Development Team

Total Page:16

File Type:pdf, Size:1020Kb

Development Team Physics Paper No. : Quantum Mechanics-I Module : Generalized Uncertainty Principle Development Team Prof. Vinay Gupta, Department of Physics and Astrophysics, Principal Investigator University of Delhi, Delhi Prof. V. S. Bhasin, Professor , Department of Physics and Paper Coordinator Astrophysics, University of Delhi,Delhi Content Writer Prof. V. S. Bhasin, Professor , Department of Physics and Astrophysics, University of Delhi,Delhi Prof. Subash Chopra,Indian Institute of Technology, Delhi Content Reviewer 1 Quantum Mechanics-1 Physics Generalized Uncertainty Principle Description of Module Subject Name Physics Paper Name Quantum Mechanics-I Module Name/Title Generalized Uncertainty Principle Module Id M12 2 Quantum Mechanics-1 Physics Generalized Uncertainty Principle Contents of this Unit 1. Introduction 2. Generalized Uncertainty Principle 2.1 Root Mean Square Deviation 2.2 Derivation of the General Principle 2.2.1 Uncertainty relation between pair of canonically conjugate operators 2.2.2 Uncertainty Relation between the components of Angular Momentum Operators 3. Examples illustrating the use of Uncertainty Relations 4. States with Minimum Uncertainty Product 5. Time- Energy Uncertainty 6. Summary Learning Outcomes After studying this module, you shall be able to Know the definition of Root Mean Square Deviation and its significance Learn to deduce Generalized Heisenberg’s Uncertainty relationship for any pair of canonically conjugate variables corresponding to non-commuting operators Learn how this general relation is used in the case of (i) position and its conjugate momentum variables, (ii) between the components of orbital angular momentum Know the state, in coordinate representation, which corresponds to the minimum uncertainty product, Δx Δp= / 2 , in the position and momentum variables of a particle know.why the uncertainty relation in energy and time can not be considered analogous to that of the canonically conjugate position and momentum variables 3 Quantum Mechanics-1 Physics Generalized Uncertainty Principle 1.Introduction We have studied, in qualitative terms, the statement on Heisenberg’s uncertainty principle in terms of the uncertainties, ∆x and Δp in the measurement of position and momentum variables, the component of angular momentum and its canonically conjugate variable. Here we shall study how this principle is derived formally in general terms.by introducing the uncertainties ΔA and ΔB, associated with the measurement of the dynamical variables A and B in a given state. We shall use the generalized uncertainty relation to find out the uncertainty relation between the components of orbital angular momentum We shall also derive the expression for the wave packet which represents the minimum uncertainty in position and momentum variables. 2. Generalized Uncertainty Principle In module 3, we made the statement on Heisenberg’s uncertainty principle in terms of the uncertainties, ∆x and Δp in the measurement of position and momentum variables. Having studied the postulates of quantum mechanics, in particular, the commutation relation of quantum mechanical operators, we are now in a position to derive the generalized uncertainty principle general statement of the uncertainty principle for any pair of non- commuting Hermitian operators, Aˆ and Bˆ and use this in specific examples. 2.1 Root Mean Square Deviation As one of the postulates of quantum mechanics, we have learnt that an expectation value of an operator is an average over several measurements, each of which will deviate from the average value. The average of these deviations would of course be zero. But the average of the square of these deviations -- mean square deviations-- would be non-zero. The square root of the mean-square- deviation, called root mean square-deviation can be taken as measure of spread in the values measured . These spreads ΔA and ΔB in the measured values of the observed quantities A and B are called the uncertainties. 4 Quantum Mechanics-1 Physics Generalized Uncertainty Principle 2.2 Derivation of the General Statement Thus the uncertainties ΔA and ΔB associated with the measurement of A and B in a given quantum mechanical state , ψ, are defined as (A)2 (Aˆ Aˆ )2 { Aˆ 2 2 Aˆ Aˆ Aˆ 2} (12.1) Aˆ 2 Aˆ 2 The uncertainty depends on the state ψ in which the system is. Similarly, for the other Hermitian operator Bˆ , (B)2 (Bˆ Bˆ )2 Bˆ 2 Bˆ 2 (12.2) Let us define ˆ ˆ Eˆ Aˆ Aˆ and Fˆ Bˆ Bˆ A and B (12.3) and consider (Eˆ i Fˆ) (12.4) where, for simplicity, λ is real. Since Aˆ and Bˆ are Hermitian so are Eˆ and Fˆ. Now (Eˆ iFˆ )(Eˆ iFˆ ) 0 (12.5) or Eˆ 2 2Fˆ 2 i[Eˆ, Fˆ ] 0 where we note [Eˆ, Fˆ ] [(Aˆ Aˆ ),(Bˆ Bˆ )] [Aˆ, Bˆ] (12.6) Rewriting Eq.(12.5) in terms of the operators, , we have 2 2 2 (Aˆ Aˆ ) (Bˆ Bˆ ) i [Aˆ, Bˆ] 0 (12.7) 5 Quantum Mechanics-1 Physics Generalized Uncertainty Principle The left hand side of Eq.(12.7) has its minimum value when its derivative with respect to λ is zero. This gives 2(B)2 i [Aˆ, Bˆ] 0 [Aˆ, Bˆ] (12.8) or i 2(B)2 Substituting this value of λ from Eq.(12.8) in Eq.(12.7), we have 2 2 [Aˆ, Bˆ] [Aˆ, Bˆ] (Aˆ Aˆ 2) 0 (12.9) 4(B)2 2(B)2 Eq. (12.9) simplifies to 1 2 (A)2(B)2 [Aˆ, Bˆ] 4 Aˆ and Bˆ (12.10) 1 1 2 1 2 or [Aˆ, Bˆ] Cˆ 4 i 4 In Eq(12.10), we introduce the relation; [Aˆ, Bˆ] iCˆ , (12.11) where Cˆ is Hermitian.We get finally 1 (A) (B) Cˆ (12.12) 2 Eq.(12.12) gives the general statement of the uncertainty principle for any pair of non- commuting Hermitian operators, , which satisfy the relation Eq.(12.11). 2.2.1 Uncertainty relation between pair of canonically conjugate operators In particular, for a pair of conjugate operators , which satisfy the commutation relation [Aˆ, Bˆ] i , (12.13) we have, according to Eq.(12.12), 6 Quantum Mechanics-1 Physics Generalized Uncertainty Principle 1 (A) (B) (12.14) 2 And we know that a position coordinate variable x and its canonically conjugate momentum variable p satisfy the relation, Eq.(12.13). Accordingly, x p / 2 (12.15) This is the precise statement of the uncertainty principle in terms of the measurement of position and momentum observables, x and . The generalization to three dimensions is straight forward, i.e., 1 1 1 (x) (px) , (y) (py ) , and (z)(pz ) (12.16) 2 2 2 Corresponding to the commutation relation [xˆi , pˆ j] ii j i.j 1,2,3 (12.17) whereas we have [xˆi , xˆ j] 0 and [pˆi, pˆ j] 0 i.j 1,2,3 (12.18) 2.2.2 Uncertainty Relation between the components of Angular Momentum Operators We shall encounter in our future course of study several other examples of non-commuting Hermitian operators. Consider, for example, the orbital angular momentum of a particle, defined as; L r p about a fixed point. Expressed in Cartesian components, Lx ypz zp y, etc., in cyclic order Replacing the position and momentum variables as operators in quantum mechanics , we can write the commutation relations between its components, as for example, ˆ ˆ [Lx, Ly] [(yˆpˆz zˆpˆ y),(zˆpˆx xˆpˆz)] [yˆpˆz, zˆpˆx][yˆpˆz, xˆpz ][zˆpˆ y, zˆpˆx][zˆpˆ y, xˆpˆz ] Note that in the two middle terms, none of the operators are accompanied by its canonically conjugate partners. As a result, these terms would vanish. The first term can be expressed as 7 Quantum Mechanics-1 Physics Generalized Uncertainty Principle yˆpˆ x[ pˆ z, zˆ] i yˆpˆ x . Similarly, the last term gets simplified as [zˆ, pˆz]xˆpˆ y ixˆpˆ y. Putting these two terms together, we have ˆ ˆ ˆ [ Lx, Ly] i(xˆpˆ y yˆpˆx] iLz The commutators of other two components can be worked out in the same way. Thus we have ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [Lx.Ly] iLz , [Ly, Lz] iLx , [Lz, Lx] iLy (12.19) Applying the generalized uncertainty relation, Eq.(12.14) for the components of angular momentum operators we get (Lx)(Ly ) Lz (12.20) 2 i.e., the uncertainty in the product of measurement of the x- and y-components of orbital angular is determined by the expectation value of the z-component of the orbital momentum. Similar relations hold for other pairs of the angular momentum components as well. We shall be discussing in detail the quantal properties such as the eigenvectors and eigenvalues of angular momentum operators in the section on angular momentum. 3. Examples illustrating the use of Uncertaunty Relations Example 1: Let us consider a simple example of a linear harmonic oscillator to estimate, using the uncertainty relation Eq.(12.12), the minimum value of the zero point energy. We shall see that the uncertainty relation holds even for states in which the expectation values of are zero. Let ψ represent an eigenvector of belonging to the eigenvalue E and let f be respectively the operators corresponding to position and momentum, i.e., From Eq.(12.1) 2 1/ 2 x { xˆ } (12.21a) 8 Quantum Mechanics-1 Physics Generalized Uncertainty Principle Similarly, from Eq.(12.2) p { pˆ 2 }1/ 2 (12.21b) Since, in the case of oscillator, both are positive, we have x p / 2 So that (12.22) In fact according to Eq.(12.15), we have (12.15′) The important consequence of inequality (12.22) is that the lowest energy, called the zero point energy of the oscillator is different from zero. To make an estimate of this energy, we start from 1 1 E Hˆ pˆ 2 K xˆ2 2m 2 1 K (p)2 (x)2 (12.16) 2m 2 1 2K 1 (p)2 .
Recommended publications
  • Hamilton Equations, Commutator, and Energy Conservation †
    quantum reports Article Hamilton Equations, Commutator, and Energy Conservation † Weng Cho Chew 1,* , Aiyin Y. Liu 2 , Carlos Salazar-Lazaro 3 , Dong-Yeop Na 1 and Wei E. I. Sha 4 1 College of Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] 2 College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 3 Physics Department, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] † Based on the talk presented at the 40th Progress In Electromagnetics Research Symposium (PIERS, Toyama, Japan, 1–4 August 2018). Received: 12 September 2019; Accepted: 3 December 2019; Published: 9 December 2019 Abstract: We show that the classical Hamilton equations of motion can be derived from the energy conservation condition. A similar argument is shown to carry to the quantum formulation of Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum state, which is the fundamental postulate. These results are shown to have important bearing for deriving the quantum Maxwell’s equations. Keywords: quantum mechanics; commutator relations; Heisenberg picture 1. Introduction In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced by a quantum operator, which is analogous to an infinite-dimensional matrix operator.
    [Show full text]
  • The Conjugate Variable Method in Hamilton-Lie Perturbation Theory −Applications to Plasma Physics−
    Plasma and Fusion Research: Regular Articles Volume 3, 057 (2008) The Conjugate Variable Method in Hamilton-Lie Perturbation Theory −Applications to Plasma Physics− Shinji TOKUDA Japan Atomic Energy Agency, Naka, Ibaraki, 311-0193 Japan (Received 21 February 2008 / Accepted 29 July 2008) The conjugate variable method, an essential ingredient in the path-integral formalism of classical statistical dynamics, is used to apply the Hamilton-Lie perturbation theory to a system of ordinary differential equations that does not have the Hamiltonian dynamic structure. The method endows the system with this structure by doubling the unknown variables; hence, the canonical Hamilton-Lie perturbation theory becomes applicable to the system. The method is applied to two classical problems of plasma physics to demonstrate its effectiveness and study its properties: a non-linear oscillator that can explode and the guiding center motion of a charged particle in a magnetic field. c 2008 The Japan Society of Plasma Science and Nuclear Fusion Research Keywords: one-form, Hamilton-Lie perturbation method, conjugate variable, non-linear oscillator, guiding cen- ter motion, plasma physics DOI: 10.1585/pfr.3.057 1. Introduction Since the Hamilton-Lie perturbation method is a pow- We begin by considering the following two non-linear erful analytical tool that enables us to investigate the prob- oscillators lem deeply, it would be a significant contribution to the de- velopment of approximation methods in physics if it were dx dy = y, = −x − x3, (1) made applicable for equations such as Eq. (2), which do dt dt not have the Hamiltonian structure. This seems impossi- and ble since the Hamilton-Lie perturbation method assumes the Hamiltonian structure of the equations.
    [Show full text]
  • A Method for Choosing an Initial Time Eigenstate in Classical and Quantum Systems
    Entropy 2013, 15, 2415-2430; doi:10.3390/e15062415 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Method for Choosing an Initial Time Eigenstate in Classical and Quantum Systems Gabino Torres-Vega * and Monica´ Noem´ı Jimenez-Garc´ ´ıa Physics Department, Cinvestav, Apdo. postal 14-740, Mexico,´ DF 07300 , Mexico; E-Mail:njimenez@fis.cinvestav.mx * Author to whom correspondence should be addressed; E-Mail: gabino@fis.cinvestav.mx; Tel./Fax: +52-555-747-3833. Received: 23 April 2013; in revised form: 29 May 2013 / Accepted: 3 June 2013 / Published: 17 June 2013 Abstract: A subject of interest in classical and quantum mechanics is the development of the appropriate treatment of the time variable. In this paper we introduce a method of choosing the initial time eigensurface and how this method can be used to generate time-energy coordinates and, consequently, time-energy representations for classical and quantum systems. Keywords: energy-time coordinates; energy-time eigenfunctions; time in classical systems; time in quantum systems; commutators in classical systems; commutators Classification: PACS 03.65.Ta; 03.65.Xp; 03.65.Nk 1. Introduction The possible existence of a time operator in Quantum Mechanics has long been a subject of interest. This subject has been studied from different points of view and has led to several developments in quantum theory. At the end of this paper there is a short, incomplete, list of papers on this subject. However, we can also study the time variable in classical systems to begin to understand how to address time in quantum systems.
    [Show full text]
  • Introduction to Legendre Transforms
    Legendre transforms Mark Alford, 2019-02-15 1 Introduction to Legendre transforms If you know basic thermodynamics or classical mechanics, then you are already familiar with the Legendre transformation, perhaps without realizing it. The Legendre transformation connects two ways of specifying the same physics, via functions of two related (\conjugate") variables. Table 1 shows some examples of Legendre transformations in basic mechanics and thermodynamics, expressed in the standard way. Context Relationship Conjugate variables Classical particle H(p; x) = px_ − L(_x; x) p = @L=@x_ mechanics L(_x; x) = px_ − H(p; x)_x = @H=@p Gibbs free G(T;:::) = TS − U(S; : : :) T = @U=@S energy U(S; : : :) = TS − G(T;:::) S = @G=@T Enthalpy H(P; : : :) = PV + U(V; : : :) P = −@U=@V U(V; : : :) = −PV + H(P; : : :) V = @H=@P Grand Ω(µ, : : :) = −µN + U(n; : : :) µ = @U=@N potential U(n; : : :) = µN + Ω(µ, : : :) N = −@Ω=@µ Table 1: Examples of the Legendre transform relationship in physics. In classical mechanics, the Lagrangian L and Hamiltonian H are Legendre transforms of each other, depending on conjugate variablesx _ (velocity) and p (momentum) respectively. In thermodynamics, the internal energy U can be Legendre transformed into various thermodynamic potentials, with associated conjugate pairs of variables such as temperature-entropy, pressure-volume, and \chemical potential"-density. The standard way of talking about Legendre transforms can lead to contradictorysounding statements. We can already see this in the simplest example, the classical mechanics of a single particle, specified by the Legendre transform pair L(_x) and H(p) (we suppress the x dependence of each of them).
    [Show full text]
  • Circuits Et Signaux Quantiques Quantum
    Chaire de Physique Mésoscopique Michel Devoret Année 2008, 13 mai - 24 juin CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS Première leçon / First Lecture This College de France document is for consultation only. Reproduction rights are reserved. 08-I-1 VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS http://www.college-de-france.fr then follow Enseignement > Sciences Physiques > Physique Mésoscopique > PDF FILES OF ALL LECTURES WILL BE POSTED ON THIS WEBSITE Questions, comments and corrections are welcome! write to "[email protected]" 08-I-2 1 CALENDAR OF SEMINARS May 13: Denis Vion, (Quantronics group, SPEC-CEA Saclay) Continuous dispersive quantum measurement of an electrical circuit May 20: Bertrand Reulet (LPS Orsay) Current fluctuations : beyond noise June 3: Gilles Montambaux (LPS Orsay) Quantum interferences in disordered systems June 10: Patrice Roche (SPEC-CEA Saclay) Determination of the coherence length in the Integer Quantum Hall Regime June 17: Olivier Buisson, (CRTBT-Grenoble) A quantum circuit with several energy levels June 24: Jérôme Lesueur (ESPCI) High Tc Josephson Nanojunctions: Physics and Applications NOTE THAT THERE IS NO LECTURE AND NO SEMINAR ON MAY 27 ! 08-I-3 PROGRAM OF THIS YEAR'S LECTURES Lecture I: Introduction and overview Lecture II: Modes of a circuit and propagation of signals Lecture III: The "atoms" of signal Lecture IV: Quantum fluctuations in transmission lines Lecture V: Introduction to non-linear active circuits Lecture VI: Amplifying quantum signals with dispersive circuits NEXT YEAR: STRONGLY NON-LINEAR AND/OR DISSIPATIVE CIRCUITS 08-I-4 2 LECTURE I : INTRODUCTION AND OVERVIEW 1. Review of classical radio-frequency circuits 2.
    [Show full text]
  • Quantum Coherence in Electrical Circuits
    Quantum Coherence in Electrical Circuits by Jeyran Amirloo Abolfathi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2010 c Jeyran Amirloo Abolfathi 2010 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract This thesis studies quantum coherence in macroscopic and mesoscopic dissipative electrical circuits, including LC circuits, microwave resonators, and Josephson junctions. For the LC resonator and the terminated transmission line microwave resonator, second quantization is carried out for the lossless system and dissipation in modeled as the coupling to a bath of harmonic oscillators. Stationary states of the linear and nonlinear resonator circuits as well as the associated energy levels are found, and the time evolution of uncer- tainty relations for the observables such as flux, charge, current, and voltage are obtained. Coherent states of both the lossless and weakly dissipative circuits are studied within a quantum optical approach based on a Fokker-Plank equation for the P-representation of the density matrix which has been utilized to obtain time-variations of the averages and uncertainties of circuit observables. Macroscopic quantum tunneling is addressed for a driven dissipative Josephson res- onator from its metastable current state to the continuum of stable voltage states. The Caldeira-Leggett method and the instanton path integral technique have been used to find the tunneling rate of a driven Josephson junction from a zero-voltage state to the continuum of the voltage states in the presence of dissipation.
    [Show full text]
  • The Uncertainty Principle
    Answer Key Activity THE UNCERTAINTY PRINCIPLE Created by the IQC Scientific Outreach team Contact: [email protected] Institute for Quantum Computing University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 uwaterloo.ca/iqc Copyright © 2021 University of Waterloo Answer Key Outline THE UNCERTAINTY PRINCIPLE ACTIVITY GOAL: Measure and verify the uncertainty principle using laser pointers. LEARNING OBJECTIVES ACTIVITY OUTLINE Momentum of light. First, we’ll examine the uncertainty principle in the context of single- slit diffraction, learning how to express the momentum of light. Tradeoff between position and CONCEPT: momentum uncertainty. Light carries momentum, which can have x, y, and z components. After calibrating our equipment, we’ll measure the momentum Using uncertainty to measure spread of light after passing through slits of known widths. unknowns. CONCEPT: The more certain we are about position, the less certain we are about momentum. We’ll use our data to estimate the constant of proportionality in the uncertainty principle, and use that information to measure slits and barriers of unknown width. CONCEPT: Uncertainty itself can be used to make accurate measurements. PREREQUISITE KNOWLEDGE Diffraction and interference of light SUPPLIES REQUIRED Laser pointers (Red, Green, and Blue, optimally) Diffraction grating with known lines-per-millimetre Measuring tape and ruler Paper, pen, and tape Graph paper or plotting software Uncertainty Tracing worksheet (optional) Slits of known and unknown width, can be homemade with: - Laser printer (best results with >600dpi resolution) - Overhead transparency paper Activity THE UNCERTAINTY PRINCIPLE POSITION AND MOMENTUM OF LIGHT A laser beam is a directed beam of light containing many photons.
    [Show full text]
  • Classical and Quantum Physics Mix
    NEWS AND VIEWS Classical and quantum physics mix A neat way of talking of quantum and classical physics in the same language will be of interest in itself even if it does not avoid the need for a quantum theory of gravity; but that would be a huge extra. MIXING together classical mechanics and photons whose emission is stimulated) are The Poisson bracket is defined as quantum mechanics is a long-standing source dealt with as such, while the structural ele­ (ajd J8-at/d xg), where ax and Ok denote ofembarrassment, usually arising quite early ments ofthe laser (which define the shape of partial differentiation with respect to x and k in the textbooks of quantum mechanics. the resonating cavity) appear simply as pa­ respectively. (Plainly the test is trivially There is, for example, the simplest of all the rameters in the equations. This fuss does satisfied for the original variables x and k.) problems in quantum mechanics, that of a not imply that the standard treatments of What Anderson does is simply to put the particle in a box. The heuristic value of this mixed problems are in some sense wrong, two conditions together, arriving at a test for example is that it stands proxy for an elec­ but that they are at least inelegant and may pairs of conjugate variables (A and B) with tron or some other charged particle in a fixed leave people with an awkward sense of the form [A,B] + i{A,B} = i. At the most electrostatic potential, as in the interior of a insecurity.
    [Show full text]
  • Lagrangian Formulation of Classical and Particle Physics
    LAGRANGIAN FORMULATION OF CLASSICAL AND PARTICLE PHYSICS A. George Energies & Forces • Consider this situation, with a red ball in a blue potential field. Assume there is friction. High Potential Low Potential Energies and Forces • The particle always travels in a way that • Respects inertia • Tries to minimize its potential High Potential Low Potential Energies and Forces • Which trajectory to choose? • Initial velocity is the same as the “previous” velocity (that’s inertia) • Acceleration determined by the change in the potential, ie High Potential Low Potential Lagrangian Formulation • That’s the energy formulation – now onto the Lagrangian formulation. • This is a formulation. It gives no new information – there’s no advantage to it. • But, easier than dealing with forces: • “generalized coordinates” – works with any convenient coordinates, don’t have to set up a coordinate system • Easy to read off symmetries and conservation laws • The Lagrangian Formulation is based on action. Action • Here’s the key idea: I want to spend as little time as possible in the region of high potential. • So, two competing goals: low time and low potential. When there is conflict, which one wins? • Answer: the one that has the lowest action. High Potential Low Potential Action • Here’s the idea: • You provide: • The fields as a function of time and space • All proposed trajectories (all infinity of them) • Any constraints • The action will tell you a number for each trajectory. • You choose the trajectory with the least action. • So, action is a functional: Functions in Numbers out Action: an example • Clearly, the lower trajectory has a smaller action, because it is the more direct path (“spend less time in regions of high potential”) High Potential Low Potential Action: Mathematical Definition • S depends on the trajectory.
    [Show full text]
  • Lecture 5 Motion of a Charged Particle in a Magnetic Field
    Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a field 3 Atomic hydrogen in a uniform field: Normal Zeeman effect 4 Gauge invariance and the Aharonov-Bohm effect 5 Free electrons in a magnetic field: Landau levels 6 Integer Quantum Hall effect Lorentz force What is effect of a static electromagnetic field on a charged particle? Classically, in electric and magnetic field, particles experience a Lorentz force: F = q (E + v B) × q denotes charge (notation: q = e for electron). − Velocity-dependent force qv B very different from that derived from scalar potential, and programme× for transferring from classical to quantum mechanics has to be carried out with more care. As preparation, helpful to revise(?) how the Lorentz force law arises classically from Lagrangian formulation. Analytical dynamics: a short primer For a system with m degrees of freedom specified by coordinates q , q , classical action determined from Lagrangian L(q , q˙ ) by 1 ··· m i i S[qi ]= dt L(qi , q˙ i ) ! For conservative forces (those which conserve mechanical energy), L = T V , with T the kinetic and V the potential energy. − Hamilton’s extremal principle: trajectories qi (t) that minimize action specify classical (Euler-Lagrange) equations of motion, d (∂ L(q , q˙ )) ∂ L(q , q˙ )=0 dt q˙ i i i − qi i i mq˙ 2 e.g. for a particle in a potential V (q), L(q, q˙ )= V (q) and 2 − from Euler-Lagrange equations, mq¨ = ∂ V (q) − q Analytical dynamics: a short primer For a system with m degrees of freedom specified by coordinates q , q , classical action determined from Lagrangian L(q , q˙ ) by 1 ··· m i i S[qi ]= dt L(qi , q˙ i ) ! For conservative forces (those which conserve mechanical energy), L = T V , with T the kinetic and V the potential energy.
    [Show full text]
  • The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity
    entropy Article The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity Massimo Tessarotto 1,2 and Claudio Cremaschini 2,* 1 Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127 Trieste, Italy; [email protected] 2 Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezruˇcovonám.13, CZ-74601 Opava, Czech Republic * Correspondence: [email protected] Received: 23 September 2020; Accepted: 24 October 2020; Published: 26 October 2020 Abstract: The subject of this paper deals with the mathematical formulation of the Heisenberg Indeterminacy Principle in the framework of Quantum Gravity. The starting point is the establishment of the so-called time-conjugate momentum inequalities holding for non-relativistic and relativistic Quantum Mechanics. The validity of analogous Heisenberg inequalities in quantum gravity, which must be based on strictly physically observable quantities (i.e., necessarily either 4-scalar or 4-vector in nature), is shown to require the adoption of a manifestly covariant and unitary quantum theory of the gravitational field. Based on the prescription of a suitable notion of Hilbert space scalar product, the relevant Heisenberg inequalities are established. Besides the coordinate-conjugate momentum inequalities, these include a novel proper-time-conjugate extended momentum inequality. Physical implications and the connection with the deterministic limit recovering General Relativity are investigated. Keywords: covariant quantum gravity; Heisenberg indeterminacy principle; Heisenberg inequalities; quantum probability density function; deterministic limit 1. Introduction In this paper, a basic challenge in theoretical and mathematical physics is addressed which concerns the axiomatic approach to Quantum Gravity and has fundamental implications in relativistic astrophysics, quantum gravity theory, and cosmology.
    [Show full text]
  • Canonical Quantization
    Canonical Quantization March 16, 2016 1 Canonical quantization of a particle 1.1 The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced by Dirac. The prescription is remarkably simple, and stems from the close relationship between Hamiltonian mechanics and quantum mechanics. A dynamical variable is any function of the phase space coordinates and time, f(qi; pi; t): Given any two dynamical variables, we can compute their Poisson bracket, ff; gg as described in our discussion of Hamiltonian mechanics. In particular, the time evolution of any dynamical variable is given by df @f = fH; fg + dt @t and for any canonically conjugate pair of variables, fpi; qjg = δij To quantize the classical system, we let the canonically conjugate variables become operators (denoted by a “hat”, o^); let all Poisson brackets be replaced by i times the commutator of those operators, and } let all dynamical variables (including the Hamiltonian) become operators through their dependence on the conjugate variables: i f ; g ! [ ; ] (1) } (pi; qj) ! (^pi; q^j) (2) ^ f(pi; qj; t) ! f = f(^pi; q^j; t) (3) The operators are taken to act linearly on a vector space, and the vectors are called “states.” This is all often summarized, a bit too succinctly, by saying “replace all Poisson brackets by commutators and put hats on everything.” This simple set of rules works admirably. 1.2 Example As a simple example, let’s quantize the simple harmonic oscillator. In terms of the canonical variables (pi; xj) the Hamiltonian is p2 1 H = + kx2 2m 2 We quantize by making the replacements xj ) x^j pi ) p^i 1 i fpi; xjg = δij ) [^pi; x^j] = δij } i fxi; xjg = 0 ) [^xi; x^j] = 0 } i fpi; pjg = 0 ) [^pi; p^j] = 0 } ^p2 1 H^ = + k^x2 2m 2 We therefore have [^pi; x^j] = −i}δij [^xi; x^j] = 0 [^pi; p^j] = 0 ^ ^p2 1 2 and the Hamiltonian operator, H = 2m + 2 k^x .
    [Show full text]