Introduction to Embedded Linux Security
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kernel Report
The kernel report (ELC 2012 edition) Jonathan Corbet LWN.net [email protected] The Plan Look at a year's worth of kernel work ...with an eye toward the future Starting off 2011 2.6.37 released - January 4, 2011 11,446 changes, 1,276 developers VFS scalability work (inode_lock removal) Block I/O bandwidth controller PPTP support Basic pNFS support Wakeup sources What have we done since then? Since 2.6.37: Five kernel releases have been made 59,000 changes have been merged 3069 developers have contributed to the kernel 416 companies have supported kernel development February As you can see in these posts, Ralink is sending patches for the upstream rt2x00 driver for their new chipsets, and not just dumping a huge, stand-alone tarball driver on the community, as they have done in the past. This shows a huge willingness to learn how to deal with the kernel community, and they should be strongly encouraged and praised for this major change in attitude. – Greg Kroah-Hartman, February 9 Employer contributions 2.6.38-3.2 Volunteers 13.9% Wolfson Micro 1.7% Red Hat 10.9% Samsung 1.6% Intel 7.3% Google 1.6% unknown 6.9% Oracle 1.5% Novell 4.0% Microsoft 1.4% IBM 3.6% AMD 1.3% TI 3.4% Freescale 1.3% Broadcom 3.1% Fujitsu 1.1% consultants 2.2% Atheros 1.1% Nokia 1.8% Wind River 1.0% Also in February Red Hat stops releasing individual kernel patches March 2.6.38 released – March 14, 2011 (9,577 changes from 1198 developers) Per-session group scheduling dcache scalability patch set Transmit packet steering Transparent huge pages Hierarchical block I/O bandwidth controller Somebody needs to get a grip in the ARM community. -
Operating System Boot from Fully Encrypted Device
Masaryk University Faculty of Informatics Operating system boot from fully encrypted device Bachelor’s Thesis Daniel Chromik Brno, Fall 2016 Replace this page with a copy of the official signed thesis assignment and the copy of the Statement of an Author. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Daniel Chromik Advisor: ing. Milan Brož i Acknowledgement I would like to thank my advisor, Ing. Milan Brož, for his guidance and his patience of a saint. Another round of thanks I would like to send towards my family and friends for their support. ii Abstract The goal of this work is description of existing solutions for boot- ing Linux and Windows from fully encrypted devices with Secure Boot. Before that, though, early boot process and bootloaders are de- scribed. A simple Linux distribution is then set up to boot from a fully encrypted device. And lastly, existing Windows encryption solutions are described. iii Keywords boot process, Linux, Windows, disk encryption, GRUB 2, LUKS iv Contents 1 Introduction ............................1 1.1 Thesis goals ..........................1 1.2 Thesis structure ........................2 2 Boot Process Description ....................3 2.1 Early Boot Process ......................3 2.2 Firmware interfaces ......................4 2.2.1 BIOS – Basic Input/Output System . .4 2.2.2 UEFI – Unified Extended Firmware Interface .5 2.3 Partitioning tables ......................5 2.3.1 MBR – Master Boot Record . -
Security Assurance Requirements for Linux Application Container Deployments
NISTIR 8176 Security Assurance Requirements for Linux Application Container Deployments Ramaswamy Chandramouli This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 NISTIR 8176 Security Assurance Requirements for Linux Application Container Deployments Ramaswamy Chandramouli Computer Security Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 October 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS National Institute of Standards and Technology Internal Report 8176 37 pages (October 2017) This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. This p There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each ublication is available free of charge from: http publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST. -
Rootless Containers with Podman and Fuse-Overlayfs
CernVM Workshop 2019 (4th June 2019) Rootless containers with Podman and fuse-overlayfs Giuseppe Scrivano @gscrivano Introduction 2 Rootless Containers • “Rootless containers refers to the ability for an unprivileged user (i.e. non-root user) to create, run and otherwise manage containers.” (https://rootlesscontaine.rs/ ) • Not just about running the container payload as an unprivileged user • Container runtime runs also as an unprivileged user 3 Don’t confuse with... • sudo podman run --user foo – Executes the process in the container as non-root – Podman and the OCI runtime still running as root • USER instruction in Dockerfile – same as above – Notably you can’t RUN dnf install ... 4 Don’t confuse with... • podman run --uidmap – Execute containers as a non-root user, using user namespaces – Most similar to rootless containers, but still requires podman and runc to run as root 5 Motivation of Rootless Containers • To mitigate potential vulnerability of container runtimes • To allow users of shared machines (e.g. HPC) to run containers without the risk of breaking other users environments • To isolate nested containers 6 Caveat: Not a panacea • Although rootless containers could mitigate these vulnerabilities, it is not a panacea , especially it is powerless against kernel (and hardware) vulnerabilities – CVE 2013-1858, CVE-2015-1328, CVE-2018-18955 • Castle approach : it should be used in conjunction with other security layers such as seccomp and SELinux 7 Podman 8 Rootless Podman Podman is a daemon-less alternative to Docker • $ alias -
White Paper: Indestructible Firewall in a Box V1.0 Nick Mccubbins
White Paper: Indestructible Firewall In A Box v1.0 Nick McCubbins 1.1 Credits • Nathan Yawn ([email protected]) 1.2 Acknowledgements • Firewall-HOWTO • Linux Router Project • LEM 1.3 Revision History • Version 1.0 First public release 1.4 Feedback • Send all information and/or criticisms to [email protected] 1.5 Distribution Policy 2 Abstract In this document, the procedure for creating an embedded firewall whose root filesystem is loaded from a flash disk and then executed from a RAMdisk will be illustrated. A machine such as this has uses in many environments, from corporate internet access to sharing of a cable modem or xDSL connection among many computers. It has the advantages of being very light and fast, being impervious to filesystem corruption due to power loss, and being largely impervious to malicious crackers. The type of firewall illustrated herein is a simple packet-filtering, masquerading setup. Facilities for this already exist in the Linux kernel, keeping the system's memory footprint small. As such the device lends itself to embedding very well. For a more detailed description of firewall particulars, see the Linux Firewall-HOWTO. 3 Equipment This project has minimal hardware requirements. An excellent configuration consists of: For a 100-baseT network: • SBC-554 Pentium SBC with PISA bus and on-board PCI NIC (http://www.emacinc.com/pc.htm#pentiumsbc), approx. $373 • PISA backplane, chassis, power supply (http://www.emacinc.com/sbcpc_addons/mbpc641.htm), approx. $305 • Second PCI NIC • 32 MB RAM • 4 MB M-Systems Flash Disk (minimum), approx. $45 For a 10-baseT network: • EMAC's Standard Server-in-a-Box product (http://www.emacinc.com/server_in_a_box.htm), approx. -
Flexible Lustre Management
Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task. -
Chapter 3. Booting Operating Systems
Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs. -
Download Resume
Oji Udezue http://www.linkedin.com/in/ojiudezue . +1 425-829-9520 SUMMARY: EXPERIENCED PRODUCT, DESIGN & TECHNOLOGY EXECUTIVE I’m a product-led growth expert. A multi-disciplinary tech exec with strong product, design and engineering leadership skills. I have had stints in marketing and sales which provide a well - rounded experience of key business functions. In addition, I have startup experience and a track record advising several great startups. I have a talent for new product strategy and the practical leadership to innovate and execute with conviction. I am passionate about early stage product development and entrepreneurship in organizations. My strongest skill sets are product vision, lean product management; strategy & planning, people management and talent development. Professional Experience CALENDLY VP of Product (2018 – Present) Lead Technology, Product, Design and Content Strategy • Under my tenure, Calendly is sustaining 100% year on year growth in ARR and MAU • Drive key engineering investments and a high-performance engineering culture • Set product vision, mission and goals for business • Drive ongoing, high velocity innovation • Manage overall user experience and delivery of value to customers • Manage team health, product craft excellence and talent acquisition • Drive clear and actionable business metrics and management of business to those metrics • Drive acquisition strategy; review and approve potential acquisition deals • Manage growth program and virality initiatives to increase audience share ATLASSIAN Head -
Have You Driven an Selinux Lately? an Update on the Security Enhanced Linux Project
Have You Driven an SELinux Lately? An Update on the Security Enhanced Linux Project James Morris Red Hat Asia Pacific Pte Ltd [email protected] Abstract All security-relevant accesses between subjects and ob- jects are controlled according to a dynamically loaded Security Enhanced Linux (SELinux) [18] has evolved mandatory security policy. Clean separation of mecha- rapidly over the last few years, with many enhancements nism and policy provides considerable flexibility in the made to both its core technology and higher-level tools. implementation of security goals for the system, while fine granularity of control ensures complete mediation. Following integration into several Linux distributions, SELinux has become the first widely used Mandatory An arbitrary number of different security models may be Access Control (MAC) scheme. It has helped Linux to composed (or “stacked”) by SELinux, with their com- receive the highest security certification likely possible bined effect being fully analyzable under a unified pol- for a mainstream off the shelf operating system. icy scheme. SELinux has also proven its worth for general purpose Currently, the default SELinux implementation com- use in mitigating several serious security flaws. poses the following security models: Type Enforcement (TE) [7], Role Based Access Control (RBAC) [12], While SELinux has a reputation for being difficult to Muilti-level Security (MLS) [29], and Identity Based use, recent developments have helped significantly in Access Control (IBAC). These complement the standard this area, and user adoption is advancing rapidly. Linux Discretionary Access Control (DAC) scheme. This paper provides an informal update on the project, With these models, SELinux provides comprehensive discussing key developments and challenges, with the mandatory enforcement of least privilege, confidential- aim of helping people to better understand current ity, and integrity. -
Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car
2015-01-0224 Published 04/14/2015 Copyright © 2015 SAE International doi:10.4271/2015-01-0224 saepcelec.saejournals.org Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car Patrick Shelly Mentor Graphics Corp. ABSTRACT With the dramatic mismatch between handheld consumer devices and automobiles, both in terms of product lifespan and the speed at which new features (or versions) are released, vehicle OEMs are faced with a perplexing dilemma. If the connected car is to succeed there has to be a secure and accessible method to update the software in a vehicle's infotainment system - as well as a real or perceived way to graft in new software content. The challenge has become even more evident as the industry transitions from simple analog audio systems which have traditionally served up broadcast content to a new world in which configurable and interactive Internet- based content rules the day. This paper explores the options available for updating and extending the software capability of a vehicle's infotainment system while addressing the lifecycle mismatch between automobiles and consumer mobile devices. Implications to the design and cost of factory installed equipment will be discussed, as will expectations around the appeal of these various strategies to specific target demographics. CITATION: Shelly, P., "Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(1):2015, doi:10.4271/2015-01-0224. INTRODUCTION be carefully taken into account. The use of app stores is expected to grow significantly in the coming years as automotive OEMs begin to Contemporary vehicle infotainment systems face an interesting explore apps not only on IVI systems, but on other components of the challenge. -
TEE Internal Core API Specification V1.1.2.50
GlobalPlatform Technology TEE Internal Core API Specification Version 1.1.2.50 (Target v1.2) Public Review June 2018 Document Reference: GPD_SPE_010 Copyright 2011-2018 GlobalPlatform, Inc. All Rights Reserved. Recipients of this document are invited to submit, with their comments, notification of any relevant patents or other intellectual property rights (collectively, “IPR”) of which they may be aware which might be necessarily infringed by the implementation of the specification or other work product set forth in this document, and to provide supporting documentation. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. This documentation is currently in draft form and is being reviewed and enhanced by the Committees and Working Groups of GlobalPlatform. Use of this information is governed by the GlobalPlatform license agreement and any use inconsistent with that agreement is strictly prohibited. TEE Internal Core API Specification – Public Review v1.1.2.50 (Target v1.2) THIS SPECIFICATION OR OTHER WORK PRODUCT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT SHALL BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE COMPANY, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION OR OTHER WORK PRODUCT. Copyright 2011-2018 GlobalPlatform, Inc. All Rights Reserved. The technology provided or described herein is subject to updates, revisions, and extensions by GlobalPlatform. -
Hypervisors Vs. Lightweight Virtualization: a Performance Comparison
2015 IEEE International Conference on Cloud Engineering Hypervisors vs. Lightweight Virtualization: a Performance Comparison Roberto Morabito, Jimmy Kjällman, and Miika Komu Ericsson Research, NomadicLab Jorvas, Finland [email protected], [email protected], [email protected] Abstract — Virtualization of operating systems provides a container and alternative solutions. The idea is to quantify the common way to run different services in the cloud. Recently, the level of overhead introduced by these platforms and the lightweight virtualization technologies claim to offer superior existing gap compared to a non-virtualized environment. performance. In this paper, we present a detailed performance The remainder of this paper is structured as follows: in comparison of traditional hypervisor based virtualization and Section II, literature review and a brief description of all the new lightweight solutions. In our measurements, we use several technologies and platforms evaluated is provided. The benchmarks tools in order to understand the strengths, methodology used to realize our performance comparison is weaknesses, and anomalies introduced by these different platforms in terms of processing, storage, memory and network. introduced in Section III. The benchmark results are presented Our results show that containers achieve generally better in Section IV. Finally, some concluding remarks and future performance when compared with traditional virtual machines work are provided in Section V. and other recent solutions. Albeit containers offer clearly more dense deployment of virtual machines, the performance II. BACKGROUND AND RELATED WORK difference with other technologies is in many cases relatively small. In this section, we provide an overview of the different technologies included in the performance comparison.