Application to Fragmentary Fossils from Plio-Pleistocene Hominin Assemblages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of the Antioxidant System Response to Melatonin Implant in Raccoon Dog (Nyctereutes Procyonoides) and Silver Fox (Vulpes Vulpes)
Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2013) 37: 641-646 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1302-48 Comparison of the antioxidant system response to melatonin implant in raccoon dog (Nyctereutes procyonoides) and silver fox (Vulpes vulpes) 1 1 1 2 Svetlana SERGINA , Irina BAISHNIKOVA , Viktor ILYUKHA , Marcin LIS , 2, 2 2 Stanisław ŁAPIŃSKI *, Piotr NIEDBAŁA , Bougsław BARABASZ 1 Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia 2 Department of Poultry and Fur Animal Breeding and Animal Hygiene, University of Agriculture in Krakow, Krakow, Poland Received: 20.02.2013 Accepted: 29.04.2013 Published Online: 13.11.2013 Printed: 06.12.2013 Abstract: The aim of this work was to investigate whether melatonin implant may modify the response of the antioxidant systems of raccoon dog and silver fox. Animals of each species were divided into 2 equal groups: implanted with 12 mg of melatonin in late June and not implanted (control). During the standard fur production process in late November, samples of tissues (liver, kidney, spleen, and heart) were collected and specific activities of superoxide dismutase (SOD) and catalase (CAT), and the contents of reduced glutathione (GSH), retinol, α-tocopherol (TCP), and total tissue protein, were determined in tissue samples. Activity of antioxidant enzymes SOD and CAT as well as concentrations of GSH and TCP were considerably higher in organs of raccoon dogs in comparison with silver foxes at the end of autumn fattening. Melatonin implants had no significant effect on the fox antioxidant system in contrast to the raccoon dog. -
And Arctic Fox (Vulpes Lagopus) and Analysis of Dental Variability in Insular Forms
Russian J. Theriol. 20(1): 96–110 © RUSSIAN JOURNAL OF THERIOLOGY, 2021 Structure of the upper teeth of the red fox (Vulpes vulpes) and Arctic fox (Vulpes lagopus) and analysis of dental variability in insular forms Dmitriy O. Gimranov ABSTRACT. Various polymorphic dental characters of Vulpes vulpes and Vulpes lagopus have been described on the basis of a detailed description of the occlusal surfaces of Р4, М1, and М2. The prevalence of these characters was found to be significantly different between samples of V. vulpes and mainland V. lagopus, which can be used to determine species in a fossil record. Notably, Commander Islands V. lagopus differ from mainland V. lagopus in most of the characters. However, some characters of Mednyi Island V. lagopus are unique to them and are not found in any other sample. Some samples from Bering Island do not display such specific features. Samples of ancient foxes,V. praeglacialis and V. praecorsac, have also been studied. Primitive features were observed in both V. praeglacialis and V. praecorsac, with the latter exhibiting also a number of advanced features. It has also been found that primitive features are prevalent in the maxillary dentition of V. vulpes. The insular groups of V. lagopus display numerous primitive features, whereas main- land V. lagopus demonstrate a substantial number of advanced characters. This combination of primitive and advanced features is typical of insular V. lagopus and indirectly suggests that these populations have spent a long time in isolation. How to cite this article: Gimranov D.O. 2021. Structure of the upper teeth of the red fox (Vulpes vulpes) and Arctic fox (Vulpes lagopus) and analysis of dental variability in insular forms // Russian J. -
Shape Evolution and Sexual Dimorphism in the Mandible of the Dire Wolf, Canis Dirus, at Rancho La Brea Alexandria L
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea Alexandria L. Brannick [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Paleontology Commons Recommended Citation Brannick, Alexandria L., "Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea" (2014). Theses, Dissertations and Capstones. Paper 804. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. SHAPE EVOLUTION AND SEXUAL DIMORPHISM IN THE MANDIBLE OF THE DIRE WOLF, CANIS DIRUS, AT RANCHO LA BREA A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Alexandria L. Brannick Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Julie Meachen Dr. Paul Constantino Marshall University May 2014 ©2014 Alexandria L. Brannick ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I thank my advisor, Dr. F. Robin O’Keefe, for all of his help with this project, the many scientific opportunities he has given me, and his guidance throughout my graduate education. I thank Dr. Julie Meachen for her help with collecting data from the Page Museum, her insight and advice, as well as her support. I learned so much from Dr. -
Coyote Canis Latrans in 2007 IUCN Red List (Canis Latrans)
MAMMALS OF MISSISSIPPI 10:1–9 Coyote (Canis latrans) CHRISTOPHER L. MAGEE Department of Wildlife and Fisheries, Mississippi State University, Mississippi State, Mississippi, 39762, USA Abstract—Canis latrans (Say 1823) is a canid commonly called the coyote. It is dog-like in appearance with varied colorations throughout its range. Originally restricted to the western portion of North America, coyotes have expanded across the majority of the continent. Coyotes are omnivorous and extremely adaptable, often populating urban and suburban environments. Preferred habitats include a mixture of forested, open, and brushy areas. Currently, there exist no threats or conservation concerns for the coyote in any part of its range. This species is currently experiencing an increasing population trend. Published 5 December 2008 by the Department of Wildlife and Fisheries, Mississippi State University Coyote location (Jackson 1951; Young 1951; Berg and Canis latrans (Say, 1823) Chesness 1978; Way 2007). The species is sexually dimorphic, with adult females distinctly CONTEXT AND CONTENT. lighter and smaller than adult males (Kennedy Order Carnivora, suborder Caniformia, et al. 2003; Way 2007). Average head and infraorder Cynoidea, family Canidae, subfamily body lengths are about 1.0–1.5 m with a tail Caninae, tribe Canini. Genus Canis consists length of about Young 1951). The skull of the of six species: C. aureus, C. latrans, C. lupus, coyote (Fig. 2) progresses through 6 distinct C. mesomelas, C. simensis, and C. adustus. developmental stages allowing delineation Canis latrans has 19 recognized subspecies between the age classes of juvenile, immature, (Wilson and Reeder 2005). young, young adult, adult, and old adult (Jackson 1951). -
Wild Animal Medicine
Order : Carnivora Egyptian Wolf Conservation status Critically Endangered Taxonomy Kingdom : Animalia Phylum : Chordata Class : Mammalia Order : Carnivora Family : Canidae Genus : Canis Species : Canis .anthus Subspecies : C. a. lupaster The Egyptian wolf differs from Senegalese wolf by its heavier build, wider head, thicker Fur, Longer legs, more rounded ears and shorter tail. The fur is darker than the golden jackals and has a broader white patch on the chest. They attacks prey such as sheep,goat and cattle. Bellowing are a means wolf show their behavior toward each other and toward predators. Dominant wolf : stands stiff legged and tall. Their ears are erect and forward . Angry wolf : ears are erect and its fur bristles . Their lips may curl up or pull back .the wolf may also snarl. Aggressive wolf : snarl and crouch backwards ready to bounce . Hairs will also stand erect on its back. Fearful wolf : their ears flatten down against the head . The tail may be tucked between the legs. Mating occur in early Spring . Gestation period : 2 month . They will usually have about 4-5 pups. Though , they have on record as many as eight. They are carnivorous animals feeding on fish , chicken , goats, sheep , birds and others. They inhabit different habitat, in Algeria it lives in Mediterranean, coastal and hilly areas , while in Seneal inhabit tropical, semi-arid climate. The Egyptian wolf is a subspecies of african golden wolf native to northern, eastern and western africa. Conservation Status : of least concern Taxonomy: Class : Mammalia Order : Carnivora Family : Canidae Genus : Vulpes Species : Vulpes.zerda The fennec fox is the smallest species of Canid in the world. -
Foxes: Mom N’ Me Lesson Plan
Foxes: Mom n’ Me Lesson Plan I. What is a fox? (Introduce carnivore, herbivore, etc.., draw on board, what they eat) II. Fox story book III. Fox Games (see below) IV. Fox Craft (paper mask) V. Conclusion Preschool Games about Fox Fox and Mouse – Blindfold, or pull a knit cap over the eyes of one child who sits in the center of a circle of children. This child is the fox. The teacher points to one child from the circle that stands up, walks around the outside of the circle and then returns to his original spot within the circle. This child is the mouse. Ask the blindfolded child to point to the child (the mouse) that was moving. Explain that foxes have excellent hearing because they must detect small animals moving about in grass and fallen leaves. Stalking – Have children walk in a circle, preferably outdoors, moving as quietly as they can. Explain that when a fox walks it places its back foot where its front foot just was and that its paw prints show that it walks will all paws stepping in a straight line. Have children try to walk heel- to-toe as if they were walking on a balance beam. Pouncing – With the children in a circle, kneeling on hands and knees, roll a ball (the mouse) to a child who tries to pounce on it with their hands (front paws) to catch the mouse. Explain that this is how red foxes move when they hunt. Preschool Activities on Fox Senses Smell Cups – Pass around three cups, all filled with polyester fill or cotton and two with tea bags hidden in the bottom of the cups. -
Dire Wolves Were the Last of an Ancient New World Canid Lineage Angela
Dire wolves were the last of an ancient New World canid lineage Angela R. Perri1,*§, Kieren J. Mitchell2,*§, Alice Mouton3,*, Sandra Álvarez-Carretero4,*, Ardern Hulme-Beaman5,6, James Haile 7, Alexandra Jamieson7, Julie Meachen8, Audrey T. Lin7,9,10, Blaine W. Schubert11, Carly Ameen12, Ekaterina E. Antipina13, Pere Bover14, Selina Brace15, Alberto Carmagnini4, Christian Carøe16, Jose A. Samaniego Castruita16, James C. Chatters17, Keith Dobney5, Mario dos Reis4, Allowen Evin18, Philippe Gaubert19, Shyam Gopalakrishnan16, Graham Gower2, Holly Heiniger2, Kristofer M. Helgen20, Josh Kapp21, Pavel A. Kosintsev22,23, Anna Linderholm7, 24, Andrew T. Ozga25, 26, 27, Samantha Presslee28, Alexander T. Salis2, Nedda F. Saremi21, Colin Shew3, Katherine Skerry26, Dmitry E. Taranenko29, Mary Thompson30, Mikhail V. Sablin31,Yaroslav V. Kuzmin32, 33, Matthew J. Collins34, 35, Mikkel-Holger S. Sinding16, 36, M. Thomas P. Gilbert16, 37, Anne C. Stone25 ,26, Beth Shapiro21, 38, Blaire Van Valkenburgh3, Robert K. Wayne3, Greger Larson7, and Alan Cooper39, Laurent A. F. Frantz4, 40§. 1Department of Archaeology, Durham University, Durham, UK 2Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Australia 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA 4School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 5Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK 6School of Natural Sciences and Psychology, -
Canine Distemper Virus Infection in Fennec Fox (Vulpes Zerda)
NOTE Pathology Canine Distemper Virus Infection in Fennec Fox (Vulpes zerda) Gye-Hyeong WOO1)*, Yeon-Sook JHO2) and Eun-Jung BAK3) 1)Laboratory of Pathology, Animal Disease Diagnostic Center, National Veterinary Research and Quarantine Service, Anyang, Gyeonggi- do 430–824, 2)Snoopy Animal Hospital, Gunpo, Gyeonggi-do 435–040 and 3)Hospital Specialization Research Center, College of Medicine, Hallym University, Seoul 120–752, Republic of Korea (Received 12 November 2009/Accepted 7 March 2010/Published online in J-STAGE 19 March 2010) ABSTRACT. Fifteen 8-month-old fennec foxes imported from Sudan showed fever, mucopurulent ocular discharge, diarrhea, severe ema- ciation, seizures, and generalized ataxia, and died. Three of the 15 animals were presented for diagnostic investigation. Severe dehy- dration, brain congestion, and gastric ulcers were observed in all animals. In one animal, the lungs had failed to collapse and were multifocally dark red in appearance. Histopathologically, there were lymphohistiocytic meningoencephalitis with malacia, mild intersti- tial pneumonia, lymphoid depletion of lymphoid tissues and organs, and intestinal villous atrophy with intralesional coccidia. There were many intracytoplasmic and/or intranuclear inclusion bodies in the epithelial cells of the medullary velum, lungs, liver, kidneys, trachea, pancreas, stomach, gall bladder, urinary bladder, and ureters, and in macrophages of malacia foci and lymphocytes and macrophages of lymphoid organs. Additionally, intestinal coccidia were confirmed to be Isospora species by a fecal test. To our knowledge, this is the first report of canine distemper with intestinal coccidiosis in fennec fox. KEY WORDS: canine distemper, coccidium, fennec fox, meningoencephalitis, Vulpes zerda. J. Vet. Med. Sci. 72(8): 1075–1079, 2010 Canine distemper (CD), caused by the morbillivirus of began to exhibit neurologic symptoms such as ataxia and the paramyxovirus family, frequently causes serious prob- seizures. -
Deep Divergence Among Mitochondrial Lineages in African Jackals
Received: 27 March 2017 | Accepted: 6 August 2017 DOI: 10.1111/zsc.12257 ORIGINAL ARTICLE Deep divergence among mitochondrial lineages in African jackals Anagaw Atickem1,2 | Nils Chr. Stenseth2 | Marine Drouilly3 | Steffen Bock4 | Christian Roos5 | Dietmar Zinner6 1Cognitive Ethology Laboratory, Primate Genetics Laboratory, German Primate Recently, molecular analyses revealed that African and Eurasian golden jackals are Center (DPZ), Leibniz Institute for Primate distinct species. This finding suggests re- investigation of the phylogenetic relation- Research, Göttingen, Germany ships and taxonomy of other African members of the Canidae. Here, we provide a 2 Department of Biosciences, Centre for study on the phylogenetic relationship between populations of African jackals Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway Lupulella mesomelas and L. adusta inferred from 962 bp of the mitochondrial cy- 3Department of Biological Sciences, tochrome b (cytb) gene. As expected from its disjunct distribution, with one popula- Institute for Communities and Wildlife in tion in eastern Africa and the other one in southern Africa, we found two mitochondrial Africa, University of Cape Town, lineages within L. mesomelas, which diverged about 2.5 million years ago (Ma). In Rondebosch, South Africa 4 contrast, in L. adusta with its more continuous distribution in sub-Saharan Africa, we Museum für Naturkunde Berlin, Berlin, Germany found only a shallower genetic diversification, with the exception of the West African 5Primate Genetics Laboratory, Gene Bank population, which diverged around 1.4 Ma from the Central and East African popu- of Primates, German Primate Center lations. Both divergence ages are older than, for example the 1.1–0.9 million years (DPZ), Leibniz Institute for Primate Canis lupus C. -
Nyctereutes (Mammalia, Carnivora, Canidae) from Layna and the Eurasian Raccoon-Dogs: an Updated Revision
Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 124(3): 597-616. November 2018 NYCTEREUTES (MAMMALIA, CARNIVORA, CANIDAE) FROM LAYNA AND THE EURASIAN RACCOON-DOGS: AN UPDATED REVISION SAVERIO BARTOLINI LUCENTI1,2, LORENZO ROOK2 & JORGE MORALES3 1Dottorato di Ricerca in Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126 Pisa, Italy 2Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy 3Departamento de Paleobiología. Museo Nacional de Ciencias Naturales, CSIC. C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain. To cite this article: Bartolini Lucenti S., Rook L. & Morales J. (2018) - Nyctereutes (Mammalia, Carnivora, Canidae) from Layna and the Eurasian raccoon-dogs: an updated revision Riv. It. Paleontol. Strat., 124(3): 597-616. Keywords: Taxonomy; Canidae; Europe; Pliocene; Nyctereutes. Abstract. The Early Pliocene site of Layna (MN15, ca 3.9 Ma) is renowned for its record of several mammalian taxa, among which the raccoon-dog Nyctereutes donnezani. Since the early description of this sample, new fossils of raccoon-dogs have been discovered, including a nearly complete cranium. The analysis and revision here proposed, with new diagnoses for the identified taxa, confirm the attribution of the majority of the material to the primitive taxon N. donnezani, enriching and clarifying our knowledge of the cranial and postcranial morphological variability of this species. Nevertheless, the analysis also reveals the presence in Layna of some specimens with strong morpholo- gical affinity to the derived N. megamastoides. The occurrence of such a derived taxon in a rather old site, has critical implications for the evolutionary history and dispersal pattern of these small canids. -
1: Beast2.1.3 R1
1: Beast2.1.3_r1 0.93 Canis adustus 0.89 Canis mesomelas 0.37 Canis simensis Canis arnensis 1 Lycaon pictus 1 Cuon javanicus 0.57 Xenocyon texanus 0.91 Canis antonii 0.96 0.35 Canis falconeri 1 Canis dirus 1 Canis armbrusteri 0.060.27 Canis lupus Canis chihliensis Canis etruscus 0.98 0.99 0.26 Canis variabilis 0.11 Canis edwardii 0.93 Canis mosbachensis 0.68 0.58 Canis latrans Canis aureus 0.94 Canis palmidens 0.94 Canis lepophagus 1 0.41 Canis thooides Canis ferox 0.99 Eucyon davisi 0.8 Cerdocyon texanus Vulpes stenognathus Leptocyon matthewi 0.98 Urocyon cinereoargenteus 0.85 Urocyon minicephalus 0.96 1 Urocyon citronus 1 Urocyon galushi 0.96 Urocyon webbi 1 1 Metalopex merriami 0.23 Metalopex macconnelli 0.68 Leptocyon vafer 1 Leptocyon leidyi Leptocyon vulpinus 0.7 Leptocyon gregorii 1 Leptocyon douglassi Leptocyon mollis 0.32 Borophagus dudleyi 1 Borophagus hilli 0.98 Borophagus diversidens 0.97 Borophagus secundus 0.18 Borophagus parvus 1 Borophagus pugnator 1 Borophagus orc 1 Borophagus littoralis 0.96 Epicyon haydeni 1 0.92 Epicyon saevus Epicyon aelurodontoides Protepicyon raki 0.98 0.28 Carpocyon limosus 0.96 Carpocyon webbi 0.97 0.98 Carpocyon robustus Carpocyon compressus 0.17 0.87 Paratomarctus euthos Paratomarctus temerarius Tomarctus brevirostris 0.31 0.85 0.35 Tomarctus hippophaga 0.17 Tephrocyon rurestris Protomarctus opatus 0.24 0.58 Microtomarctus conferta Metatomarctus canavus Psalidocyon marianae 0.79 1 Aelurodon taxoides 0.32 0.27 Aelurodon ferox 1 Aelurodon stirtoni 0.14 Aelurodon mcgrewi 0.33 Aelurodon asthenostylus -
Titelei CFS 256.Indd
Cour. Forsch.-Inst. Senckenberg 256 11–21 2 Figs, 2 Tabs, 2 Pls Frankfurt a. M., 15. 11. 2006 A new canid Nurocyon chonokhariensis gen. et sp. nov. (Canini, Canidae, Mammalia) from the Pliocene of Mongolia With 2 fi gs, 2 pls, 2 tabs Marina SOTNIKOVA Abstract A new genus and species of Canidae – Nurocyon chonokhariensis – is described from the Lower Pliocene lacustrine deposits of the Khirgisnur Formation of the Chonokhariakh-1 locality (northwestern Mongolia, the Great Lakes Depression). A well-preserved skull of the new canid demonstrates an unusual combination of primitive and derived features that distinguish it from other Pliocene members of the tribe Canini (Eucyon, Nyctereutes and Canis). Unlike Canis and like Eucyon and Nyctereutes, it shows primitive characters, such as the fan-shaped supraoccipital shield and limited posterior extension of the frontal sinus. It differs from Canis and Eucyon in its advanced, nearly hypocarnivorous type of tooth pattern, which it shares with Nyctereutes. At the same time, the advanced similarity in the dorsal expansion of the frontal sinus and in the loss of the vulpine groove support its relationship with Canis but distinguish it from the other Canini. Thus, the cranial morphology of the studied form does not indicate a close affi nity with any known genus of Pliocene Eurasian Canini and supports a full genus-level separation of this Mongolian dog. “Canis” adoxus from the Pliocene of Europe is the only fossil species to share similarities with Nurocyon. Phylogenetically, Nurocyon chonokhariensis probably represents a separate lineage of Canini which emerged during the early radiation and diversifi cation of Eurasian canids at the beginning of the Pliocene.