Computational Physics II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficient Algorithms for High-Dimensional Eigenvalue
Efficient Algorithms for High-dimensional Eigenvalue Problems by Zhe Wang Department of Mathematics Duke University Date: Approved: Jianfeng Lu, Advisor Xiuyuan Cheng Jonathon Mattingly Weitao Yang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2020 ABSTRACT Efficient Algorithms for High-dimensional Eigenvalue Problems by Zhe Wang Department of Mathematics Duke University Date: Approved: Jianfeng Lu, Advisor Xiuyuan Cheng Jonathon Mattingly Weitao Yang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2020 Copyright © 2020 by Zhe Wang All rights reserved Abstract The eigenvalue problem is a traditional mathematical problem and has a wide appli- cations. Although there are many algorithms and theories, it is still challenging to solve the leading eigenvalue problem of extreme high dimension. Full configuration interaction (FCI) problem in quantum chemistry is such a problem. This thesis tries to understand some existing algorithms of FCI problem and propose new efficient algorithms for the high-dimensional eigenvalue problem. In more details, we first es- tablish a general framework of inexact power iteration and establish the convergence theorem of full configuration interaction quantum Monte Carlo (FCIQMC) and fast randomized iteration (FRI). Second, we reformulate the leading eigenvalue problem as an optimization problem, then compare the show the convergence of several coor- dinate descent methods (CDM) to solve the leading eigenvalue problem. Third, we propose a new efficient algorithm named Coordinate descent FCI (CDFCI) based on coordinate descent methods to solve the FCI problem, which produces some state-of- the-art results. -
Overview of Iterative Linear System Solver Packages
Overview of Iterative Linear System Solver Packages Victor Eijkhout July, 1998 Abstract Description and comparison of several packages for the iterative solu- tion of linear systems of equations. 1 1 Intro duction There are several freely available packages for the iterative solution of linear systems of equations, typically derived from partial di erential equation prob- lems. In this rep ort I will give a brief description of a numberofpackages, and giveaninventory of their features and de ning characteristics. The most imp ortant features of the packages are which iterative metho ds and preconditioners supply; the most relevant de ning characteristics are the interface they present to the user's data structures, and their implementation language. 2 2 Discussion Iterative metho ds are sub ject to several design decisions that a ect ease of use of the software and the resulting p erformance. In this section I will give a global discussion of the issues involved, and how certain p oints are addressed in the packages under review. 2.1 Preconditioners A go o d preconditioner is necessary for the convergence of iterative metho ds as the problem to b e solved b ecomes more dicult. Go o d preconditioners are hard to design, and this esp ecially holds true in the case of parallel pro cessing. Here is a short inventory of the various kinds of preconditioners found in the packages reviewed. 2.1.1 Ab out incomplete factorisation preconditioners Incomplete factorisations are among the most successful preconditioners devel- op ed for single-pro cessor computers. Unfortunately, since they are implicit in nature, they cannot immediately b e used on parallel architectures. -
Fast Solution of Sparse Linear Systems with Adaptive Choice of Preconditioners Zakariae Jorti
Fast solution of sparse linear systems with adaptive choice of preconditioners Zakariae Jorti To cite this version: Zakariae Jorti. Fast solution of sparse linear systems with adaptive choice of preconditioners. Gen- eral Mathematics [math.GM]. Sorbonne Université, 2019. English. NNT : 2019SORUS149. tel- 02425679v2 HAL Id: tel-02425679 https://tel.archives-ouvertes.fr/tel-02425679v2 Submitted on 15 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université École doctorale de Sciences Mathématiques de Paris Centre Laboratoire Jacques-Louis Lions Résolution rapide de systèmes linéaires creux avec choix adaptatif de préconditionneurs Par Zakariae Jorti Thèse de doctorat de Mathématiques appliquées Dirigée par Laura Grigori Co-supervisée par Ani Anciaux-Sedrakian et Soleiman Yousef Présentée et soutenue publiquement le 03/10/2019 Devant un jury composé de: M. Tromeur-Dervout Damien, Professeur, Université de Lyon, Rapporteur M. Schenk Olaf, Professeur, Università della Svizzera italiana, Rapporteur M. Hecht Frédéric, Professeur, Sorbonne Université, Président du jury Mme. Emad Nahid, Professeur, Université Paris-Saclay, Examinateur M. Vasseur Xavier, Ingénieur de recherche, ISAE-SUPAERO, Examinateur Mme. Grigori Laura, Directrice de recherche, Inria Paris, Directrice de thèse Mme. Anciaux-Sedrakian Ani, Ingénieur de recherche, IFPEN, Co-encadrante de thèse M. -
Efficient “Black-Box” Multigrid Solvers for Convection-Dominated Problems
EFFICIENT \BLACK-BOX" MULTIGRID SOLVERS FOR CONVECTION-DOMINATED PROBLEMS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Science 2011 Glyn Owen Rees School of Computer Science 2 Contents Declaration 12 Copyright 13 Acknowledgement 14 1 Introduction 15 2 The Convection-Di®usion Problem 18 2.1 The continuous problem . 18 2.2 The Galerkin approximation method . 22 2.2.1 The ¯nite element method . 26 2.3 The Petrov-Galerkin (SUPG) approximation . 29 2.4 Properties of the discrete operator . 34 2.5 The Navier-Stokes problem . 37 3 Methods for Solving Linear Algebraic Systems 42 3.1 Basic iterative methods . 43 3.1.1 The Jacobi method . 45 3.1.2 The Gauss-Seidel method . 46 3.1.3 Convergence of splitting iterations . 48 3.1.4 Incomplete LU (ILU) factorisation . 49 3.2 Krylov methods . 56 3.2.1 The GMRES method . 59 3.2.2 Preconditioned GMRES method . 62 3.3 Multigrid method . 67 3.3.1 Geometric multigrid method . 67 3.3.2 Algebraic multigrid method . 75 3.3.3 Parallel AMG . 80 3.3.4 Literature summary of multigrid . 81 3.3.5 Multigrid preconditioning of Krylov solvers . 84 3 3.4 A new tILU smoother . 85 4 Two-Dimensional Case Studies 89 4.1 The di®usion problem . 90 4.2 Geometric multigrid preconditioning . 95 4.2.1 Constant uni-directional wind . 95 4.2.2 Double glazing problem - recirculating wind . 106 4.2.3 Combined uni-directional and recirculating wind . -
Jacobi-Davidson, Gauss-Seidel and Successive Over-Relaxation For
Applied Mathematics and Computational Intelligence Volume 6, 2017 [41-52] Jacobi‐Davidson, Gauss‐Seidel and Successive Over‐Relaxation for Solving Systems of Linear Equations Fatini Dalili Mohammed1,a and Mohd Rivaieb 1Department of Computer Sciences and Mathematics, Universiti Teknologi MARA (UiTM) Terengganu, Campus Kuala Terengganu, Malaysia ABSTRACT Linear systems are applied in many applications such as calculating variables, rates, budgets, making a prediction and others. Generally, there are two techniques of solving system of linear equation including direct methods and iterative methods. Some basic solution methods known as direct methods are ineffective in solving many equations in large systems due to slower computation. Due to inability of direct methods, iterative methods are practical to be used in large systems of linear equations as they do not need much storage. In this project, three indirect methods are used to solve large system of linear equations. The methods are Jacobi Davidson, Gauss‐Seidel and Successive Over‐ Relaxation (SOR) which are well known in the field of numerical analysis. The comparative results analysis of the three methods is considered. These three methods are compared based on number of iterations, CPU time and error. The numerical results show that Gauss‐Seidel method and SOR method with ω=1.25 are more efficient than others. This research allows researcher to appreciate the use of iterative techniques for solving systems of linear equations that is widely used in industrial applications. Keywords: system of linear equation, iterative method, Jacobi‐Davidson, Gauss‐Seidel, Successive Over‐Relaxation 1. INTRODUCTION Linear systems are important in our real life. They are applied in various applications such as in calculating variables, rates, budgets, making a prediction and others. -
A Study on Comparison of Jacobi, Gauss-Seidel and Sor Methods For
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 4- April 2018 A Study on Comparison of Jacobi, Gauss- Seidel and Sor Methods for the Solution in System of Linear Equations #1 #2 #3 *4 Dr.S.Karunanithi , N.Gajalakshmi , M.Malarvizhi , M.Saileshwari #Assistant Professor ,* Research Scholar Thiruvalluvar University,Vellore PG & Research Department of Mathematics,Govt.Thirumagal Mills College,Gudiyattam,Vellore Dist,Tamilnadu,India-632602 Abstract — This paper presents three iterative methods for the solution of system of linear equations has been evaluated in this work. The result shows that the Successive Over-Relaxation method is more efficient than the other two iterative methods, number of iterations required to converge to an exact solution. This research will enable analyst to appreciate the use of iterative techniques for understanding the system of linear equations. Keywords — The system of linear equations, Iterative methods, Initial approximation, Jacobi method, Gauss- Seidel method, Successive Over- Relaxation method. 1. INTRODUCTION AND PRELIMINARIES Numerical analysis is the area of mathematics and computer science that creates, analyses, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry and calculus, and they involve variables which vary continuously. These problems occur throughout the natural sciences, social science, engineering, medicine, and business. The solution of system of linear equations can be accomplished by a numerical method which falls in one of two categories: direct or iterative methods. We have so far discussed some direct methods for the solution of system of linear equations and we have seen that these methods yield the solution after an amount of computation that is known advance. -
Chapter 7 Iterative Methods for Large Sparse Linear Systems
Chapter 7 Iterative methods for large sparse linear systems In this chapter we revisit the problem of solving linear systems of equations, but now in the context of large sparse systems. The price to pay for the direct methods based on matrix factorization is that the factors of a sparse matrix may not be sparse, so that for large sparse systems the memory cost make direct methods too expensive, in memory and in execution time. Instead we introduce iterative methods, for which matrix sparsity is exploited to develop fast algorithms with a low memory footprint. 7.1 Sparse matrix algebra Large sparse matrices We say that the matrix A Rn is large if n is large, and that A is sparse if most of the elements are2 zero. If a matrix is not sparse, we say that the matrix is dense. Whereas for a dense matrix the number of nonzero elements is (n2), for a sparse matrix it is only (n), which has obvious implicationsO for the memory footprint and efficiencyO for algorithms that exploit the sparsity of a matrix. AdiagonalmatrixisasparsematrixA =(aij), for which aij =0for all i = j,andadiagonalmatrixcanbegeneralizedtoabanded matrix, 6 for which there exists a number p,thebandwidth,suchthataij =0forall i<j p or i>j+ p.Forexample,atridiagonal matrix A is a banded − 59 CHAPTER 7. ITERATIVE METHODS FOR LARGE SPARSE 60 LINEAR SYSTEMS matrix with p =1, xx0000 xxx000 20 xxx003 A = , (7.1) 600xxx07 6 7 6000xxx7 6 7 60000xx7 6 7 where x represents a nonzero4 element. 5 Compressed row storage The compressed row storage (CRS) format is a data structure for efficient represention of a sparse matrix by three arrays, containing the nonzero values, the respective column indices, and the extents of the rows. -
Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
https://ntrs.nasa.gov/search.jsp?R=19960048075 2020-06-16T03:31:45+00:00Z NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. -
Chebyshev and Fourier Spectral Methods 2000
Chebyshev and Fourier Spectral Methods Second Edition John P. Boyd University of Michigan Ann Arbor, Michigan 48109-2143 email: [email protected] http://www-personal.engin.umich.edu/jpboyd/ 2000 DOVER Publications, Inc. 31 East 2nd Street Mineola, New York 11501 1 Dedication To Marilyn, Ian, and Emma “A computation is a temptation that should be resisted as long as possible.” — J. P. Boyd, paraphrasing T. S. Eliot i Contents PREFACE x Acknowledgments xiv Errata and Extended-Bibliography xvi 1 Introduction 1 1.1 Series expansions .................................. 1 1.2 First Example .................................... 2 1.3 Comparison with finite element methods .................... 4 1.4 Comparisons with Finite Differences ....................... 6 1.5 Parallel Computers ................................. 9 1.6 Choice of basis functions .............................. 9 1.7 Boundary conditions ................................ 10 1.8 Non-Interpolating and Pseudospectral ...................... 12 1.9 Nonlinearity ..................................... 13 1.10 Time-dependent problems ............................. 15 1.11 FAQ: Frequently Asked Questions ........................ 16 1.12 The Chrysalis .................................... 17 2 Chebyshev & Fourier Series 19 2.1 Introduction ..................................... 19 2.2 Fourier series .................................... 20 2.3 Orders of Convergence ............................... 25 2.4 Convergence Order ................................. 27 2.5 Assumption of Equal Errors ........................... -
Solving Linear Systems: Iterative Methods and Sparse Systems
Solving Linear Systems: Iterative Methods and Sparse Systems COS 323 Last time • Linear system: Ax = b • Singular and ill-conditioned systems • Gaussian Elimination: A general purpose method – Naïve Gauss (no pivoting) – Gauss with partial and full pivoting – Asymptotic analysis: O(n3) • Triangular systems and LU decomposition • Special matrices and algorithms: – Symmetric positive definite: Cholesky decomposition – Tridiagonal matrices • Singularity detection and condition numbers Today: Methods for large and sparse systems • Rank-one updating with Sherman-Morrison • Iterative refinement • Fixed-point and stationary methods – Introduction – Iterative refinement as a stationary method – Gauss-Seidel and Jacobi methods – Successive over-relaxation (SOR) • Solving a system as an optimization problem • Representing sparse systems Problems with large systems • Gaussian elimination, LU decomposition (factoring step) take O(n3) • Expensive for big systems! • Can get by more easily with special matrices – Cholesky decomposition: for symmetric positive definite A; still O(n3) but halves storage and operations – Band-diagonal: O(n) storage and operations • What if A is big? (And not diagonal?) Special Example: Cyclic Tridiagonal • Interesting extension: cyclic tridiagonal • Could derive yet another special case algorithm, but there’s a better way Updating Inverse • Suppose we have some fast way of finding A-1 for some matrix A • Now A changes in a special way: A* = A + uvT for some n×1 vectors u and v • Goal: find a fast way of computing (A*)-1 -
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration CHRISTOPHER DE SAy BRYAN HEy IOANNIS MITLIAGKASy CHRISTOPHER RE´ y PENG XU∗ yDepartment of Computer Science, Stanford University ∗Institute for Computational and Mathematical Engineering, Stanford University cdesa,bryanhe,[email protected], [email protected], [email protected] July 11, 2017 Abstract Principal component analysis (PCA) is one of the most powerful tools in machine learning. The simplest method for PCA, the power iteration, requires O(1=∆) full-data passes to recover the principal component of a matrix withp eigen-gap ∆. Lanczos, a significantly more complex method, achieves an accelerated rate of O(1= ∆) passes. Modern applications, however, motivate methods that only ingest a subset of available data, known as the stochastic setting. In the online stochastic setting, simple 2 2 algorithms like Oja’s iteration achieve the optimal sample complexity O(σ =p∆ ). Unfortunately, they are fully sequential, and also require O(σ2=∆2) iterations, far from the O(1= ∆) rate of Lanczos. We propose a simple variant of the power iteration with an added momentum term, that achieves both the optimal sample and iteration complexity.p In the full-pass setting, standard analysis shows that momentum achieves the accelerated rate, O(1= ∆). We demonstrate empirically that naively applying momentum to a stochastic method, does not result in acceleration. We perform a novel, tight variance analysis that reveals the “breaking-point variance” beyond which this acceleration does not occur. By combining this insight with modern variance reduction techniques, we construct stochastic PCAp algorithms, for the online and offline setting, that achieve an accelerated iteration complexity O(1= ∆). -
Numerical Linear Algebra Program Lecture 4 Basic Methods For
Program Lecture 4 Numerical Linear Algebra • Basic methods for eigenproblems. Basic iterative methods • Power method • Shift-and-invert Power method • QR algorithm • Basic iterative methods for linear systems • Richardson’s method • Jacobi, Gauss-Seidel and SOR • Iterative refinement Gerard Sleijpen and Martin van Gijzen • Steepest decent and the Minimal residual method October 5, 2016 1 October 5, 2016 2 National Master Course National Master Course Delft University of Technology Basic methods for eigenproblems The Power method The eigenvalue problem The Power method is the classical method to compute in modulus largest eigenvalue and associated eigenvector of a Av = λv matrix. can not be solved in a direct way for problems of order > 4, since Multiplying with a matrix amplifies strongest the eigendirection the eigenvalues are the roots of the characteristic equation corresponding to the in modulus largest eigenvalues. det(A − λI) = 0. Successively multiplying and scaling (to avoid overflow or underflow) yields a vector in which the direction of the largest Today we will discuss two iterative methods for solving the eigenvector becomes more and more dominant. eigenproblem. October 5, 2016 3 October 5, 2016 4 National Master Course National Master Course Algorithm Convergence (1) The Power method for an n × n matrix A. Let the n eigenvalues λi with eigenvectors vi, Avi = λivi, be n ordered such that |λ1| ≥ |λ2|≥ . ≥ |λn|. u0 ∈ C is given • Assume the eigenvectors v ,..., vn form a basis. for k = 1, 2, ... 1 • Assume |λ1| > |λ2|. uk = Auk−1 Each arbitrary starting vector u0 can be written as: uk = uk/kukk2 e(k) ∗ λ = uk−1uk u0 = α1v1 + α2v2 + ..