Radar, Without Tears
Radar, without tears François Le Chevalier1 May 2017 Originally invented to facilitate maritime navigation and avoid icebergs, at the beginning of the last century, radar took off during the Second World War, especially for aerial surveillance and guidance from the ground or from aircraft. Since then, it has continued to expand its field of employment. 1 What is it, what is it for? Radar is used in the military field for surveillance, guidance and combat, and in the civilian area for navigation, obstacle avoidance, security, meteorology, and remote sensing. For some missions, it is irreplaceable: detecting flying objects or satellites, several hundred kilometers away, monitoring vehicles and convoys more than 100 kilometers round, making a complete picture of a planet through its atmosphere, measuring precipitations, marine currents and winds at long ranges, detecting buried objects or observing through walls – as many functions that no other sensor can provide, and whose utility is not questionable. Without radar, an aerial or terrestrial attack could remain hidden until the last minute, and the rain would come without warning to Roland–Garros and Wimbledon ... Curiously, to do this, the radar uses a physical phenomenon that nature hardly uses: radio waves, which are electromagnetic waves using frequencies between 1 MHz and 100 GHz – most radars operating with wavelength ( = c / f, being the wavelength, c the speed of light, 3.108 m/s, and f the frequency) between 300 m and 3 mm (actually, for most of them, between 1m and 1cm): wavelengths on a human scale ... Indeed, while the optical domain of electromagnetic waves, or even the ultraviolet and infrared domains, are widely used by animals, while the acoustic waves are also widely used by marine or terrestrial animals, there is practically no example of animal use of this vast part, known as "radioelectric", of the electromagnetic spectrum (some fish, Eigenmannia, are an exception to this rule, but they use frequencies on the order of 300 Hz, and therefore very much lower than the "radar" frequencies).
[Show full text]