Aluminum, Magnesium and Zinc Alloy Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Connor Final Highlighted
Preliminary Development of a PPAM Actuated Pediatric Prosthetic Ankle Connor McNamara-Spackman A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Bioengineering) at the University of Otago, Dunedin, New Zealand. February 2021 Abstract The purpose of this research was to develop a preliminary design of a powered pediatric prosthetic ankle. Previous research identified the health risk of improper gait cycle and the lack of powered prosthetic ankle options for children. Costs for powered prosthetic ankles are too high (upwards of $5000 NZD), the sizes are too large and the weight is too significant for a child to benefit from. Current technologies for ankle joint actuation and materials for the prosthetic structure were evaluated and a conclusion of utilizing PPAMs was chosen due to their ability to generate the required 300 N of contraction force. CAD was used to model the structure of a prosthetic ankle and evaluate the FOS of the different material combinations while under static loading and fatigue simulations. HDPE and UHMWPE failed to withstand the simulations, while the aluminium alloy and stainless steel showed minimal faults from the simulations. MatLab was used to simulate the desired PPAM dimensions of 100 mm to determine the contraction force and contraction percentage that can be generated by the PPAM. The smallest PPAM found in research was 110 mm and showed promising results from their mathematical modeling. The overall height of the prosthetic was no greater than 110 mm and the membrane length of the PPAM was no greater than 100 mm, while successfully producing more than 300 N during contraction. -
Coating Research for Zinc Die Casting Alloys
A PERFORMANCE EVALUATION OF MODERN SURFACE FINISHES FOR ZINC DIE CASTINGS otects! Pr Zinc A PERFORMANCE EVALUATION OF MODERN SURFACE FINISHES FOR ZINC DIE CASTINGS Why Zinc Castings Zinc die castings are a unique choice for count- less decorative and functional applications. Zinc is a relatively dense metal, which has a feel of “substance” and durability. Zinc casting alloys are also stronger than all but the most highly rein- forced molded polymers. Zinc’s hardness, self lubricating properties, dimensional stability and The Study high modulus makes it suitable for work- The following information is from results of an ing mechanical parts, such as gears and investigation1,2 conducted by the International pinions, that would be less durable if Lead Zinc Research Organization (ILZRO) to eval- molded from polymers. Zinc can be die uate the performance of modern protective and cast at moderate temperatures thus pro- decorative finishes commonly used on zinc die viding significant energy and processing castings. The investigation was performed by the savings over other metals and engineer- Corrosion and Materials Research Institute ing alloys. Zinc also accepts a broad (CAMRI) in Newark, Delaware. assortment of finishes, from chemical conversion treatments to electroplating The ILZRO study described here provides a com- to sprayed and baked polymers. parison of the performance of different finishes used to protect and provide an aesthetic finish When a finish is properly selected and to zinc die castings. The study looked at two dif- applied to die cast zinc, almost any ferent performance criteria – the ability of a fin- desired aesthetic characteristic and coat- ish to protect the underlying zinc against corro- ing durability can be achieved. -
Tribological Behaviours Influenced by Surface Coatings and Morphology
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 7-11-2015 Tribological Behaviours Influenced yb Surface Coatings and Morphology Guang Wang University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Wang, Guang, "Tribological Behaviours Influenced yb Surface Coatings and Morphology" (2015). Electronic Theses and Dissertations. 5305. https://scholar.uwindsor.ca/etd/5305 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang A thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive & Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2015 ©2015 Guang Wang Tribological Behaviours Influenced by Surface Coatings and Morphology By Guang Wang APPROVED BY: Dr. -
Abstracts from the Scientific and Technical Press Titles And
December, ig4j Abstracts from the Scientific and Technical Press " (No. 117. October, 1943) AND Titles and References of Articles and Papers Selected from Publications (Reviewed by R.T.P.3) TOGETHER WITH List of Selected Translations (No. 63)' London : "THE ROYAL AERONAUTICAL SOCIETY" with which is incorporated "The Institution of Aeronautical Engineers" 4, Hamilton Place, W.I Telephone: Grosvenor 3515 (3 lines) ABSTRACTS FROM THE SCIENTIFIC AND TECHNICAL PRESS. Issued by the Directorate's of Scientific Research and Technical Development, Ministry of Air craft Production. (Prepared by R.T.P.3.) No. 117. OCTOBER, 1943. Notices and abstracts from the Scientific and Technical Press are prepared primarily for_ the information of Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example that published by the Aeronautical Research Committee^ is already known to these Staffs. Requests from scientific and technical staffs for further information of transla tions should be addressed to R.T,P.3, Ministry of Aircraft Production, and not to the Royal Aeronautical Society. Only a limited number of the articles quoted from foreign journals are trans lated and usually only the original can be supplied on loan. If, however, translation is required, application should be made in writing to R.T.P.3, the requests being considered in accordance with existing facilities. ' NOTE.—As far as possible, the country of origin quoted in the items refers to the original source. The Effect of Nitrogen on the Properties of Certain Austenitic Valve Steels. -
Friction Stir Welding of Dissimilar Materials Between Aluminium Alloys and Copper - an Overview
Proceedings of the World Congress on Engineering 2013 Vol III, WCE 2013, July 3 - 5, 2013, London, U.K. Friction Stir Welding of Dissimilar Materials between Aluminium Alloys and Copper - An Overview Mukuna P. Mubiayi. Member, IAENG and Esther T. Akinlabi, Member, IAENG flow in the material, forming a solid state weld. Abstract—Friction Stir Welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. The process is widely used because it produces sound welds and does not have common problems such as solidification and liquefaction cracking associated with the fusion welding techniques. The FSW of Aluminium and its alloys has been commercialised; and recent interest is focused on joining dissimilar materials. However, in order to commercialise the process, research studies are required to characterise and establish process windows. In particular, FSW has inspired researchers to attempt joining dissimilar materials such as aluminium to copper which differ in properties and sound welds with none or limited intermetallic compounds has been produced. In this paper, we review the current research state of FSW between aluminium and copper with a focus on the resulting weld microstructure, mechanical testing and the tools employed to produce the welds and also an insight into future research in this field of study. Fig.1. Schematic diagram of the Friction Stir Welding process [2] Keywords: Aluminium, copper, dissimilar materials, intermetallic compounds, microstructure. It was realised in the development of the FSW process that the tool design is critical in producing sound welds [3]. A basic and conventional design for a FSW tool is shown in I. -
Metallurgical Abstracts (General and Non-Ferrous)
METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 2 1935 Part 13 I —PROPERTIES OF METALS (Continued from pp. 553-568.) Refined Aluminium. Robert GaDeau (Metallurgist (Suppt. to Engineer), 1936, 11, 94-96).—Summary of a paper presenteD to the Congrès Inter nationale Des Mines, De la Métallurgie, et De la Géologie Appliquée, Paris. See Met. Abs., this vol., pp. 365 anD 497.—R. G. _ On the Softening and Recrystallization of Pure Aluminium. ------ (A lu minium, 1935, 17, 575-576).—A review of recent work of Calvet anD his collaborators ; see Met. Abs., this vol., pp. 453, 454. A. R. P. *Some Optical Observations on the Protective Films on Aluminium in Nitric, Chromic, and Sulphuric Acids. L. TronstaD anD T. HbverstaD (Trans. Faraday Soc., 1934, 30, 362-366).—The optical properties of natural films on aluminium were measureD in various solutions anD their change with time of immersion observeD. Little change occurs in such films in chromic aciD solutions with or without chloriDe ; the films are not protective in concentrateD sulphuric aciD, anD in concentrateD nitric aciD the protective films are alternately DissolveD anD re-formeD. The mean thickness of natural films on aluminium is 100 p. or more than 10 times as thick as those on iron.—A. R. P. *Light from [Burning] Aluminium and Aluminium-Magnésium [Alloy], J. A. M. van Liempt anD J. A. De VrienD (Bee. trav. chim., 1935, 54, 239-244). „ . —S. G. ’"Investigations Relating to Electrophotophoresis Exhibited by Antimony Gisela Isser anD AlfreD Lustig (Z . Physik, 1935, 94, 760-769).—UnchargeD submicroscopic particles subjecteD to an electric fielD in an intense beam of light are founD to move either in the Direction of, or against, the fielD. -
Machining of Aluminum and Aluminum Alloys / 763
ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool. -
Aluminium Alloys Chemical Composition Pdf
Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions. -
02001 City of Eugene Amendment #1, April 2021 1021 PART 02000
02001 PART 02000 - MATERIALS Concrete Materials and Additives Section 02001 - Concrete Description 02001.00 Scope - This Section includes the requirements for the properties, submittals, production, quality control and acceptance of portland cement concrete (concrete) for structural, precast prestressed, and paving applications. 02001.02 Abbreviations and Definitions: 'c - Minimum Specified Compressive Strength at 28 days 'cr - Required Average Compressive Strength GGBFS - Ground Granulated Blast Furnace Slag HES – High Early Strength Concrete HPC - High Performance Concrete HRWRA - High-Range Water-Reducing Admixture (super-plasticizer) IC - Internally Cured LWFA - Lightweight Fine Aggregate PPCM - Precast prestressed concrete member SCM - Supplementary Cementitious Materials SSD - Saturated Surface-Dry w/cm Ratio - Water-Cementitious Material Ratio WRA - Water Reducing Admixture Cementitious Materials - Portland cement and supplementary cementitious materials. High Performance Concrete - Concrete designed for enhanced durability and performance characteristics. High performance concrete is identified by the letters "HPC" in front of the concrete class designation (for example, HPC4500 – 1 1/2). Internally Cured Concrete - Concrete designed to utilize lightweight fine aggregate to mitigate shrinkage. Moderate Exposure - Elevations below 1,000 feet. Pozzolans - Fly ash, silica fume, and metakaolin. Severe Exposure - Elevations 1,000 feet and above. Supplementary Cementitious Materials - Fly ash, silica fume, metakaolin, and ground granulated -
2009 International Nuclear Atlantic Conference
2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 ZAMAK SAMPLES ANALYSES USING EDXRF J. T. de Assis¹, H. Alves³, I. Lima¹, V. Monin¹, M. dos Anjos²,³, R. T. Lopes² (1) Departamento de Engenharia Mecânica e Energia, Instituto Politécnico, UERJ Rua Alberto Rangel, s/n, Nova Friburgo, RJ, Brazil {[email protected]} {[email protected]} {[email protected]} (2) Laboratório de Instrumentação Nuclear, PEN. COPPE/UFRJ Cidade Universitária, Rio de Janeiro, RJ, Brazil {[email protected]} (3) Departamento de Física Aplicada e Termodinâmica, IF/UERJ Rua São Francisco Xavier, 524, sala B3020, Rio de Janeiro, RJ, Brazil {[email protected]} {[email protected]} ABSTRACT Zamak is a family of alloys with a base metal of zinc and alloying elements of aluminium, magnesium and copper. Among all non-ferrous metal alloys, Zamak is one that has more applications, for their physical, mechanical properties and easy ability to electrodeposition. It has good resistance to corrosion, traction, shock and wear. Its low melting point (approximately 400 ° C) allows greater durability of the mold, allowing greater production of melted series parts. Zamak can be used in several kinds of areas, such as, to produce residential and industrial locks, construction and carpentry components, refrigerators hinges and so on. It’s observed that in some cases the quality of these products is not very good. The problem should be the quality of Zamak alloy purchased by the industries. One possible technique that can be used to investigate the quality of these alloys is Energy Dispersive X-ray fluorescence. -
General Rule of Phase Decomposition in Zn-Al Based Alloys (II) ---On
Materials Transactions, Vol. 45, No. 11 (2004) pp. 3083 to 3097 #2004 The Japan Institute of Metals OVERVIEW General Rule of Phase Decomposition in Zn-Al Based Alloys (II) —On Effects of External Stresses on Phase Transformation— Yao hua Zhu Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P.R. China Microstructural changes and phase transformation of Zn-Al based alloys (ZA alloys) were systematically investigated during various thermal and thermo-mechanical processes using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EMPA), transmission electron microscopy (TEM), electron back-scattered diffraction (EBSD) and differential scanning calorimeter (DSC) etc. techniques. Phase decompositions of the alloys were studied under various thermal and thermo-mechanical circumstances. General rule of phase decomposition (II) (On effects of external stresses on phase transformation) was summarized with explanations from point view of Gibbs free energy. (Received April 19, 2004; Accepted September 6, 2004) Keywords: ageing, deformation, stress induced phase decomposition, zinc-aluminium based alloys 1. Introduction Zn-Al based alloys have been commercially accepted for many years, since the first casting alloy was developed at the New Jersey Zinc Company in 1922. The most popular die casting alloy used, ZAMAK 4 was the 898 alloy discovered in their series of alloy development. A new family of hyper- eutectic Zn-Al based alloys with high aluminum and copper contents was developed based on the ZAMAK alloys in North America and China in the 1970’s. The copper content was up to 3% (in mass%) and aluminum content were selected as about 8, 12, 22 and 27% (in mass%). -
International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION