Actor-Based Concurrency in Newspeak 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application-Level Virtual Memory for Object-Oriented Systems Mariano Martinez Peck
Application-Level Virtual Memory for Object-Oriented Systems Mariano Martinez Peck To cite this version: Mariano Martinez Peck. Application-Level Virtual Memory for Object-Oriented Systems. Program- ming Languages [cs.PL]. Université des Sciences et Technologie de Lille - Lille I, 2012. English. tel-00764991 HAL Id: tel-00764991 https://tel.archives-ouvertes.fr/tel-00764991 Submitted on 26 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 40886 THESE présentée en vue d’obtenir le grade de DOCTEUR en Spécialité : informatique par Mariano MARTINEZ PECK DOCTORAT DELIVRE CONJOINTEMENT PAR MINES DOUAI ET L’UNIVERSITE DE LILLE 1 Titre de la thèse : Application-Level Virtual Memory for Object-Oriented Systems Soutenue le 29/10/2012 à 10h devant le jury d’examen : Président Jean-Bernard STEFANI (Directeur de recherche – INRIA Grenoble- Rhône-Alpes) Directeur de thèse Stéphane DUCASSE (Directeur de recherche – INRIA Lille) Rapporteur Robert HIRSCHFELD (Professeur – Hasso-Plattner-Institut, Universität Potsdam, Allemagne) Rapporteur Christophe DONY (Professeur – Université Montpellier 2) Examinateur Roel WUYTS (Professeur – IMEC & Katholieke Universiteit Leuven, Belgique) co-Encadrant Noury BOURAQADI (Maître-Assistant – Mines de Douai) co-Encadrant Marcus DENKER (Chargé de recherche – INRIA Lille) co-Encadrant Luc FABRESSE (Maître-Assistant – Mines de Douai) Laboratoire(s) d’accueil : Dépt. -
Traits: Experience with a Language Feature
7UDLWV([SHULHQFHZLWKD/DQJXDJH)HDWXUH (PHUVRQ50XUSK\+LOO $QGUHZ3%ODFN 7KH(YHUJUHHQ6WDWH&ROOHJH 2*,6FKRRORI6FLHQFH1(QJLQHHULQJ$ (YHUJUHHQ3DUNZD\1: 2UHJRQ+HDOWKDQG6FLHQFH8QLYHUVLW\ 2O\PSLD$:$ 1::DONHU5G PXUHPH#HYHUJUHHQHGX %HDYHUWRQ$25 EODFN#FVHRJLHGX ABSTRACT the desired semantics of that method changes, or if a bug is This paper reports our experiences using traits, collections of found, the programmer must track down and fix every copy. By pure methods designed to promote reuse and understandability reusing a method, behavior can be defined and maintained in in object-oriented programs. Traits had previously been used to one place. refactor the Smalltalk collection hierarchy, but only by the crea- tors of traits themselves. This experience report represents the In object-oriented programming, inheritance is the normal way first independent test of these language features. Murphy-Hill of reusing methods—classes inherit methods from other classes. implemented a substantial multi-class data structure called ropes Single inheritance is the most basic and most widespread type of that makes significant use of traits. We found that traits im- inheritance. It allows methods to be shared among classes in an proved understandability and reduced the number of methods elegant and efficient way, but does not always allow for maxi- that needed to be written by 46%. mum reuse. Consider a small example. In Squeak [7], a dialect of Smalltalk, Categories and Subject Descriptors the class &ROOHFWLRQ is the superclass of all the classes that $UUD\ +HDS D.2.3 [Programming Languages]: Coding Tools and Tech- implement collection data structures, including , , 6HW niques - object-oriented programming and . The property of being empty is common to many ob- jects—it simply requires that the object have a size method, and D.3.3 [Programming Languages]: Language Constructs and that the method returns zero. -
The Future: the Story of Squeak, a Practical Smalltalk Written in Itself
Back to the future: the story of Squeak, a practical Smalltalk written in itself Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay [Also published in OOPSLA ’97: Proc. of the 12th ACM SIGPLAN Conference on Object-oriented Programming, 1997, pp. 318-326.] VPRI Technical Report TR-1997-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay at Apple Computer while doing this work, now at Walt Disney Imagineering 1401 Flower Street P.O. Box 25020 Glendale, CA 91221 [email protected] Abstract Squeak is an open, highly-portable Smalltalk implementation whose virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change. To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks. Other noteworthy aspects of Squeak include: a compact object format that typically requires only a single word of overhead per object; a simple yet efficient incremental garbage collector for 32-bit direct pointers; efficient bulk- mutation of objects; extensions of BitBlt to handle color of any depth and anti-aliased image rotation and scaling; and real-time sound and music synthesis written entirely in Smalltalk. Overview Squeak is a modern implementation of Smalltalk-80 that is available for free via the Internet, at http://www.research.apple.com/research/proj/learning_concepts/squeak/ and other sites. It includes platform-independent support for color, sound, and image processing. -
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007 Michael Haupt1, Robert Hirschfeld1, and Marcus Denker2 1 Software Architecture Group Hasso-Plattner-Institut University of Potsdam, Germany 2 Software Composition Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland michael.haupt,hirschfeld @hpi.uni-potsdam.de, [email protected] { } Abstract. This position paper proposes the exploitation of type feed- back mechanisms, or more precisely, polymorphic inline caches, for purely interpreting implementations of object-oriented programming languages. Using Squeak’s virtual machine as an example, polymorphic inline caches are discussed as an alternative to global caching. An implementation proposal for polymorphic inline caches in the Squeak virtual machine is presented, and possible future applications for online optimization are outlined. 1 Introduction Bytecode interpreters are small in size and comparatively easy to implement, but generally execute programs much less efficiently than just-in-time (JIT) compilers. Techniques like threaded interpretation [9, 11, 2] focus on speeding up bytecode interpretation itself, and caching [4, 5, 1] improves the performance of message sends—the most common operation in object-oriented software [7]. It is interesting to observe that, while threading mechanisms are used natu- rally to a varying degree in bytecode interpreter implementations, such systems usually employ only global caching to speed up dynamic method dispatch. A global cache is clearly beneficial with respect to overall performance. Still, it does not provide optimal support for polymorphic message send sites, and it does not allow for exploiting type information (we provide details on these issues in the following section). In our opinion, the employment of polymorphic inline caches (PICs) [5] instead can provide means for achieving significant speedups in bytecode interpreters while exhibiting only a moderate increase in memory footprint and implementation complexity. -
Graphical Interface
Appendix: How to program in Croquet Author: S.M. Wolff Project: Cell-Forum Project Table of Contents Table of Contents .............................................................................................................. 2 Graphical Interface ........................................................................................................... 6 Control structures .............................................................................................................. 9 Testing variables ............................................................................................................... 9 If then else ........................................................................................................................ 10 Switch ............................................................................................................................ 10 While .............................................................................................................................. 10 For .................................................................................................................................. 11 Data structures ............................................................................................................ 12 Ordered Collection ...................................................................................................... 12 Classes, Methods and Shared Variables .................................................................... 13 Packages ..................................................................................................................... -
Incorparating the Actor Model Into SCIVE on an Abstract Semantic Level
Incorparating the Actor Model into SCIVE on an Abstract Semantic Level Christian Frohlich¨ ∗ Marc E. Latoschik† AI and VR Group, Bielefeld University AI and VR Group, Bielefeld University. ABSTRACT Since visual perception is very important for generating immer- sive environments, most VR applications focus on the graphical This paper illustrates the temporal synchronization and process flow simulation output. Tools like OpenGL Performer, Open Inven- facilities of a real-time simulation system which is based on the ac- tor [12], Open Scene Graph, OpenSG [11] or the VRML successor tor model. The requirements of such systems are compared against X3D [8] are based upon a hierarchical scene graph structure, which the actor model’s basic features and structures. The paper describes allows for complex rendering tasks. Extension mechanisms like how a modular architecture benefits from the actor model on the field routing or rapid prototyping via scipting interfaces allow for module level and points out how the actor model enhances paral- new customized node types and interconnected application graphs. lelism and concurrency even down to the entity level. The actor idea is incorporated into a novel simulation core for intelligent vir- Purpose-built VR application frameworks adopt and extend these mechanisms, by adding in- and output customization, see e.g. tual environments (SCIVE). SCIVE supports well-known and es- TM tablished Virtual Reality paradigms like the scene graph metaphor, Lightning [4], Avango [13], VR Juggler [3] or the CAVELib . field routing concepts etc. In addition, SCIVE provides an explicit Also network distribution paradigms are often integrated to enable semantic representation of its internals as well as of the specific distributed rendering on a cluster architecture, as can be seen in virtual environments’ contents. -
CONFERENCE COMPANION ESUG 2008 - 16Th International Smalltalk Conference
ESUG-2008 CONFERENCE COMPANION ESUG 2008 - 16th International Smalltalk Conference CONTENTS Platinum Sponsors.......................................................................................................... 3 Gold Sponsors................................................................................................................ 4 Conference Location....................................................................................................... 5 Program Overview........................................................................................................... 8 Saturday, August 23...................................................................................................... 10 Sunday, August 24......................................................................................................... 10 Monday, August 25....................................................................................................... 11 Tuesday, August 26....................................................................................................... 16 Wednesday, August 27.................................................................................................. 20 Thursday, August 28...................................................................................................... 23 Friday, August 29........................................................................................................... 27 Program Overview........................................................................................................ -
Actor-Based Concurrency by Srinivas Panchapakesan
Concurrency in Java and Actor- based concurrency using Scala By, Srinivas Panchapakesan Concurrency Concurrent computing is a form of computing in which programs are designed as collections of interacting computational processes that may be executed in parallel. Concurrent programs can be executed sequentially on a single processor by interleaving the execution steps of each computational process, or executed in parallel by assigning each computational process to one of a set of processors that may be close or distributed across a network. The main challenges in designing concurrent programs are ensuring the correct sequencing of the interactions or communications between different computational processes, and coordinating access to resources that are shared among processes. Advantages of Concurrency Almost every computer nowadays has several CPU's or several cores within one CPU. The ability to leverage theses multi-cores can be the key for a successful high-volume application. Increased application throughput - parallel execution of a concurrent program allows the number of tasks completed in certain time period to increase. High responsiveness for input/output-intensive applications mostly wait for input or output operations to complete. Concurrent programming allows the time that would be spent waiting to be used for another task. More appropriate program structure - some problems and problem domains are well-suited to representation as concurrent tasks or processes. Process vs Threads Process: A process runs independently and isolated of other processes. It cannot directly access shared data in other processes. The resources of the process are allocated to it via the operating system, e.g. memory and CPU time. Threads: Threads are so called lightweight processes which have their own call stack but an access shared data. -
2008 Chevrolet Cobalt Owner Manual M
2008 Chevrolet Cobalt Owner Manual M Seats and Restraint Systems ........................... 1-1 Driving Your Vehicle ....................................... 4-1 Front Seats ............................................... 1-2 Your Driving, the Road, and Your Vehicle ..... 4-2 Rear Seats ............................................... 1-9 Towing ................................................... 4-32 Safety Belts ............................................. 1-10 Service and Appearance Care .......................... 5-1 Child Restraints ....................................... 1-30 Service ..................................................... 5-3 Airbag System ......................................... 1-53 Fuel ......................................................... 5-5 Restraint System Check ............................ 1-68 Checking Things Under the Hood ............... 5-10 Features and Controls ..................................... 2-1 Headlamp Aiming ..................................... 5-39 Keys ........................................................ 2-3 Bulb Replacement .................................... 5-42 Doors and Locks ...................................... 2-10 Windshield Wiper Blade Replacement ......... 5-48 Windows ................................................. 2-15 Tires ...................................................... 5-49 Theft-Deterrent Systems ............................ 2-18 Appearance Care ..................................... 5-95 Starting and Operating Your Vehicle ........... 2-21 Vehicle Identification -
Liam: an Actor Based Programming Model for Hdls
Liam: An Actor Based Programming Model for HDLs Haven Skinner Rafael Trapani Possignolo Jose Renau Dept. of Computer Engineering Dept. of Computer Engineering Dept. of Computer Engineering [email protected] [email protected] [email protected] ABSTRACT frequency being locked down early in the development process, The traditional model for developing synthesizable digital architec- and adds a high cost in effort and man-hours, to make high-level tures is a clock-synchronous pipeline. Latency-insensitive systems changes to the system. Although these challenges can be managed, are an alternative, where communication between blocks is viewed they represent fundamental obstacles to developing large-scale as message passing. In hardware this is generally managed by con- systems. trol bits such as valid/stop signals or token credit mechanisms. An alternative is a latency-insensitive design, where the system Although prior work has shown that there are numerous benefits is abstractly seen as being comprised of nodes, which communicate to building latency-insensitive digital hardware, a major factor dis- via messages. Synchronous hardware systems can be automatically couraging its use is the difficulty of managing the additional logic transformed to latency-insensitive designs, which we refer to as and infrastructure required to implement it. elastic systems [1–3]. Alternately, the designer can manually con- We propose a new programming paradigm for Hardware Descrip- trol the latency-insensitive backend [4, 5], we call such systems tion Languages, built on the Actor Model, to implicitly implement Fluid Pipelines. The advantage of exposing the elasticity to the latency-insensitive hardware designs. We call this model Liam, for designer is an increase in performance and flexibility in transforma- Latency-Insensitive Actor-based programming Model. -
Ambient-Oriented Programming in Fractal
Ambient-Oriented Programming in Fractal AleˇsPlˇsek, Philippe Merle and Lionel Seinturier Project ADAM LIFL, INRIA-Futurs, Universit´edes Sciences et Technologies de Lille (USTL), FRANCE, { plsek | merle | seinturi }@lifl.fr Abstract. Ambient-Oriented Programming (AmOP) comprises a suite of challenges that are hard to meet by current software development techniques. Although Component-Oriented Programming (COP) repre- sents promising approach, the state-of-the-art component models do not provide sufficient adaptability towards specific constraints of the Ambi- ent field. In this position paper we argue that merging AmOP and COP can be achieved by introducing the Fractal component model and its new feature : Component-Based Controlling Membranes. The proposed solution allows dynamical adaptation of component systems towards the challenges of the Ambient world. 1 Introduction Ambient-Oriented Programming (AmOP) [1] as a new trend in software devel- opment comprises a suite of challenges which are yet to be addressed fully. So far, only a few solutions facing the obstacles of ambient programming have been developed. In this paper we focus on AmbientTalk [1] since in our opinion it represents one of the most sophisticated solutions. Although AmbientTalk conceptually proposes a way to implement applica- tions for the ambient environment, this is achieved by defining a new program- ming language. Consequently, AmbientTalk potentially introduces a steep learn- ing curve for the developers. From this point of view, it is reasonable to search for an approach which uses well-known techniques and is powerful enough to face the obstacles of ambient programming. We believe that these requirements can be met by the introduction of Component-Based Software Engineering techniques. -
Nested Class Modularity in Squeak/Smalltalk
Springer, Nested Class Modularity in Squeak/Smalltalk Nested Class Modularity in Squeak/Smalltalk Modularität mit geschachtelten Klassen in Squeak/Smalltalk by Matthias Springer A thesis submitted to the Hasso Plattner Institute at the University of Potsdam, Germany in partial fulfillment of the requirements for the degree of Master of Science in ITSystems Engineering Supervisor Prof. Dr. Robert Hirschfeld Software Architecture Group Hasso Plattner Institute University of Potsdam, Germany August 17, 2015 Abstract We present the concept, the implementation, and an evaluation of Matriona, a module system for and written in Squeak/Smalltalk. Matriona is inspired by Newspeak and based on class nesting: classes are members of other classes, similarly to class instance variables. Top-level classes (modules) are globals and nested classes can be accessed using message sends to the corresponding enclosing class. Class nesting effec- tively establishes a global and hierarchical namespace, and allows for modular decomposition, resulting in better understandability, if applied properly. Classes can be parameterized, allowing for external configuration of classes, a form of dependency management. Furthermore, parameterized classes go hand in hand with mixin modularity. Mixins are a form of inter-class code reuse and based on single inheritance. We show how Matriona can be used to solve the problem of duplicate classes in different modules, to provide a versioning and dependency management mech- anism, and to improve understandability through hierarchical decomposition. v Zusammenfassung Diese Arbeit beschreibt das Konzept, die Implementierung und die Evaluierung von Matriona, einem Modulsystem für und entwickelt in Squeak/Smalltalk. Ma- triona ist an Newspeak angelehnt und basiert auf geschachtelten Klassen: Klassen, die, wie zum Beispiel auch klassenseitige Instanzvariablen, zu anderen Klassen gehören.