Brigham Young University Geoj (3Gy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Resolution Correlation of the Upper Cretaceous Stratigraphy Between the Book Cliffs and the Western Henry Mountains Syncline, Utah, U.S.A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 5-2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. Drew L. Seymour University of Nebraska, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Seymour, Drew L., "HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A." (2012). Dissertations & Theses in Earth and Atmospheric Sciences. 88. http://digitalcommons.unl.edu/geoscidiss/88 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. By Drew L. Seymour A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Christopher R. Fielding Lincoln, NE May, 2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH. U.S.A. Drew L. Seymour, M.S. -
West Colorado River Plan
Section 9 - West Colorado River Basin Water Planning and Development 9.1 Introduction 9-1 9.2 Background 9-1 9.3 Water Resources Problems 9-7 9.4 Water Resources Demands and Needs 9-7 9.5 Water Development and Management Alternatives 9-13 9.6 Projected Water Depletions 9-18 9.7 Policy Issues and Recommendations 9-19 Figures 9-1 Price-San Rafael Salinity Control Project Map 9-6 9-2 Wilderness Lands 9-11 9-3 Potential Reservoir Sites 9-16 9-4 Gunnison Butte Mutual Irrigation Project 9-20 9-5 Bryce Valley 9-22 Tables 9-1 Board of Water Resources Development Projects 9-3 9-2 Salinity Control Project Approved Costs 9-7 9-3 Wilderness Lands 9-8 9-4 Current and Projected Culinary Water Use 9-12 9-5 Current and Projected Secondary Water Use 9-12 9-6 Current and Projected Agricultural Water Use 9-13 9-7 Summary of Current and Projected Water Demands 9-14 9-8 Historical Reservoir Site Investigations 9-17 Section 9 West Colorado River Basin - Utah State Water Plan Water Planning and Development 9.1 Introduction The coordination and cooperation of all This section describes the major existing water development projects and proposed water planning water-related government agencies, and development activities in the West Colorado local organizations and individual River Basin. The existing water supplies are vital to water users will be required as the the existence of the local communities while also basin tries to meet its future water providing aesthetic and environmental values. -
Emery County Pre-Disaster Hazard Mitigation Plan 2018
Emery County Pre-Disaster Hazard Mitigation Plan 2018 Emery County Page 1 Emery County Pre-Disaster Hazard Mitigation Plan 2018 Table of Contents Emery County 4 PDM Project Quick Reference 5 PDM Introduction 7 Demographics and Population Growth 13 Economy 15 Transportation and Commuting Trends 16 Land Use and Development Trends 17 Risk Assessment (Working Group) 19 Critical Facilities 20 Natural Hazards Profiles 28 Dam Failures 37 Flood 45 Landslides 48 Wildland Fires 53 Problem Soils 55 Infestation 58 Severe Weather 59 Earthquake 64 Drought Hazard History 68 Mitigation Goals, Objectives and Actions 77 Drought 77 Flood 80 Wildland Fires 92 Severe Weather 93 Earthquake 95 Landslides 96 Dam Failure 97 Problem Soils 99 Infestation 100 Hazus Report Appendix 1 Plan Maintenance, Evaluation and Implementation Appendix 2 PDM Planning Process Appendix 3 General Mitigation Strategies Appendix 4 Environmental Considerations Appendix 5 Research Sources Appendix 6 Emery County Community Wildfire Preparedness Plan (CWPP) Appendix 7 Emery County Page 2 Emery County Pre-Disaster Hazard Mitigation Plan 2018 Utah Information Resource Guide Emery County Page 3 Emery County Pre-Disaster Hazard Mitigation Plan 2018 Emery County Emery County is located where the desert meets the mountains in Southeastern Utah. It encompasses 4,452 square miles making it Utah’s seventh largest county. On the western side of the County is the Wasatch Plateau, which is the major water supply for the County. The San Rafael Swell dominates the County’s center with its rugged reefs, “castles”, and gorges. East of the San Rafael Swell is the Green River Desert, an arid district which has been historically important to ranching operations located in the lower San Rafael Valley. -
Establishing the Geomorphic Context for Wetland and Riverine Restoration of the San Rafael River
Final Report Establishing the geomorphic context for wetland and riverine restoration of the San Rafael River NRCS Cooperative Agreement #68-3A75-4-155 Stephen T. Fortney, John C. Schmidt, and David J. Dean Intermountain Center for River Rehabilitation and Restoration Department of Watershed Sciences Utah State University Logan, UT In collaboration with Michael E. Scott Julian Scott Fort Collins Science Center U. S. Geological Survey Fort Collins, CO March 22, 2011 1 Table of Contents I. Introduction 5 II. Purpose 5 III. Study Area 9 IV. Hydrology 11 V. Methods 18 A. Floodplain Stratigraphy 18 B. Repeat Photography: Aerial Imagery and Oblique Ground Photographs 19 C. USGS gage data 21 Reconstructed Cross Sections 21 Rating Relations 22 Time Series of Thalweg Elevation 22 Time Series of Width and Width-to-Depth Ratio 22 Hydraulic Geometry 22 D. Longitudinal Profile 24 E. Additional Activities 24 VI. Results: Channel Transformation on Hatt Ranch 26 Turn of the 20th century 26 1930s and 1940s 29 1950s 33 1960s and 1970s 41 1980s 46 1990s to present 49 Longitudinal Profile 50 VII. Summary 54 A. Channel Transformation on Hatt Ranch 54 B. Restoration and Management Implications 55 VIII. Expenditures 56 IX. Timeline 56 X. References 56 XI. Appendix 59 Table of Figures Figure 1. Oblique ground photos taken near the old Highway 24 bridge 6 Figure 2. Conceptual model of how watershed attributes control channel and floodplain form. 7 Figure 3. Conceptual model of restoration versus rehabilitation 8 Figure 4. Map of the San Rafael River watershed. 10 Figure 5. Map of the study area 11 Figure 6. -
Our Secret Is Now Yours!
EXPLORE... THREE ADVENTUROUS ZONES Travel Guide Travel The Highlands Capitol Reef East Desert Our secret is now yours! Wayne County, - Utah - USA TABLE OF CONTENTS WELCOME Wayne County, Utah - Capitol Reef Country 1- Cover Calendar of Events 2- Table of Contents April to October - Daily Walks / Capitol Reef Welcome to the scenically diverse region encompassing Wayne County YOUR NEXT GREAT 3- Welcome May Utah’s Capitol Reef Country. - Entrada Institute’s Cowboy Poetry and Music DESTINATION 4- Zones Festival This vacation destination includes mountains, forests, pinnacles, arches, 5- Zones July plateaus, and astounding desert - Torrey Apple Days landscapes. The contrast in elevation 6- Attractions - Capitol Reef Classic – Annual High Desert Bike and terrain makes this area a haven Race. for those seeking solitude or - Bicknell International Film Festival (BIFF) 7- Attractions outdoor adventure. August This region is an excellent multi-day 8- Activities - Women’s Redrock Music Festival vacation destination, central to Utah’s - Wayne County Fair scenic attractions, and easily acces- 9- Guides & Outfitters sible from major cities such as Salt September/October Lake City, Denver, and Las Vegas. 10- Maps - Heritage Star Festival - Wayne Wonderland Air show Unpack once and discover a realm 11- Maps that is conveniently situated be- On Going Events: May - September tween Bryce Canyon, the Grand 12- Hotels / Motels Staircase, Goblin Valley State Park, Capitol Reef National Park: Daily walks and nightly Canyonlands National Park, and amphitheatre programs mid May - September. Lake Powell. 13- Cabins / B&B Check at Visitor Center for Ripple Rock Nature Center schedule. Capitol Reef National Park. You’ll want to reserve several days to 14- Campgrounds (435) 425-3791, ext. -
Episodic Sediment Delivery and Landscape Connectivity in the Mancos Shale Badlands and Fremont River System, Utah, USA
Geomorphology 102 (2008) 242–251 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA Andrew E. Godfrey 1, Benjamin L. Everitt a, José F. Martín Duque b,⁎ a 170 W. 300 North, Ivins, Utah 84738, USA b Department of Geodynamics, Complutense University, 28040 Madrid, Spain ARTICLE INFO ABSTRACT Article history: The Fremont River drains about 1000 km2 of Mancos Shale badlands, which provide a large percentage of the Accepted 23 May 2007 total sediment load of its middle and lower reaches. Factors controlling sediment movement include: Available online 18 May 2008 weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across Keywords: local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. Mancos Shale badlands A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an Erosion Mass movement average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and Connectivity mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is Coupling accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn Arroyo cutting floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. -
Geology of the Northern Portion of the Fish Lake Plateau, Utah
GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. .......... -
Fremont River Watershed Water Quality Management Plan
FFrreemmoonntt RRiivveerr WWaatteerrsshheedd Water Quality Management Plan September 27, 2002 Includes TMDLs for: Johnson Valley Reservoir Forsyth Reservoir Mill Meadow Reservoir UM Creek Upper Fremont River Lower Fremont River i FREMONT RIVER WATERSHED WATER QUALITY MANAGEMENT PLAN TABLE OF CONTENTS 1.0 INTRODUCTION .................................................................................................... 1 1.1 The TMDL Process ........................................................................................ 1 1.2 Utah’s Watershed Approach .......................................................................... 3 2.0 WATERSHED DESCRIPTION ............................................................................... 5 2.1 Historic Perspective ....................................................................................... 5 2.2 Climate........................................................................................................... 6 2.3 Geology / Soils............................................................................................... 8 2.4 Land Use / Land Cover ................................................................................ 11 2.5 Hydrology..................................................................................................... 12 2.5.1 Reservoirs ....................................................................................... 12 2.5.2 Subbasins ....................................................................................... 18 2.5.3 Irrigation -
Vascular Flora and Vegetation of Capitol Reef National Park, Utah
Vascular Flora and Vegetation of Capitol Reef National Park, Utah Kenneth D. Heil, J. Mark Porter, Rich Fleming, and William H. Romme Technical Report NPS/NAUCARE/NRTR-93/01 National Park Service Cooperative Park Studies Unit U.S. Department of the Interior at Northern Arizona University National Park Service Cooperative Park Studies Unit Northern Arizona University The National Park Service (NPS) Cooperative Park Studies Unit (CPSU) at Northern Arizona University (NAU) is unique in that it was conceptualized for operation on an ecosystem basis, rather than being restrained by state or NPS boundaries. The CPSU was established to provide research for the 33 NPS units located within the Colorado Plateau, an ecosystem that shares similar resources and their associated management problems. Utilizing the university's physical resources and faculty expertise, the CPSU facilitates multidisciplinary research in NPS units on the Colorado Plateau, which encompasses four states and three NPS regions—Rocky Mountain, Southwest, and Western. The CPSU provides scientific and technical guidance for effective management of natural and cultural resources within those NPS units. The National Park Service disseminates the results of biological, physical, and social science research through the Colorado Plateau Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of techni cal workshops and conferences are also disseminated through this series. Unit Staff Charles van Riper, III, Unit Leader Peter G. Rowlands, Research Scientist Henry E. McCutchen, Research Scientist Mark K. Sogge, Ecologist Charles Drost, Zoologist Elena T. Deshler, Biological Technician Paul R. Deshler, Technical Information Specialist Connie C. Cole, Editor Margaret Rasmussen, Administrative Clerk Jennifer Henderson, Secretary National Park Service Review Documents in this series contain information of a preliminary nature and are prepared primarily for internal use within the National Park Service. -
Utah Scenic Byways Guide
Utah is the place where prehistory intersects with the enduring spirit of the Old West. Wild, adventure-rich places cradle vibrant urban centers. With interstates and airplanes, the world can feel pretty small. On Utah’s designated scenic byways, the world feels grand; its horizons seem infinite. As you drive through Utah, you’ll inevitably encounter many of the state’s scenic byways. In total, Utah’s distinct topography provides the surface for 27 scenic byways, which add up to hundreds of miles of vivid travel experiences wherein the road trip is as memorable as the destination. Utah’s All-American Road: Scenic Byway 12 headlines the network of top roads thanks to landscapes and heritage unlike anywhere else in the nation. All of Utah’s scenic byways are explorative journeys filled with trailheads, scenic overlooks, museums, local flavors and vibrant communities where you can stop for the night or hook up your RV. Not sure where to start? In the following pages, you’ll discover monumental upheavals of exposed rock strata among multiple national and state parks along the All-American Road (pg. 4); dense concentrations of fossils along Dinosaur Diamond (pg. 8); and the blazing red cliffs and deep blue waters of Flaming Gorge–Uintas (pg. 12) — and that’s just in the first three highlighted byways. Your journey continues down two dozen additional byways, arranged north to south. Best of all, these byways access an outdoor adventureland you can hike, fish, bike, raft, climb and explore from sunup to sundown — then stay up to welcome the return of the Milky Way. -
Contemporary Seismicity, Faulting, and the State of Stress in the Colorado Plateau
Contemporary seismicity, faulting, and the state of stress in the Colorado Plateau ~:~SGR~~ii;HREY } Woodward-Clyde Consultants, 500 12th Street, Suite JOO, Oakland, California 94607 ABSTRACT west- or northeast-striking planes at shallow with the installation of regional networks by the depths. The contemporary state of stress University of Utah Seismograph Stations The contemporary seismicity of the Colo within the plateau is characterized by approx (UUSS), the Los Alamos National Laboratory rado Plateau based on seismic monitoring in imate northeast-trending extension in con (LANL), and the USGS Albuquerque Seismo the past 30 yr can be characterized as being of trast to the previous belief that the plateau logical Laboratory (ASL) (Fig. 2). Despite the small to moderate magnitude, and contrary to was being subjected to east-west tectonic additional network coverage, however, detec earlier views, of a low to moderate rate of compression. One area of the plateau, the tion of earthquakes smaller than ML 2 within occurrence with earthquakes widely distrib eastern Wasatch Plateau and Book Cliffs, the plateau interior improved only slightly. This uted. Concentrations of earthquakes have may still be characterized by compressive paper presents the results of the first major pro been observed in a few areas of the plateau. stresses; however, the nature of these stresses gram of seismographic studies performed within The most seismically active area of the Colo is not well understood. the Colorado Plateau. This program, initiated by rado Plateau is the eastern Wasatch Plateau Woodward-Clyde Consultants (WCC) in 1979, Book Cliffs, where abundant small-magnitude INTRODUCTION included an extensive program of microearth seismicity is induced by coal mining. -
CAPITOL REEF NATIONAL PARK, UTAH by David George Christiana
Hydrology and water resources of Capitol Reef National Park, Utah : with emphasis on the middle Fremont River area Item Type Thesis-Reproduction (electronic); text Authors Christiana, David. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 13:44:08 Link to Item http://hdl.handle.net/10150/192054 HYDROLOGY AND WATER RESOURCES OF CAPITOL REEF NATIONAL PARK, UTAH WITH EMPHASIS ON THE MIDDLE FREMONT RIVER AREA by David George Christiana A Thesis Submitted to the Faculty of the DEPARTMENT OF HYDROLOGY AND WATER RESOURCES in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN HYDROLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1991 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advance degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.