minicontact test (measurement of wine techniques are considered “subtractive” and involve conductivity variation before and after refrigeration reducing the concentration of tartaric acid and/or for 30 minutes with potassium bitartrate seeding) potassium in wine (tank cooling, electrodialysis, and the cold test (6 days storage at -4°C) are quite cation exchange resins). Other “additive” techniques reliable tests for evaluating wine stability. make use of protective colloids or crystallization Wineries that do not have access to the Minicontact inhibitors which can be added to wine. Additive test and that want to save time, often prefer to use techniques are more respectful to sensory qualities the freeze/thaw test (wine is frozen for a few hours and environmentally friendly. However, not all and then thawed before being inspected for any sign permitted protective colloids are effective in the of crystalline tartrate precipitation). This method same way and some of them have specific limits overestimates wine instability. As ice formation under certain circumstances (table 1). occurs, all solutes, including potassium, tartaric acid Table 1: Protective Colloid Characteristics METATARTARIC ACID MANNOPROTEINS CMC POTASSIUM POLYASPARTATE Stabilizing Very good Medium Very good Very good Effectiveness Lasting Stabilizing Effect Scarce Very good Very good Very good Filterability Very good Medium-good * Medium-good * Very good Reactivity with Color None None Yes None Compounds Reactivity with Wine Yes None Yes Yes Proteins *Dependent on CMC degree of polymerization and mannoprotein average molecular weight. Protective colloid stabilizing mechanism crystals are formed. If the dose is too low, inhibition Despite the differences among protective colloids, is only partial and anomalies and unevenness are the stabilizing effect depends on their capability of observed in the shape of the crystals (picture 1). opposing the growth of the nuclei around which Picture 1: Inhibitor colloids interfere with KHT crystal growth. Right: KHT crystal. Left: KHT crystal in presence of CMC. Wine suitability for stabilization with colloids filterability. Once they are homogenously When protective colloids are used for KHT distributed, wine can immediately be bottled. stabilization, wine must meet some requirements: On the contrary, mannoproteins and CMC can decrease wine filterability. CMC effect depends in 1) Protein stability its degree of polymerization (DP): the higher the Metatartaric acid, CMC and potassium polyaspartate DP, the greater the clogging effect. With high DP (KPA), unlike mannoproteins, are quite reactive with CMC, waiting 3-4 days between the addition and wine proteins due to their high negative charge. For final microfiltration helps to bring the filterability this reason, it is imperative to check wine protein index back to acceptable values. Mannoproteins stability and be sure wine is well below the maximum can have very different average molecular weights stability limit, whatever the analytical method used. depending on the method used for their production. Wines close to the stability limit can form haziness or Consequently, they can have a different impact on sediment when metatartaric acid, CMC and/or KPA wine filterability. Information provided by suppliers are added. Preliminary lab addition trials can easily are helpful to understand how to manage filtration. be performed and are very useful for preventing problems and extra labor in the cellar. If haziness CALCIUM TARTRATE appears, bentonite fining is necessary. Testing wine calcium tartrate stability 2) Color stability The main problem with calcium tartrate (CaT) is Color stability is a necessary requirement for all understanding if wine can form precipitate. red wines, regardless of whether they are tartrate Stability tests used to verify KHT stability (cold test stabilized through the use of colloids. and minicontact test) do not confirm if wine is calcium For CMC, it is important to note that it can cause unstable. The reason is that cold temperatures have color precipitation in color stable wines. For this little effect on the rate of CaT precipitation and the reason, the use of CMC in red wines must be always tests are not long enough. In fact, wine calcium combined to the addition of a gum Arabic effective content is very low compared to potassium and this for color stability. The new European Regulation is one of the reasons why the spontaneous formation (EU) N. 2019/934 is going to forbid the use of CMC of nuclei of crystallization can take very long, even in red and rosé wines starting from December 2019. years, making CaT precipitation unpredictable. All the other tartrate stabilizing colloids do not Wine calcium content is the most used parameter stabilize nor destabilize wine color. to classify a wine stable or unstable. For red wines, 60 mg/L is considered the safe maximum limit, for 3) Filterability white wine the limit is 80 mg/L. Wine filterability must be adequate for final filtration. A more reliable test consists of seeding a sample Metatartaric acid and KPA do not change wine of wine with micronized calcium tartrate and stabilization is metatartaric acid. Unfortunately, measuring the quantity of calcium precipitated since it hydrolyzes quickly, its effectiveness is short after 2 days storage at a cold temperature. Calcium and can only be used for wine with a very rapid precipitation above 25 mg/L indicates a high risk of rotation. CaT instability. Alternatively, techniques based on calcium or CaT removal provide a more reliable and long-lasting Calcium tartrate stabilization stability (table 2). The only colloid that has a significant effect for CaT CATION EXCHANGE MICRONIZED CA- COLD STABILITY ELECTRODIALYSIS METATARTARIC ACID D,L-TARTARIC ACID RESINS TARTRATE Ca removal by CaT removal by Stabilizing Removal of Ca; Interference on CaT Precipitation of CaT Removal of Ca formation of Ca seeding nuclei of Mechanism Reduction of pH crystal growth D,L-tartrate crystallization Effectiveness Limited Good Medium Good short-term Very good Very good Uncontrolled Ca Cold temperature has Removal of tartaric Risk of abundant removal; strong Short-term stabilizing Treatment takes 7-10 Limits little effect on CaT acid; lower wine crystal precipitation sensory impact due to effect days precipitation ageing potential over time pH reduction Easy-to-use and Fast and controlled Easy and repectful of Advantages respectful of wine process wine quality quality Table 2: Calcium tartrate This can be achieved by using physical treatments can form kidney stones. or chemicals. Calcium tartrate, and specifically micronized Electrodialysis is the most effective among the calcium tartrate, is used for seeding nuclei of physical treatments, but this technology is not crystallization. In this way, it is unnecessary to wait broadly available to everyone and, by removing for the spontaneous and unpredictable formation tartaric acid and potassium, it has an impact on of nuclei, while at the same time promoting a rapid wine sensory qualities and ageing potential. formation and precipitation of crystals. Because of Cation exchange resins help reduce calcium content, the insolubility of calcium tartrate, treatment can but their effectiveness on CaT stability is mainly due be done at cellar temperature, (10-15°C), avoiding to their action of lowering wine pH. Unfortunately, cooling. Crystal precipitation takes approximately the lowering of pH is not always organoleptically 7-10 days and guarantees wine stability without pleasing. impacting wine sensory. Cold stability is not a reliable technique. Low Since CaT precipitation induces KHT precipitation temperatures do not significantly increase or and not the other way around, it is more convenient accelerate CaT precipitation and the usual 7-14 days to start stabilizing calcium first then potassium cooling treatment can be too short. (picture 2). Calcium tartrate and D,L-tartaric acid are the only chemicals permitted by the OIV for CaT stabilization. Evaluation of D,L-tartaric acid effectiveness is supposed to CaT stability depend on its capability to form a calcium salt CaT stable CaT unstable that is much more insoluble than the one formed by the L-tartaric acid naturally present in wine. In Evaluation of Stabilization with reality, this characteristic is not enough to make KHT stability Enocristal Ca D,L-tartaric acid a reliable stabilizer. The formation of nuclei starting the crystallization process takes KHT stable KHT unstable a long time and, because of the high insolubility of calcium D,L-tartrate, its application can easily
Recommended publications
  • Tartaric Acid
    TECHNICAL DATA SHEET SPECIFIC TREATMENTS TARTARIC ACID Acidity regulator COMPOSITION L (+) tartaric acid (E334) APPLICATIONS ▪ Acid correction in wine and juice. ▪ Treatment of tanks and concrete containers. DOSAGE Fresh grapes, partially fermented must, fermenting wien limited to wine-growing zones C I, C II, C III a and C III b: up to a limit of 150 g/hL. (except for exceptions). In wine: up to 250 g/hL (except for exceptions and always limited to the above-mentioned zones). In the European Union, it is allowed to acidify must and wine with tartaric acid together with L-lactic acid, L-malic acid and DL-malic acid. In case other organic acids are used in the same must or wine, it is necessary to calculate the maximum amount of tartaric acid that can be used in compliance with the limits set by the regulation. For countries outside Europe, please refer to local regulations. USA: Legal Limits 9.0 grams per liter. In cases where the wine contains 8.0 or more grams of total solids per 100 milliliters of wine, acids may be added to the extent that the finished wine does not contain more than 11.0 grams per liter of fixed acid (calculated as tartaric acid). INSTRUCTIONS FOR USE Dissolve directly into a small amount of must or wine and add uniformly to the mass to be treated. PACKAGING AND STORAGE CONDITIONS 1 kg, 25 kg Sealed package: store in a cool, dry, well-ventilated area. Open package: carefully reseal and store it as indicated above. COMPLIANCE The product is in compliance with: Codex Œnologique International Reg.
    [Show full text]
  • Resolution of Racemic Amphetamines Into D- and L-Amphetamines - Dru
    Resolution of Racemic Amphetamines into d- and l-Amphetamines - Dru... http://www.drugs-forum.co.uk/forum/showthread.php?t=37740&highlig... Drugs Forum > Forum > VARIOUS DRUG RELATED TOPICS > Drug Welcome, Quantum Dude. You last visited: 11-05-2007 at 11:56 AM related chemistry and extraction > Phenethylamine Chemistry > Private Messages: Unread 0, Total 11. Methamphetamine Chemistry Resolution of Racemic Amphetamines into d- and l-Amphetamines User CP FAQ n Rules Radio Stations New Posts Search Quick Links Log Out Methamphetamine Chemistry Discussion of the synthesis of methamphetamine Thread Tools Search this Thread Rate Thread Display Modes 08-26-2007, 07:16 PM #1 Join Date: Jun 2007 Location: Europe Age: 22 outriderx Donating Silver Member Posts: 109 Resolution of Racemic Amphetamines into d- and l-Amphetamines Contents 1 Methamphetamine Optical Resolution by Distillation After Partial Diastereoisomeric Salt Formation 2 Dutch Resolution: Separation of Enantiomers with Families of Resolving Agents. A Status Report 1 Resolution of racemic Amphetamine 2 Resolution of racemic Methamphetamine 3 Resolution of racemic Amphetamine 4 Resolution of racemic Methamphetamine using selective extraction 5 Resolution of racemic Methamphetamine using O,O-Dibenzoyl-R,R-Tartaric Acid Methamphetamine Optical Resolution by Distillation After Partial Diastereoisomeric [top] Salt Formation Solvent-free optical resolution of N-methylamphetamine was developed by distillation after partial diastereoisomeric salt formation. From the 18 chiral acids tested by this method, five provide by this method resolution: O,O'-dibenzoyltartaric acid, O,O'-di-p-toluoyltartaric acid, 6-methoxy-alpha-methyl-2-naphthaleneacetic acid (Naproxen), the cis-permetrinic acid, and the 2-phenoxypropionic acid. Among them the O,O'-dibenzoyltartaric acid in water-free form 1 of 7 05/11/2007 4:02 PM Resolution of Racemic Amphetamines into d- and l-Amphetamines - Dru..
    [Show full text]
  • CALCIUM STABILITY in a Nutshell ESSENTIAL CHEMISTRY
    CALCIUM STABILITY in a nutshell ESSENTIAL CHEMISTRY Precipitation of calcium tartrate is becoming more frequent all over the world and causing both economic and brand damage that companies should be aware of. The cause of the problem is still unknown but may be found in climate change, viticultural and enological practices or the use of untreated concrete tanks. Whatever the origin, it is important to know how to identify wines that are potentially calcium unstable and how to treat them. Calcium content (0.04 - 0.15 g/L) of wine is 10-20 times lower than potassium. Calcium precipitates mainly as calcium tartrate (CaT). CaT solubility is only 3 times lower at -4°C than at 20°C: cooling has little effect on the rate of CaT precipitation. Potassium bitartrate precipitation does not induce that of CaT. Low calcium content and the presence of inhibiting factors in wine makes the formation of CaT germs that start the crystallization process unpredictable. WINE COMPOUNDS THAT HAVE AN INHIBITING EFFECT ON CALCIUM PRECIPITATION GLUCONIC ACID MALIC ACID CITRIC ACID COLLOIDS POTASSIUM MAGNESIUM MAIN FACTORS PROMOTING CaT PRECIPITATION CALCIUM LOW HIGH INSTABILITY TARTARIC ACID INSTABILITY pH The main factors promoting calcium precipitation are calcium, pH and tartaric acid. In particular, pH has a tremendous impact. The increase of only 0.1 points has a dramatic effect on the speed and intensity of precipitation. HOW TO RECOGNIZE CALCIUM TARTRATE PRECIPITATE Both CaT and potassium bitartrate form white (or red in the case of red wine) crystals and a sandy precipitate. To distinguish one salt from the other, perform the following trial put some crystals in a flask or beaker add some clean water warm the solution between 80-100°C stir occasionally If crystals do not dissolve, it is calcium tartrate ENARTIS SOLUTION FOR CALCIUM STABILITY HOW TO CHECK IF WINE IS CALCIUM UNSTABLE Analyze wine calcium content (Ca1).
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Chiral Separation of Methamphetamine and Related Compounds Using Capillary Electrophoresis with Dynamically Coated Capillaries
    Chiral Separation of Methamphetamine and Related Compounds using Capillary Electrophoresis with Dynamically Coated Capillaries Ira S. Lurie*, Joseph S. Bozenko Jr., Li Li, Erin E. Miller, and Stephanie J. Greenfield U.S. Department of Justice Drug Enforcement Administration Special Testing and Research Laboratory 22624 Dulles Summit Court Dulles, VA 20166 [email: ira.s.lurie -at- usdoj.gov] ABSTRACT: The chiral differentiation of the dextro- and levo- isomers of methamphetamine and certain precursor and/or byproducts in methamphetamine exhibits is obtained at levels down to 0.2% relative to total methamphetamine. Dynamic coating of the capillary surface is accomplished by rapid flushes of 0.1N sodium hydroxide, water, a buffer containing a polycation coating reagent, and a reagent containing a polyanionic coating reagent plus hydroxypropyl- -cyclodextrin. The methodology has been successfully applied to samples which contain skewed ratios of d- and l-methamphetamine even at trace levels. KEYWORDS: methamphetamine, chiral analysis, capillary electrophoresis, dynamically coated capillaries, forensic chemistry The determination of the enantiomers of Experimental methamphetamine, its precursors, and/or by-products is Chemicals, Material, and Reagents important for legal and intelligence purposes [1]. Under federal Standards were obtained from the reference collection of sentencing guidelines, sentencing enhancement depends on this laboratory. Sodium hydroxide 0.1N, CElixir A (pH 2.5), whether the sample contains dextro-methamphetamine CElixir B (pH 2.5), CElixir B (pH 2.5) with hydroxypropyl-β- hydrochloride over 80% (ice) [2]. Isomer determination can cyclodextrin (HPΒCD)1 (Custom Chiral2 Buffer), and injection help identify synthetic methodologies. For example, the solvent concentrate (75 mM sodium phosphate, pH 2.5) were presence of dextro-pseudoephedrine and dextro- all acquired from MicroSolv Technology (Long Branch, NJ).
    [Show full text]
  • Gerhard Scriba Slides
    CE Enantioseparations and Application to the Determination of the Stereoisomeric Purity of Drugs Gerhard K. E. Scriba Friedrich Schiller University Jena, Pharmaceutical Chemistry Philosophenweg 14, 07743 Jena, Germany [email protected] Outline Introduction Mechanistic aspects Examples of selector combinations Determination of chiral purity Levomepromazine Dextromethorphan Conclusions 2 Why chiral analysis of drugs? Enantiomers: The same thing – only different? different pharmacological activities different toxicological profiles different pharmacokinetic properties Enantiomers should be considered different entities. Drug Activity eutomer Activity distomer Penicillamine (S): antiarthritic (R): toxic Ethambutol (S,S): tuberculostatic (R,R): causes blindness Cetirizine (R): antihistaminic (S): inactive DOPA (S): antiparkinsonian (R): agranulocytoxic Ketamine (S): anesthetic/analgesic (R): hallucinogenic 3 Top ten best selling non-peptide drugs in 2016 # Product (company) API Form US $ billions 1 Harvoni TM (Gilead Sciences) ledipasvir enantiomer 9.081 sofosbuvir enantiomer 2 Revlimid TM (Celegene) lenalidomide racemate 6.974 3 Xarelto TM (Bayer) rivaroxaban enantiomer 5.392 4 Lyrica TM (Pfizer) pregabalin enantiomer 4.966 5 Advair TM / Seretide TM fluticasone enantiomer 4.252 (GlaxoSmithKline) salmeterol racemate 6 Sovaldi TM (Gilead Sciences) sofosbuvir enantiomer 4.001 7 Tecfidera TM (Biogen) dimethyl fumarate achiral 3.968 8 Januvia TM (Merck & Co) sitagliptin enantiomer 3.908 9 Truvada TM (Gilead Sciences) emtricitabine
    [Show full text]
  • Selective Hydrodeoxygenation of Tartaric Acid to Succinic Acid Jiayi
    Selective Hydrodeoxygenation of Tartaric Acid to Succinic Acid Jiayi Fu1,2, Efterpi S. Vasiliadou2, Konstantinos A. Goulas2, Basudeb Saha2, Dionisios G. Vlachos1,2* 1 Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States; 2 Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States *Corresponding author: [email protected] Highlights A one-step catalytic process for producing succinic acid from tartaric acid is developed Succinic acid is obtained with yield as high as 87% Strong synergy between MoOx/black carbon and HBr in C-O bond cleavage is identified Structure-catalytic performance correlations over MoOx/BC catalyst are established 1. Introduction The increase of atmospheric greenhouse gas emissions is driving the development of biomass-based technologies for the sustainable production of renewable chemicals and fuels.1 Succinic acid (SA), a four- carbon dicarboxylic acid (C4H6O4), is recognized by the Department of Energy (DOE) as one of the top biomass-derived platform chemicals.2 Its main applications include synthesis of valuable C4 commodity chemicals (tetrahydrofuran, 1,4-butanediol and γ-butyrolactone) and biodegradable polymers.2 Fermentation of glucose has been proposed as a renewable alternative, yet low productivity is a drawback.3 We developed a novel one-step catalytic process for high yield synthesis of SA from biomass-derived tartaric acid (TA) (Scheme 1). TA is naturally produced in the waste streams of winery industry.4 A liquid-phase system under hydrogen atmosphere comprised of a molybdenum oxide Scheme 1. Succinic acid production from tartaric acid catalyst supported on carbon black (MoOx/BC) and via hydrodeoxygenation (HDO).
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • Rochelle Salt / Seignette Salt E337
    Giovanni Randi S.p.A. ENCLOSURE ALL 04 PRO 14 HACCP Ed. 02 Rev. 00 February 2019 Technical Data Sheet Page 1 of 3 Technical Data Sheet Rochelle Salt / Seignette Salt E337 chemical name state lterations none Potassium sodium salt of L(+)-tartaric acid bulk density 1.79 g/cm3 Potassium sodium salt of L-2,3-dihydroxybutanedioic acid solubility (water 20°C) 1.1 g/mL (+)-(2R,3R)-2,3-dihydroxybutanedioic potassium sodium tetrahydrate pH (acqueous solution 1%) 6.5-8.5 chemical formula C4H4KNaO6 · 4H2O melting point 70-80°C molecular mass 282.23 g/mol CAS number 304-59-6 EINECS number 206-156-8 Definition Rochelle Salt (synonyms: potassium sodium tartrate, potassium sodium tartrate tetrahydrate) contains not less than 98.0 per cent and not more than the equivalent of 101.0 per cent of the anhydrous substance. Rochelle Salt presents itself as white or almost white crystalline powder or colourless transparent crystals. Tetrahydrate salt crystals are translucent. At 100°C, salt loses three molecules of water; at 130-140°C it becomes anhydrous; at 220°C it starts to decompose. Rochelle Salt is very soluble in water and practically insoluble in alcohol. In particular, salt melts in 0.9 parts of water, resulting in an aqueous solution, weakly alkaline. Its use is mainly technical, but it is also employed in food and pharmaceutical industries. HACCP Our Company applies the HACCP self-control system to guarantee our products (food additives) comply with the law and with contract specifications and prevent hygienic and health hazards, safeguarding public health.
    [Show full text]
  • The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids During Winemaking
    foods Review The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking Ana Mendes Ferreira 1,2,3,* and Arlete Mendes-Faia 1,2,3 1 University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; [email protected] 2 WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal 3 BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal * Correspondence: [email protected]; Tel.: +351-259350975 Received: 1 August 2020; Accepted: 27 August 2020; Published: 3 September 2020 Abstract: The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition. Keywords: organic acids; yeasts; fermentation; lactic acid bacteria; wine 1. Introduction Acidity plays a crucial role in many aspects of the winemaking process, since influences taste and mouthfeel perception, red color intensity, the solubility of tartrate and proteins, and the efficiency of fining [1].
    [Show full text]
  • Things We're Dwelling on Now… Cold Stabilization
    Grape Resources www.fruit.cornell.edu/grapes Things We’re Dwelling on Now… Cold Stabilization Chris Gerling, Enology Extension Associate, Cornell University - NYSAES First published in Cellar Dweller - January 2010. Cold stabilization time is here for many of us. When you think about it, cold stabilization shares with all winemaking the principle that bad results are unlikely to hurt anyone, but you can definitely upset people. Here are some tips to keep in mind when attempting to get the “wine diamonds” out before they show up at a dinner party. Faster chilling is better. For quicker and more complete precipitation, changing the temperature drastically is the best way to shake those crystals loose. Seeding with potassium bitartrate and agitating the wine can speed up the process further. Stabilization can still take place with traditional chilling and higher temperatures, but the process will take more time. Chilling is only effective on potassium bitartrate. In a year where a lot of deacidification took place, a fair amount of calcium carbonate was most likely used. Calcium tartrate is NOT responsive to temperature like potassium bitartrate is. The standard conductivity and freeze tests are also not effective in determining stability. What conditions do affect calcium tartrate? Alcohol, pH and the presence of sugars and acids all play a role in both potassium and calcium tartrate precipitation. As a general rule, higher alcohol and higher pH will favor precipitation, while organic acids and sugars seem to inhibit it. Malic acid seems more inhibitory than lactic, however, so malolactic fermentation can be considered as a step towards precipitation, especially when the pH bump is considered.
    [Show full text]