The Arteries of the Lingual Thyroid: Angiographic Findings and Anatomic Variations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch
411 Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch John Holder1 Five cases are reported of left subclavian steal syndrome associated with anomalous Eugene F. Binet2 origin of the left vertebral artery from the aortic arch. In all five instances blood flow at Bernard Thompson3 the origin of the left vertebral artery was in an antegrade direction contrary to that usually reported in this condition. The distal subclavian artery was supplied via an extensive collateral network of vessels connecting the vertebral artery to the thyro cervical trunk. If a significant stenosis or occlusion is present within the left subc lavi an artery proximal to the origin of the left vertebral artery, the direction of the bl ood fl ow within the vertebral artery will reverse toward the parent vessel (retrograde flow). This phenomenon occurs when a negative pressure gradient of 20-40 torr exists between the vertebral-basilar artery junction and th e vertebral-subc lavian artery junction [1-3]. We describe five cases of subclavian steal confirmed by angiography where a significant stenosis or occlusion of the left subclavian artery was demonstrated in association with anomalous origin of th e left vertebral artery directly from the aortic arch. In all five cases blood flow at the origin of the left vertebral artery was in an antegrade direction contrary to that more commonly reported in the subclavian steal syndrome. Materials and Methods The five patients were all 44- 58-year-old men. Three sought medical attention for symptoms specificall y related to th e left arm . -
Cervical Viscera and Root of Neck
Cervical viscera & Root of neck 頸部臟器 與 頸根部 解剖學科 馮琮涵 副教授 分機 3250 E-mail: [email protected] Outline: • Position and structure of cervical viscera • Blood supply and nerve innervation of cervical viscera • Contents in root of neck Viscera of the Neck Endocrine layer – thyroid and parathyroid glands Respiratory layer – larynx and trachea Alimentary layer – pharynx and esophagus Thyroid gland Position: deep to sterno-thyroid and sterno-hyoid ms. (the level of C5 to T1) coverd by pretracheal deep cervical fascia (loose sheath) and capsule (dense connective tissue) anterolateral to the trachea arteries: superior thyroid artery – ant. & post. branches inferior thyroid artery (br. of thyrocervical trunk) thyroid ima artery (10%) Veins: superior thyroid vein IJVs (internal jugular veins) middle thyroid vein IJVs inferior thyroid vein brachiocephalic vein Thyroid gland Lymphatic drainage: prelaryngeal, pretracheal and paratracheal • lymph nodes inferior deep cervical lymph nodes Nerves: superior, middle & inferior cervical sympathetic ganglia periarterial plexuses • # thyroglossal duct cysts, pyramidal lobe (50%) # Parathyroid glands Position: external to thyroid capsule, but inside its sheath superior parathyroid glands – 1 cm sup. to the point of inf. thyroid artery into thyroid inferior parathyroid glands – 1 cm inf. to inf. thyroid artery entry point (various position) Vessels: branches of inf. thyroid artery or sup. thyroid artery parathyroid veins venous plexuses of ant. surface of thyroid Nerves: thyroid branches of the cervical sympathetic ganglia Trachea Tracheal rings (C-shape cartilage) + trachealis (smooth m.) Position: C6 (inf. end of the larynx) – T4/T5 (sternal angle) # trache`ostomy – 1st and 2nd or 2nd through 4th tracheal rings # care: inf. thyroid veins, thyroid ima artery, brachiocephalic vein, thymus and trachea Esophagus Position: from the inf. -
Neurovascular Anatomy (1): Anterior Circulation Anatomy
Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma -
Download PDF File
ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks Authors: M. C. Rusu, A. M. Jianu, M. D. Monea, A. C. Ilie DOI: 10.5603/FM.a2021.0007 Article type: Case report Submitted: 2020-11-28 Accepted: 2021-01-08 Published online: 2021-01-29 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) Two cases of combined anatomical variations: maxillofacial trunk, vertebral, posterior communicating and anterior cerebral atresia, linguofacial and labiomental trunks M.C. Rusu et al., The maxillofacial trunk M.C. Rusu1, A.M. Jianu2, M.D. Monea2, A.C. Ilie3 1Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania 2Department of Anatomy, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania 3Department of Functional Sciences, Discipline of Public Health, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania Address for correspondence: M.C. Rusu, MD, PhD (Med.), PhD (Biol.), Dr. Hab., Prof., Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd., RO-76241, Bucharest, Romania, , tel: +40722363705 e-mail: [email protected] ABSTRACT Background: Commonly, arterial anatomic variants are reported as single entities. -
Study of the Common Origin of Lingual and Facial Artery from External Carotid Artery – Research Article
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 15, Issue 6 Ver. VIII (June. 2016), PP 58-59 www.iosrjournals.org Study of the Common Origin of Lingual And Facial Artery from External Carotid Artery – Research Article Dr. K. Asha Latha1, Raju Sugavasi2 1MD Anatomy, Professor, Department Of Anatomy, Fathima Institute Of Medical Sciences (FIMS), Kadapa, Andhra Pradesh, India. 2M.Sc Medical Anatomy, Assistant Professor, Department Of Anatomy, Fathima Institute Of Medical Sciences (FIMS) ,Kadapa, Andhra Pradesh, India. Abstract: Anatomical knowledge of variations in the branching pattern of the external carotid artery will be helpful in surgical procedures of the head and neck region and also in angiographic studies. Material And Methods: Present study was conducted in the neck region of 25 embalmed human cadavers to find out the variations in the branching pattern of the external carotid artery. Results: Common origin of linguo facial trunk variations was found in 2 cases unilaterally out of 50 cases. Conclusion: Present study concluded the incidence of common linguo facial trunk was 4%. Keywords: linguo facial trunk, External carotid artery, Common carotid artery I. Introduction The common carotid artery (CCA), internal carotid artery (ICA) and External carotid arteries (ECA) are provides the major resource of blood to the head and neck region. The CCA bifurcates into an internal carotid artery and an external carotid artery in the carotid triangle at upper border of thyroid cartilage, disc between the C3 and C4 cervical vertebra. The external carotid artery runs antero medial to the internal carotid artery at its origin then becomes anterior and lateral as it ascends. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
The Variations of the Subclavian Artery and Its Branches Ahmet H
Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery. -
The Vertebral Artery in the Vascular Lab: What Does It Mean?
The Vertebral Artery in the Vascular Lab: What Does It Mean? Caron Rockman MD Frances and Joseph Ritroto Professor of Surgery Program Director, Vascular Surgery New York University Langone Medical Center Disclosures •None Division of Vascular and Endovascular Surgery Subclavian Steal Occlusion of proximal Subclavian Art Vertebral artery supplies retrograde flow Posterior brain receives decreased flow 55 years + Men > Women more than 2:1 LSA affected 3x more than RSA Division of Vascular and Endovascular Surgery Subclavian Steal Causes: - Arteriosclerosis of subclavian artery (>95% cases) - Embolism - Takayasu’s Arteritis -Dissecting Aneurysm Risk Factors: (similar to CAD) -Smoking -Hypertension -Hyperlipidemia -Hypertension Division of Vascular and Endovascular Surgery Symptoms of Subclavian Steal Vertebrobasilar Insufficiency (posterior circulation symptoms) Light headedness or dizziness Ataxia or Vertigo Visual Disturbance Headache Syncope Confusion Division of Vascular and Endovascular Surgery Symptoms of Subclavian Steal Subclavian Insufficiency Arm weakness, coldness Numbness or “tingling” Arm Claudication with exercise Symptoms can be exacerbated with: Vigorous exercise Sudden turning of head to affected side Division of Vascular and Endovascular Surgery Signs of Subclavian Steal Diminished pulses (radial/ulnar) Discrepant blood pressures in upper extremities (>20mmHg) (Pitfall with bilateral disease) Subclavian Bruit 7 Division of Vascular and Endovascular Surgery Subclavian steal on Duplex Exam Incomplete steal •Striking deceleration of velocity in mid or late systole •High grade stenosis of subclavian rather than occlusion Complete Steal •Complete reversal of flow within the vertebral artery Division of Vascular and Endovascular Surgery Vertebral Retrograde Flow • Reversal of flow in the vertebral artery is a common finding identified on cerebrovascular duplex ultrasound. • The clinical significance and natural history of patients presenting with this finding, however, is poorly understood. -
A Very Rare Origin of the Left Vertebral Artery and Its Clinical Implications
ARC Journal of Cardiology Volume 5, Issue 2, 2019, PP 14-18 ISSN No. (Online): 2455-5991 DOI: http://dx.doi.org/10.20431/2455-5991.0502003 www.arcjournals.org A Very Rare Origin of the Left Vertebral Artery and its Clinical Implications Olutayo Ariyo* Dept. of Anatomy Pathology and Cell Biology, SKMC at Thomas Jefferson University, Philadelphia, USA *Corresponding Author: Olutayo Ariyo, Dept. of Anatomy Pathology and Cell Biology, SKMC at Thomas Jefferson University, Philadelphia, USA, E-mail: [email protected] Abstract: Most variants of the left vertebral artery tend to occursupra-aortic, usually between the left common carotid and the left subclavian arteries. We report a rare variant of the left vertebral artery arising as the most distal and inferior branch off the aortic arch in a 69 year- old male cadaver. Arising postero- inferiorly from the arch, the variant coursed superiorly and medial -ward, posterior to the left subclavian artery, enteringthe transverse cervical foramina at C5 level to run more cranially cervical foramina C5-C2. The variant artery was an observed with some tortuosity just proximal to entry into C5 foramina. The normally arising left or right vertebral artery plays a vital role in the Subclavian Steal Syndrome, a retrograde flow in the ipsilateral vertebral artery in an occlusion proximal origin of its ipsilateral subclavian artery. In our reported variant, modelled with a possible occlusion in the proximal segment of the left subclavian artery, despite an hypothesized retrograde flow in the left vertebral artery will not be helpful in delivering blood into the subclavian-axillary continuum, as such retrograde flow will dump into the aortic arch directly and unhelpful to the occluded left subclavian artery. -
Axis Scientific Human Circulatory System 1/2 Life Size A-105864
Axis Scientific Human Circulatory System 1/2 Life Size A-105864 05. Superior Vena Cava 13. Ascending Aorta 21. Hepatic Vein 28. Celiac Trunk II. Lung 09. Pulmonary Trunk 19. Common III. Spleen Hepatic Artery 10. Pulmonary 15. Pulmonary Artery 17. Splenic Artery (Semilunar) Valve 20. Portal Vein 03. Left Atrium 18. Splenic Vein 01. Right Atrium 16. Pulmonary Vein 26. Superior 24. Superior 02. Right Ventricle Mesenteric Vein Mesenteric Artery 11. Supraventricular Crest 07. Interatrial Septum 22. Renal Artery 27. Inferior 14. Aortic (Semilunar) Valve Mesenteric Vein 08. Tricuspid (Right 23. Renal Vein 12. Mitral (Left Atrioventricular) Valve VI. Large Intestine Atrioventricular) Valve 29. Testicular / 30. Common Iliac Artery Ovarian Artery 32. Internal Iliac Artery 25. Inferior 31. External Iliac Artery Mesenteric Artery 33. Median Sacral Artery 41. Posterior Auricular Artery 57. Deep Palmar Arch 40. Occipital Artery 43. Superficial Temporal Artery 58. Dorsal Venous Arch 36. External Carotid Artery 42. Maxillary Artery 56. Superficial Palmar Arch 35. Internal Carotid Artery 44. Internal Jugular Vein 39. Facial Artery 45. External Jugular Vein 38. Lingual Artery and Vein 63. Deep Femoral Artery 34. Common Carotid Artery 37. Superior Thyroid Artery 62. Femoral Artery 48. Thyrocervical Trunk 49. Inferior Thyroid Artery 47. Subclavian Artery 69. Great Saphenous Vein 46. Subclavian Vein I. Heart 51. Thoracoacromial II. Lung Artery 64. Popliteal Artery 50. Axillary Artery 03. Left Atrium 01. Right Atrium 04. Left Ventricle 02. Right Ventricle 65. Posterior Tibial Artery 52. Brachial Artery 66. Anterior Tibial Artery 53. Deep Brachial VII. Descending Artery Aorta 70. Small Saphenous Vein IV. Liver 59. -
Major Arteries of the Upper Limb
Major Arteries of the Upper Limb Vertebral artery Common carotid arteries Right subclavian artery Left subclavian artery Axillary artery Brachiocephalic trunk Aortic arch Ascending aorta Brachial artery Thoracic aorta Radial artery Ulnar artery Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.23 Major Arteries of the Abdominal Region Renal artery Celiac trunk Abdominal aorta Superior mesenteric artery Gonadal artery Inferior mesenteric artery Common iliac artery Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.24 Common iliac artery Internal iliac artery Major Arteries of the External iliac artery Lower Limb Femoral artery Popliteal artery Anterior tibial artery Fibular artery Posterior tibial artery Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.25 Major Veins of the Upper Limb Internal jugular vein (left) Subclavian vein (right) External jugular vein (left) Axillary vein Brachiocephalic veins Cephalic vein Superior vena cava Brachial vein Basilic vein Median cubital vein Inferior vena cava Radial vein Ulnar vein Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.28 Major Veins of the Abdominal Cavity – Part 1 Hepatic veins Inferior vena cava Renal vein (left) Gonadal vein (left) Gonadal vein (right) Common iliac vein (left) Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.29 Major Veins of the Abdominal Cavity – Part 2 (Hepatic portal circulation) Hepatic portal vein Splenic vein Inferior mesenteric vein Superior mesenteric vein Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.29 Common iliac vein (left) Internal iliac vein Major Veins of the External iliac vein Lower Limb Great saphenous vein Femoral vein Popliteal vein Fibular vein Small saphenous vein Anterior tibial Posterior tibial vein vein Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 19.30 . -
Bilateral Variations in the Divisions of Common Carotid Artery – a Case Report
eISSN 1308-4038 International Journal of Anatomical Variations (2012) 5: 116–119 Case Report Bilateral variations in the divisions of common carotid artery – a case report Published online December 20th, 2012 © http://www.ijav.org Bheemshetty S. PATIL Abstract Shankarappa D. DESAI During routine dissection, we found bilateral variation in the division of common carotid artery in a 48-year-old male cadaver. The right carotid, originated from the brachiocephalic trunk Ishwar B. BAGOJI behind the right sternoclavicular joint. The left carotid, originated directly from the aortic arch. Gavishiddappa A. HADIMANI Division of common carotid artery occured at higher level; i.e., above the level of superior lamina of thyroid cartilage. On the right side 4.2 cm and on left side 3.5 cm above the superior lamina of thyroid cartilage and just behind the angle of mandible. The arteries did not have any branches; Department of Anatomy, Shri B. M. Patil Medical College, except on the right side the superior thyroidal artery arose from the 2.5 cm below the bifurcation. Blde University, Bijapur, Karnataka, INDIA. Knowledge of origin and bifurcation of common carotid artery is very important to the ENT surgeons, general surgeons, endocrinologist and vascular surgeons. Bheemshetty S. Patil © Int J Anat Var (IJAV). 2012; 5: 116–119. Lecturer Department of Anatomy Shri B. M. Patil Medical College Blde University Bijapur-586103 Karnataka, INDIA. +91 8352-262770/ext. 2211 [email protected] Received October 10th, 2011; accepted August 26th, 2012 Key words [common carotid artery] [thyroid cartilage] [angle of mandible] [bifurcation of common carotid artery] Introduction gives off no branches in the neck, whereas the external does The right common carotid artery arises from the [2].