Transiting Extrasolar Planets: Detection And

Total Page:16

File Type:pdf, Size:1020Kb

Transiting Extrasolar Planets: Detection And TRANSITING EXTRASOLAR PLANETS: DETECTION AND FOLLOW-UP Thesis submitted for the degree “doctor of philosophy” by Avi Shporer Submitted to the senate of Tel Aviv University October 2009 This work was carried out under the supervision of Professor Tsevi Mazeh To my parents Contents Abstract............................ III 1 Introduction 1 1.1 OverviewofExtrasolarPlanets . 4 1.1.1 ExtrasolarPlanetsDetection. 4 Barnard’sstar ................ 5 TheRadialVelocityMethod . 6 PulsarPlanets ................ 9 High-PrecisionRadial Velocity . 10 TheTransitMethod . 14 OtherTechniques . 23 Current Status and Future Prospects. 25 1.1.2 The Role of Observations in Developing Plan- etaryTheory .................. 29 TheSolarSystem . 30 Planetformationindisks . 30 Thecoreaccretiontheory . 31 The gravitational instability theory. 33 PlanetaryMigration . 34 Planetaryradius-mass relation . 38 Planetaryatmospheres . 41 Spin-orbitalignment. 43 Looking for a second planet in the system . 44 Themass-periodcorrelation. 45 1.2 StructureoftheThesis . 46 1.2.1 Searching for Transiting Extrasolar Planets . 47 I 1.2.2 Follow-up Observations of Known Transiting Planets...................... 49 WASP-1b................... 50 HAT-P-2b .................. 50 GJ436b ................... 51 2 The Papers 53 PaperI ............................ 53 PaperII............................ 60 PaperIII ........................... 64 PaperIV............................ 72 PaperV............................ 77 PaperVI............................ 82 3 Discussion 91 3.1 Papers I – III — Detection of Three New Transiting ExtrasolarPlanets . 91 3.1.1 PaperI—HAT-P-2b. 91 3.1.2 PaperII—HAT-P-5b . 96 3.1.3 PaperIII—HAT-P-9b. 97 3.2 Papers IV – VI — Follow-up Studies of Known Tran- sitingExtrasolarPlanets . 99 3.2.1 Paper IV — WASP-1b photometric follow-up 100 3.2.2 Paper V — HAT-P-2b spectroscopic follow-up 100 3.2.3 Paper VI — GJ 436b photometric follow-up campaign .................... 103 3.3 Summary ........................ 104 Bibliography 107 Acknowledgments 123 II Abstract This thesis, consisting of six published papers, includes the discovery of three new transiting extrasolar planets and follow-up studies of three known transiting planets. Papers I, II and III present the discovery of HAT-P-2b, HAT-P-5b and HAT-P-9b, respectively. The three planets were discovered as candidates by the Hungarian Automated Telescope Network (HAT- Net), working in collaboration with the Israeli HAT telescope at the Wise Observatory (Wise-HAT, or WHAT), for which I am part of the operational group. The planetary nature of HAT-P-2b was confirmed spectroscop- ically at the Keck telescope, with the HIRES spectrograph. This planet is extraordinary as it is both massive (Mp =8.80 ± 0.16 MJ ) and residing in an eccentric orbit (e =0.5156 ± 0.0018). For HAT-P- 5b and HAT-P-9b, spectroscopic confirmation was done at the OHP 1.93-m telescope, with the SOPHIE spectrograph, in observations I carried out. I also carried out photometric observations of transits of these planets with the Wise Observatory 0.46-m and 1.0-m tele- scopes. HAT-P-5b is a close-in planet (P =2.788491±0.000025 days) similar to Jupiter in mass and radius (Mp = 1.06 ± 0.11 MJ , Rp = III 1.257 ± 0.053 RJ ), and HAT-P-9b is a low-density planet (ρp = −3 0.35 ± 0.06 g cm = 0.28 ± 0.05ρJ ), belonging to a small group of inflated planets. Papers IV, V and VI present three follow-up studies of known transiting planets, WASP-1b, HAT-P-2b and GJ 436b, respectively. Each of these planets has some unique characteristics and the three studies were carried out right after the announcement of the planet discovery. WASP-1b was observed with the Wise Observatory 1.0-m tele- scope and using the two transit light curves obtained we were able to refine the system parameters, especially the planetary and stellar radii, confirming the planet’s inflated nature (Rp =1.40 ± 0.06 RJ ). The massive and eccentric planet HAT-P-2b was followed-up spectro- scopically at the OHP 1.93-m telescope, with the SOPHIE spectro- graph, leading to an improved orbital solution and the measurement of the spin-orbit alignment (λ =0.2 ± 12.5◦). GJ 436b was the first planet detected in the Neptune-mass range, and its eccentric orbit made it even more interesting. Immediately after the discovery of its transiting nature (in a work I was part of), it was followed-up photometrically from three observatories worldwide, allowing us to IV obtain refined light curve parameters, look for transit timing varia- tion (TTV) and variation in the transit impact parameter. Although no significant variation was found, we could not rule out a small TTV, of the order of a minute, and a long-term modulation of the impact parameter, of the order of +0.2 yr−1. The contribution of this work, as a whole, to the exciting field of transiting planets, is the study of transiting exoplanets positioned in several key areas of the planetary radius-mass parameter space. V Chapter 1 Introduction The discovery of planets orbiting other stars, similar to the Sun, at the end of the second millennium (Mayor & Queloz 1995) marks an important breakthrough in modern astrophysics. Further detections made since, including short period planets (e.g., Butler et al. 1997, 1998; Mazeh et al. 2000; Konacki et al. 2003) and planets on eccentric orbits (e.g., Marcy & Butler 1996; Cochran et al. 1997; Naef et al. 2001), revealed that the planet phenomenon is more diverse than expected from observations of the Solar System. The current sample, which is growing fast, includes 350 exoplanets1. Of those, about 60 cross the line-of-sight to their host star every orbital revolution. This selected group of transiting planets presents an opportunity for an 1Throughout this thesis data regarding the known sample of exoplanets is taken from the on-line Extrasolar Planets Encyclopedia (http://exoplanet.eu/). It is updated to July 1st, 2009, and includes published planets only. 1 in-depth study of the planet phenomenon, much more than non- transiting planets (e.g., Burrows et al. 2007; Guillot 2008; Johnson 2009). As described in more details in the following, only transiting planets allow the measurement of both the radius and exact mass, the study of their atmospheres and measuring the alignment between the stellar spin and the planetary orbit. All this makes them highly important astrophysical objects. In addition, some of the transiting planets discovered already show unusual characteristics, including (I) large planetary radius (e.g., WASP-1b, Cameron et al. 2007), larger than theoretical expecta- tions at the time of discovery (e.g., Burrows et al. 2007; Chabrier & Baraffe 2007), (II) high planetary mass (e.g., HAT-P-2b, Bakos et al. 2007a), which is vital for studying the mass-radius relation at this mass range (e.g., Baraffe et al. 2003, Chabrier et al. 2009), where objects are rare, and (III) short-period eccentric orbits (e.g., GJ 436b, Butler et al. 2004; Gillon et al. 2007), which are unexpected as the tidal circularization process is more efficient for close-in orbits (e.g., Mazeh 2008). These interesting discoveries call for follow-up observations, leading to better understanding. For example, looking for a second planet in a transiting planet system (e.g., Ballard et al. 2 2009), where the gravitational interaction between the two planets maintains the non-zero eccentricity (e.g., Adams & Laughlin 2006; Maness et al. 2007), or, a more accurate measurement of the orbital eccentricity for an inflated planet, to see if its orbit is circular or not, since tidal friction may be responsible for the large radius of a planet on an eccentric orbit (e.g., Bodenheimer et al. 2001; Miller et al. 2009; Ibgui & Burrows 2009). Transiting planets were the focus of my Ph.D. study. It included searching for new transiting planets, identified as candidates by WHAT (Shporer et al. 2006, 2007a, 2009b) and HATNet (Bakos et al. 2004), and follow-up observations of known transiting planets I carried out at the OHP 1.93-m telescope, with the SOPHIE spectrograph, and at the Wise Observatory 0.46-m (Brosch et al. 2008) and 1.0-m tele- scopes. This thesis consists of six published papers and is divided into two parts. The first part, including Papers I–III, presents the detection of three new transiting planets. In the second part, consisting of Papers IV-VI, three follow-up studies of known transiting planets are described. In Sec. 1.1 I give an historical overview of the field, from the early 3 discoveries to the modern ones. I also briefly describe the primary methods used and summarize the current theories. In Sec. 1.2 I describe the contents of the thesis. 1.1 Overview of Extrasolar Planets 1.1.1 Extrasolar Planets Detection The existence of planets, or worlds, orbiting other stars was discussed already in Ancient Greece. In the 4th century B.C.E. Aristotle pos- tulated his geocentric cosmology, which views the Earth as unique (Fraser 2006). As in other fields of science, the Aristotelean approach was well accepted for almost two millennia. In the 16th century C.E. Nicolaus Copernicus suggested that the Earth orbits the Sun, thereby starting the Copernican revolution (e.g., Blumenberg 1987). Soon af- ter, in 1584, Giordano Bruno took the Copernican approach a huge leap forward when he postulated in his book de l’infinito universo et mondi (on the infinite universe and worlds) that “There are innu- merable suns and an infinite number of planets which circle around those suns” (Singer 1950). Up until the 20th century the existence of planets orbiting other stars remained a theoretical question. That was mainly because the 4 detection of extrasolar planets was beyond the technological reach until then. The basic problem is identifying a very faint object — a planet — right next to a star, which can be up to 108 times more luminous.
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Gaia Data Release 2: First Stellar Parameters from Apsis
    Astronomy & Astrophysics manuscript no. GDR2_Apsis c ESO 2018 3 April 2018 Gaia Data Release 2: first stellar parameters from Apsis René Andrae1, Morgan Fouesneau1, Orlagh Creevey2, Christophe Ordenovic2, Nicolas Mary3, Alexandru Burlacu4, Laurence Chaoul5, Anne Jean-Antoine-Piccolo5, Georges Kordopatis2, Andreas Korn6, Yveline Lebreton7; 8, Chantal Panem5, Bernard Pichon2, Frederic Thévenin2, Gavin Walmsley5, Coryn A.L. Bailer-Jones1? 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 2 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 3 Thales Services, 290 Allée du Lac, 31670 Labège, France 4 Telespazio France, 26 Avenue Jean-François Champollion, 31100 Toulouse, France 5 Centre National d’Etudes Spatiales, 18 av Edouard Belin, 31401 Toulouse, France 6 Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 7 LESIA, Observatoire de Paris, PSL Research University, CNRS UMR 8109, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon 8 Institut de Physique de Rennes, Université de Rennes 1, CNRS UMR 6251, F-35042 Rennes, France Submitted to A&A 21 December 2017. Resubmitted 3 March 2018 and 3 April 2018. Accepted 3 April 2018 ABSTRACT The second Gaia data release (Gaia DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. One band is the G band, the other two were obtained by integrating the Gaia prism spectra (BP and RP). We have used these three broad photometric bands to infer stellar effective temperatures, Teff , for all sources brighter than G = 17 mag with Teff in the range 3 000– 10 000 K (some 161 million sources).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • The Search for Extrasolar Planets
    zucker 16-12-2005 11:22 Pagina 229 229 The Search for Extrasolar Planets S. Zucker and M. Mayor Observatoire de Genève, Sauverny, Switzerland During the recent decade, the question of the existence of planets orbiting stars other than our Sun has been answered unequivocally. About 150 extrasolar plan- ets have been detected since 1995, and their properties are the subject of wide interest in the research community. Planet formation and evolution theories are adjusting to the constantly emerging data, and astronomers are seeking new ways to widen the sample and enrich the data about the known planets. In September 2002, ISSI organized a workshop focusing on the physics of “Planetary Systems and Planets in Systems”1. The present contribution is an attempt to give a broader overview of the researches in the field of exoplanets and results obtained in the decade after the discovery of the planet 51 Peg b. The existence of planets orbiting other stars was speculated upon even in the 4th century BC, when Epicurus and Aristotle debated it using their early notions about our world. Epicurus claimed that the infinity of the Universe compelled the existence of other worlds. After the Copernican Revolution, Giordano Bruno wrote: “Innumerable suns exist; innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our Sun”. Aitken2 examined the observational problem of detecting extrasolar planets. He showed that their detection, either directly or indirectly, lay beyond the techni- cal horizon of his era. The basic difficulty in directly detecting planets lies in the brightness ratio between a typical planet and its host star, a ratio that can be as low as 10-8.
    [Show full text]
  • Origine Collisionnelle Des Familles D'astéroïdes Et Des Systèmes Binaires : Etude Spectroscopique Et Modélisation Numérique
    Origine Collisionnelle des Familles d’Astéroïdes et des Systèmes Binaires : Etude Spectroscopique et Modélisation Numérique Alain Doressoundiram To cite this version: Alain Doressoundiram. Origine Collisionnelle des Familles d’Astéroïdes et des Systèmes Binaires : Etude Spectroscopique et Modélisation Numérique. Astrophysique [astro-ph]. Université Pierre et Marie Curie - Paris VI, 1997. Français. tel-00006059 HAL Id: tel-00006059 https://tel.archives-ouvertes.fr/tel-00006059 Submitted on 11 May 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE de DOCTORAT de l'université Pierre et Marie Curie Spécialité : Méthodes instrumentales en Astrophysique présentée par Alain DORESSOUNDIRAM pour obtenir le grade de DOCTEUR ès SCIENCES de l'université Pierre et Marie Curie Sujet : Origine Collisionnelle des Familles d'Astéroïdes et des Systèmes Binaires : Etude Spectroscopique et Modélisation Numérique. Soutenue le 8 Décembre 1997, devant le jury composé de : Président : Pierre Encrenaz Université Paris VI Rapporteurs Christiane Froeschlé Observatoire de Nice Richard P. Binzel M.I.T (USA) Examinateur Paolo Paolicchi Université de Pise (Italie) Co-directeur de thèse M. Antonietta Barucci Observatoire de Meudon Directeur de thèse Marcello Fulchignoni Université Paris VII Observatoire de Meudon. Département de Recherches Spatiales II Page de couverture : à gauche : vue de l'astéroïde 253 Mathilde obtenue à une distance de 1200 km par la sonde NEAR, le 26 Juin 1997.
    [Show full text]
  • Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
    A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • 197 3Apj. . .186.1107S the Astrophysical Journal, 186:1107
    The Astrophysical Journal, 186:1107-1125, 1973 December 15 .186.1107S . © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A. 3ApJ. 197 PHASE EQUILIBRIA IN MOLECULAR HYDROGEN-HELIUM MIXTURES AT HIGH PRESSURES* W. B. Streett Science Research Laboratory, U.S. Military Academy, West Point, New York Received 1973 June 11 ABSTRACT Experiments on phase behavior in hydrogen-helium mixtures have been carried out at pressures up to 9.3 kilobars, at temperatures from 26° to 100° K. Two distinct fluid phases are shown to exist at supercritical temperatures and high pressures. Both the trend of the experimental results and an analysis based on the van der Waals theory of mixtures suggest that this fluid-fluid phase separation persists at temperatures and pressures beyond the range of these experiments, perhaps even to the limits of stability of the molecular phases. The results confirm earlier predictions concerning the form of the hydrogen-helium phase diagram in the region of pressure-induced solidification of the molecular phases at supercritical temperatures. The implications of this phase diagram for planetary interiors are discussed. Subject headings: gas dynamics — interiors, planetary — molecules I. INTRODUCTION The properties of hydrogen-helium mixtures are of interest for several reasons. From a theoretical standpoint, they are of interest because they are composed of the two elements with the simplest atomic and molecular structures, and would seem to be among the mixtures most amenable to a theoretical treatment based on first principles. However, it is fair to say that a satisfactory theory of dense mixtures of molecular hydrogen and helium has yet to be developed.
    [Show full text]
  • Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets
    Accepted to ApJ, February, 2004 A Preprint typeset using L TEX style emulateapj v. 11/12/01 EFFECTS OF HELIUM PHASE SEPARATION ON THE EVOLUTION OF EXTRASOLAR GIANT PLANETS Jonathan J. Fortney1, W. B. Hubbard1 Accepted to ApJ, February, 2004 ABSTRACT We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 MJ. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ∼ 2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets’ evolution at ∼ 700 Myr for a 0.15 MJ object and ∼ 10 Gyr for a 3.0 MJ object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.
    [Show full text]
  • The Role of Resonances in Astrodynamical Systems
    The Role of Resonances in Astrodynamical Systems Rudolf Dvorak Institut for Astronomy University Vienna e-mail: [email protected] Abstract This review intends to highlight the importance of resonances of the orbits of planets and asteroids in our Solar System. Besides the well known 5:2 mean motion resonance between Jupiter and Saturn, we discuss how secular resonances act, where the motions of the longitudes of the perihelia and/or the longitudes of the nodes are involved. Resonances are especially important for the motions of small bodies in the Solar System from the Earth crossing Near Earth Asteroids to the far moving asteroids and comets in the Kuiper belt outside Pluto's orbit. Briefly we also discuss retrograde orbits in resonances which turn out to be much more stable then prograde ones. The presence and importance of resonances in the dynamics of extrasolar planetary systems is a new exciting field for celestial mechanics. 1 Introduction In physics it is well known, that resonances play a fundamental role in any dynamical system. But, how important are resonances in astrodynamical systems? In this review we will deal first of all with our very own Solar System, where planets are trapped in so-called mean motion resonances causing chaos among asteroids and where celestial bodies generally suffer from strong perturbations due to secular resonances. With the discovery of extrasolar systems hosting planets which seem to be on highly eccentric orbits, that still are stable, another exiting chapter has been added to this topic. Such a behavior is understandable only, if these planets are locked in certain resonances.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]