Unit 6 Classification of Animals - 111
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Book (PDF)
M o Manual on IDENTIFICATION OF SCHEDULE MOLLUSCS From India RAMAKRISHN~~ AND A. DEY Zoological Survey of India, M-Block, New Alipore, Kolkota 700 053 Edited by the Director, Zoological Survey of India, Kolkata ZOOLOGICAL SURVEY OF INDIA KOLKATA CITATION Ramakrishna and Dey, A. 2003. Manual on the Identification of Schedule Molluscs from India: 1-40. (Published : Director, Zool. Surv. India, Kolkata) Published: February, 2003 ISBN: 81-85874-97-2 © Government of India, 2003 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any from or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • -This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE India : Rs. 250.00 Foreign : $ (U.S.) 15, £ 10 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJ.C. Bose Road, 2nd MSO Building (13th Floor), Nizam Palace, Kolkata -700020 and printed at Shiva Offset, Dehra Dun. Manual on IDENTIFICATION OF SCHEDULE MOLLUSCS From India 2003 1-40 CONTENTS INTRODUcrION .............................................................................................................................. 1 DEFINITION ............................................................................................................................ 2 DIVERSITY ................................................................................................................................ 2 HA.B I,.-s .. .. .. 3 VAWE ............................................................................................................................................ -
THE GEOMETRY of COILING in GASTROPODS Thompson.6
602 ZO6LOGY: D. M. RA UP PROC. N. A. S. 3 Cole, L. J., W. E. Davis, R. M. Garver, and V. J. Rosen, Jr., Transpl. Bull., 26, 142 (1960). 4 Santos, G. W., R. M. Garver, and L. J. Cole, J. Nat. Cancer Inst., 24, 1367 (1960). I Barnes, D. W. H., and J. F. Loutit, Proc. Roy. Soc. B., 150, 131 (1959). 6 Koller, P. C., and S. M. A. Doak, in "Immediate and Low Level Effects of Ionizing Radia- tions," Conference held in Venice, June, 1959, Special Supplement, Int. J. Rad. Biol. (1960). 7 Congdon, C. C., and I. S. Urso, Amer. J. Pathol., 33, 749 (1957). 8 Biological Problems of Grafting, ed. F. Albert and P. B. Medawar (Oxford University Press, 1959). 9 Lederberg, J., Science, 129, 1649 (1959). 10Burnet, F. M., The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, 1959). 11 Billingham, R. E., L. Brent, and P. B. Medawar, Phil. Trans. Roy. Soc. (London), B239, 357 (1956). 12 Rubin, B., Natyre, 184, 205 (1959). 13 Martinez, C., F. Shapiro, and R. A. Good, Proc. Soc. Exper. Biol. Med., 104, 256 (1960). 14 Cole, L. J., Amer. J. Physiol., 196, 441 (1959). 18 Cole, L. J., in Proceedings of the IXth International Congress of Radiology, Munich 1959 (Georg Thieme Verlag, in press). 16 Cole, L. J., R. M. Garver, and M. E. Ellis, Amer. J. Physiol., 196, 100 (1959). 17 Cole, L. J., and R. M. Garver, Nature, 184, 1815 (1959). 18 Cole, L. J., and W. E. Davis, Radiation Res., 12, 429 (1960). -
Phylum Echinodermata Phylum Echinodermata
Phylum Echinodermata Phylum Echinodermata About 7,000 species Strictly marine, mostly benthic. Typical deuterostomes. Phylum Echinodermata Class Crinoidea (sea lilies) Phylum Echinodermata Class Crinoidea Class Asteroidea (sea stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea (brittle stars and basket stars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea (sea urchins and sand dollars) Phylum Echinodermata Class Crinoidea Class Asteroidea Class Ophiuroidea Class Echinoidea Class Holothuroidea (sea cucumbers) What do Echinoderms look like? Pentamerous radial symmetry. Oral and aboral surfaces. Oral surface has ambulacral grooves associated with tubefeet called podia. What do Echinoderms look like? Oral and aboral surfaces. What do Echinoderms look like? Arms (ambulacra) numbered with reference to the madreporite. Ambulacrum opposite is A then proceed couterclockwise. Ambulara C and D are the bivium, A B and E are the trivium. What do Echinoderms look like? Body wall Epidermis covers entire body. Endoskeleton of ossicles with tubefeet and dermal branchia protruding through and spines and pedicellaria on outside. What do Echinoderms look like? Body wall Ossicles can be fused into a test (urchins and sand dollars). Ossicles spread apart in cucumbers. Ossicles intermediate and variable in seastars. Muscle fibers beneath ossicles. What do Echinoderms look like? Body wall Tubercles and moveable spines on skeletal plates of echinoids. Small muscles attach spines to test. What do Echinoderms look like? Water vascular system Fluid-filled canals for internal transport and locomotion. Fluid similar to sewater but has coelomcytes and organic molecules. Moved through system with cilia. What do Echinoderms look like? Water vascular system Asteroidea: Madreporite on aboral surface. -
Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae -
What Are Echinoderms?
What are Echinoderms? Jon Allen College of William and Mary 5 extant classes of Echinoderms Echinoidea Asteroidea Crinoidea Ophiuroidea Holothuroidea Phylum Echinodermata • General Characteristics • Water Vascular System • Pentameral (five part) Symmetry as adults • Bilateral Symmetry as larvae • Calcareous ossicles form internal skeleton • Mutable connective tissue Water Vascular System WVS Used for Locomotion Ampulla Tube foot • RED indicates muscular contraction Echinoderm Ossicles • CaCO3 ossicles form internal skeleton • Vary widely across classes (cf urchin test with sea cucmbers) • Unique stereom structure: porous structure filled with living tissue Mutable Connective (Collagenous) Tissue • MCT used for feeding in seastars • MCT allows autotomy in Seastars and Bstars • Changes in MCT are under nervous control • Two nerve types present in extracellular matrix: one softens, one hardens • Mechanism unknown: related to [Ca2+] Development and Symmetry Switch in Echinoderms 5 extant classes of Echinoderms Echinoidea Asteroidea Crinoidea Ophiuroidea Holothuroidea Crinoidea • Sea lilies (deep sea) and feather stars (shallow tropical waters) • 625 species • Filter feeders • Generally sessile but can move when agitated • Generally considered primitive among the classes • Far more numerous in fossil record than today Crinoidea • Amazing mobility for such delicate creatures • Most echinoderms are light-averse Phylum Echinodermata: Class Ophiuroidea • Defining Characteristics: – Highly developed arm ossicles form ‘vertebrae’ – 5 pairs of bursal -
Biology of Echinoderms
Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like. -
Brief Glossary and Bibliography of Mollusks
A Brief Glossary of Molluscan Terms Compiled by Bruce Neville Bivalve. A member of the second most speciose class of Mollusca, generally bearing a shell of two valves, left and right, and lacking a radula. Commonly called clams, mussels, oysters, scallops, cockles, shipworms, etc. Formerly called pelecypods (class Pelecypoda). Cephalopoda. The third dominant class of Mollusca, generally without a true shell, though various internal hard structures may be present, highly specialized anatomically for mobility. Commonly called octopuses, squids, cuttles, nautiluses. Columella. The axis, real or imaginary, around and along which a gastropod shell grows. Dextral. Right-handed, with the aperture on the right when the spire is at the top. Most gastropods are dextral. Gastropod. A member of the largest class of Mollusca, often bearing a shell of one valve and an operculum. Commonly called snails, slugs, limpets, conchs, whelks, sea hares, nudibranchs, etc. Mantle. The organ that secretes the shell. Mollusk (or mollusc). A member of the second largest phylum of animals, generally with a non-segmented body divided into head, foot, and visceral regions; often bearing a shell secreted by a mantle; and having a radula. Operculum. A horny or calcareous pad that partially or completely closes the aperture of some gastropodsl. Periostracum. The proteinaceous layer covering the exterior of some mollusk shells. Protoconch. The larval shell of the veliger, often remains as the tip of the adult shell. Also called prodissoconch in bivlavles. Radula. A ribbon of teeth, unique to mollusks, used to procure food. Sinistral. Left-handed, with the aperture on the left when the spire is at the top. -
The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods
Chapter 6 The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods RICHARD R. ALEXANDER and GREGORY P. DIETL I. Introduction 141 2. Durophages of Bivalves and Gastropods 142 3. Trends in Antipredatory Morphology in Space and Time .. 145 4. Predatory and Non-Predatory Sublethal Shell Breakage 155 5. Calculation ofRepair Frequencies and Prey Effectiveness 160 6. Prey Species-, Size-, and Site-Selectivity by Durophages 164 7. Repair Frequencies by Time, Latitude, and Habitat.. 166 8. Concluding Remarks 170 References 170 1. Introduction Any treatment of durophagous (shell-breaking) predation on bivalves and gastropods through geologic time must address the molluscivore's signature preserved in the victim's skeleton. Pre-ingestive breakage or crushing is only one of four methods of molluscivory (Vermeij, 1987; Harper and Skelton, 1993), the others being whole organism ingestion, insertion and extraction, and boring. Other authors in this volume treat the last behavior, whereas whole-organism ingestion, and insertion and extraction, however common, are unlikely to leave preservable evidence. Bivalve and gastropod ecologists and paleoecologists reconstruct predator-prey relationships based primarily on two, although not equally useful, categories of pre-ingestive breakage, namely lethal and sublethal (repaired) damage. Peeling crabs may leave incriminating serrated, helical RICHARD R. ALEXANDER • Department of Geological and Marine Sciences, Rider University, Lawrenceville, New Jersey, 08648-3099. GREGORY P. DIETL. Department of Zoology, North Carolina State University, Raleigh, North Carolina, 27695-7617. Predator-Prey Interactions in the Fossil Record, edited by Patricia H. Kelley, Michal Kowalewski, and Thor A. Hansen. Kluwer Academic/Plenum Publishers, New York, 2003. 141 142 Chapter 6 fractures in whorls of high-spired gastropods (Bishop, 1975), but unfortunately most lethal fractures are far less diagnostic of the causal agent and often indistinguishable from abiotically induced, taphonomic agents ofshell degradation. -
Mollusca, Archaeogastropoda) from the Northeastern Pacific
Zoologica Scripta, Vol. 25, No. 1, pp. 35-49, 1996 Pergamon Elsevier Science Ltd © 1996 The Norwegian Academy of Science and Letters Printed in Great Britain. All rights reserved 0300-3256(95)00015-1 0300-3256/96 $ 15.00 + 0.00 Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific GERHARD HASZPRUNAR and JAMES H. McLEAN Accepted 28 September 1995 Haszprunar, G. & McLean, J. H. 1995. Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific.—Zool. Scr. 25: 35^9. Bathyphytophilus diegensis sp. n. is described on basis of shell and radula characters. The radula of another species of Bathyphytophilus is illustrated, but the species is not described since the shell is unknown. Both species feed on detached blades of the surfgrass Phyllospadix carried by turbidity currents into continental slope depths in the San Diego Trough. The anatomy of B. diegensis was investigated by means of semithin serial sectioning and graphic reconstruction. The shell is limpet like; the protoconch resembles that of pseudococculinids and other lepetelloids. The radula is a distinctive, highly modified rhipidoglossate type with close similarities to the lepetellid radula. The anatomy falls well into the lepetelloid bauplan and is in general similar to that of Pseudococculini- dae and Pyropeltidae. Apomorphic features are the presence of gill-leaflets at both sides of the pallial roof (shared with certain pseudococculinids), the lack of jaws, and in particular many enigmatic pouches (bacterial chambers?) which open into the posterior oesophagus. Autapomor- phic characters of shell, radula and anatomy confirm the placement of Bathyphytophilus (with Aenigmabonus) in a distinct family, Bathyphytophilidae Moskalev, 1978. -
Solaropsis Brasiliana, Anatomy, Range Extension and Its Phylogenetic Position Within Pleurodontidae (Mollusca, Gastropoda, Stylommatophora)
Anais da Academia Brasileira de Ciências (2018) (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170261 www.scielo.br/aabc | www.fb.com/aabcjournal Solaropsis brasiliana, anatomy, range extension and its phylogenetic position within Pleurodontidae (Mollusca, Gastropoda, Stylommatophora) MARÍA GABRIELA CUEZZO1, AUGUSTO P. DE LIMA2 and SONIA B. DOS SANTOS2 1Instituto de Biodiversidad Neotropical/CONICET-UNT, Crisóstomo Álvarez, 722, 4000 Tucumán, Argentina 2Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, PHLC, Sala 525-2, 20550-900 Rio de Janeiro, RJ, Brazil Manuscript received on April 7, 2017; accepted for publication on October 13, 2017 ABSTRACT A detailed anatomical revision on Solaropsis brasiliana (Deshayes 1832) has been carried out. New characters on shell, anatomy of soft parts, and a review of the genus distribution in South America, as well as clarification on S. brasiliana distributional area are provided in the present study. Solaropsis brasiliana is diagnosed by its globose, solid, and hirsute shell, with periphery obsoletely angular, bursa copulatrix with a thick, long diverticulum, a thick, long flagellum and a penis retractor muscle forked, with the vas deferens passing through it. This compiled information was used to test the phylogenetic position of S. brasiliana within South American Pleurodontidae through a cladistics analysis. In the phylogenetic hypothesis obtained, S. brasiliana is sister group of S. gibboni (Pfeiffer 1846) and the monophyly of the genus Solaropsis Beck is also supported. Here, we sustain that the distribution of S. -
Microstructural Differences in the Reinforcement of a Gastropod Shell Against Predation
MARINE ECOLOGY PROGRESS SERIES Vol. 323: 159–170, 2006 Published October 5 Mar Ecol Prog Ser Microstructural differences in the reinforcement of a gastropod shell against predation Renee Avery, Ron J. Etter* Biology Department, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA ABSTRACT: Gastropod shells are important antipredator structures that vary morphologically in response to predation risk, often increasing in thickness when the risk of predation is greater. Because the shell is composed of different microstructures that vary in energetic cost and strength, shell thickness may be increased in different ways. We tested whether the common intertidal snail Nucella lapillus differs in microstructure between shores with different predation risk, and whether any differences in microstructure affect shell strength. Predation risk varies with degree of wave exposure, so we compared shell microstructure and strength between snails from different exposure regimes. N. lapillus shells are made of a strong but energetically expensive crossed lamellar microstructure and a weaker but less energetically expensive homogeneous microstructure. Inde- pendent of exposure regime, the homogeneous microstructure was used to thicken the shell as snails increase in size. The thickness of the stronger crossed-lamellar microstructure changes little with snail size or predator risk. Whelks from wave-protected shores, where predation risk is high, have much thicker shells than conspecifics from exposed shores, where predation risk is low. The greater thickness is largely due to a disproportionate increase in the thickness of the homogeneous layer, and this increase translates into a much stronger shell. The advantage of using the weaker microstructure may lie in the fact that it is energetically cheaper and can be deposited more quickly, allowing snails to grow more rapidly to a size refuge. -
First Record of Double Aperture in a Gastropod Shell
First record of double aperture in a gastropod shell MARCOS V. DA SILVA 1*, MARIANNY K.S. LIMA 1, CRISTIANE X. BARROSO 1, SORAYA G. RABAY 1, CARLOS A.O. MEIRELLES 1, 2 & HELENA MATTHEWS-CASCON 1, 2, 3 1 Universidade Federal do Ceará, Departamento de Biologia, Laboratório de Invertebrados Marinhos do Ceará (LIMCE), Bloco 909, Campus do Pici, 60455-760, Fortaleza, Ceará, Brasil. 2 Programa de Pós-Graduação em Engenharia de Pesca, Campus do Pici, 60356-600, Fortaleza, Ceará, Brasil. 3 Programa de Pós-Graduação em Ciências Marinhas Tropicais, Instituto de Ciências do Mar (LABOMAR), Av. da Abolição, 3207 - Meireles, 60165-081, Fortaleza, Ceará, Brasil. Corresponding author: [email protected] m Abstract. The present study reports the occurrence of a Cerithium atratum (Born, 1778) shell with two apertures. The original aperture (measuring 5.8 by 5.0 mm), blocked by a small pebble fragment, could have prevented the head-foot part of the body to emerge. The gastropod (24.8 mm length) formed a new aperture similar to the original, measuring 5.9 by 4.6 mm and presenting a polished and circular outer lip, and partially formed anal and siphonal canal. This anomaly had not been registered yet in mollusks. Keywords: Cerithium atratum, anomalous, double aperture, neoformation Resumo. Primeiro registro de dupla abertura em concha de gastrópode. O presente estudo relata a ocorrência de um Cerithium atratum (Born, 1778) com dupla abertura na concha. A abertura original (5,8 mm x 5,0 mm), bloqueada por um pequeno fragmento de seixo, pode ter impedido a saída da região cefalopediosa.