2019 Fall

Introduction to Materials Science and Engineering

09. 17. 2019 Eun Soo Park

Office: 33‐313 Telephone: 880‐7221 Email: [email protected] Office hours: by appointment 1 Contents for previous class

Atomic Bonding in Solids : an attempt to fill electron shells a. Primary bonding (1) Ionic bonds (2) Covalent bonds (3) Metallic bonds b. Secondary bonding (1) Van der Waals (2) Hydrogen bonding

c. Properties From Bonding

If Eo is larger,

Tm (melting temp.→brokenBroken Bonds bonds),

E (elastic modulus), ((possibly)) Yield strength is larger, but is smaller. (thermal expansion coefficient)2 Contents for previous class Materials-Bonding Classification

< 실제 많은 재료는 2개 혹은 그 이상의 결합에 혼합 > 3 Contents for previous class Summary: Properties from Bonds Ceramics Large bond energy (Ionic & covalent bonding): large Tm large E small  Metals Variable bond energy (Metallic bonding): moderate Tm moderate E moderate 

Polymers Directional Properties (Covalent & Secondary): Secondary bonding dominates small Tm small E large 

4 Materials Science and Engineering

Processing •Sintering • Heat treatment • Thin Film Structure • Melt process • Mechanical •Atomic • • Microstructure • Macrostructure Properties • Mechanical • Electrical • Magnetic Theory & • Thermal

Design • Optical 5 Contents for today’s class CHAPTER 3: Fundamentals of I. Crystal Structures

- Lattice, Unit Cells,

II. Crystallographic Points, Directions, and Planes

- Point coordinates, Crystallographic directions, Crystallographic planes

III. Crystalline and Noncrystalline Materials

- Single , Polycrystalline materials, Anisotropy,

Noncrystalline solids 6 Stacking of in solid Finding stable position

2 1

• Minimize energy configuration – Related to the bonding nature

7 Materials and Packing

Crystalline materials... • atoms pack in periodic, 3D arrays • typical of: -metals -many ceramics

-some polymers crystalline SiO2 Adapted from Fig. 3.22(a), Callister 7e. Quasicrystalline materials... Si Oxygen Noncrystalline materials... • atoms have no periodic packing • occurs for: -complex structures -rapid cooling "Amorphous" = Noncrystalline noncrystalline SiO2

Adapted from Callister 7e. 8 atomic arrangement in the solid state

 Solid materials are classified according to the regularity with which atoms and are arranged with respect to one another.

 So, how are they arranged ?

(a) periodically – having long range order in 3-D Crystal

(b) quasi-periodically

(c) randomly – having short range order with the characteristics of bonding type but losing the long range order

 Crystal: Perfection → Imperfection Amorphous 9 Chapter 3.2 I. Crystal structures • How can we stack metal atoms to minimize empty space? 2-dimensions

vs.

Now stack these 2-D layers to make 3-D structures

10 Crystalline materials - three-dimensional periodic arrangement of atoms, ions, or - translational periodicity

Crystal – related topics

– Periodicity (주기성) – Symmetry (대칭성) – Anisotropy (비등방성) – Directions and Planes (방향과 면) – Interplanar spacing & angles (면간거리와 각도) – Diffraction (회절) 11 I.

(1) Lattice : 결정 공간상에서 점들의 규칙적인 기하학적 배열 – 3D point array in space, such that each point has identical surroundings. These points may or may not coincide with positions. – Simplest case : each atom  its center of gravity  point or space lattice  pure mathematical concept

example: sodium (Na) ; body centered cubic

Hard‐sphere unit cell Reduced sphere unit cell Aggregate of many atoms Chapter 3.3 (2) Unit cell : smallest repetitive volume which contains the complete lattice pattern of a crystal Chapter 3.4 Crystal systems Unit cell (3) Lattice parameter

length: a, b, c angle: α, β, γ

14 (4) 7 crystal systems Unit cell

15 (4) 7 crystal systems (continued) Unit cell

16 Unit cell

F • P, I, F, C C  P : Primitive

 I : Body centered P  F : Face centered I

 C : Base centered

P 17 Unit cell

(5) 14 - Only 14 different types of unit cells are required to describe all lattices using symmetry

rhombohedral cubic hexagonal tetragonal orthorhombic monoclinic triclinic (trigonal)

P

I

F

C

18 II. Crystallographic points, directions and planes

Chapter 3.5 Point coordinates • position: fractional multiples of the unit cell edge lengths – ex) P: q,r,s

cubic unit cell 19 Chapter 3.5 Point coordinates

z 111 Point coordinates for unit cell c center are a/2, b/2, c/2 ½½½ y a 000 b x Point coordinates for unit cell  corner are 111 z 2c  Translation: integer multiple   of lattice constants  b y identical position in another unit cell b

20 Chapter 3.6 Crystallographic Directions

z Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a, b, and c y 3. Adjust to smallest integer values 4. Enclose in square brackets, no commas x [uvw]

ex: 1, 0, ½ => 2, 0, 1 => [201] -1, 1, 1 => [ 111 ] where overbar represents a negative index families of directions 21 Crystallographic Directions • a line between two points or a vector • [uvw] square bracket, smallest integer • families of directions: angle bracket cubic

22 Impose index coordination k

 j  i 23 Directional indices

< ij k> : permutation of [ ij k] 24 Lattice Parameter

length: a, b, c angle: α, β, γ

25 26 27 14 Bravais Lattice

• Only 14 different types of unit cells are required to describe all lattices using symmetry • simple (1), body-centered (2), base-centered (2) face-centered

(4 atoms/unit cell) 28 Crystal view -Silicon

29 Crystallographic planes

30 Chapter 3.7 Crystallographic Planes Lattice (Miller indices) z p m00, 0n0, 00p: define lattice plane  m, n, ∞ : no intercepts with axes c Intercepts @ 213   n y (mnp) a b Reciprocals ½ 1 1/3 Miller indicies 3 6 2 m (362) plane x Plane (hkl) Family of planes {hkl}

Miller indicies ; defined as the (362) smallest integral multiples of the reciprocals of the plane intercepts on the axes 31 Crystallographic Planes

A B C D

E F 32 Crystallographic Planes

33 {110} Family

34 {110} Family

35 Directions, Planes, and Family

• line, direction – [111] square bracket – <111> angular bracket - family

•Plane – (111) round bracket (Parentheses) – {111} braces - family

36 HCP Crystallographic Directions • Hexagonal Crystals – 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows. z [u'v 'w ']  [uvtw ] 1 u  (2u'-v') 3 a 2 1 v  (2 v'-u') - 3 a 3 t  -(u +v) a 1 w  w ' Fig. 3.8(a), Callister 7e.

37 𝑐⃗

𝑎

𝑎

𝑎

38 Miller index 100 Miller-Bravais index 1 2 i=-(h+k) u  (2u'v') u  3 3 1 1 v  v  (2v'u') 3 𝑐⃗ 3 w  0 w  w' h k i l

𝑎

𝑐⃗ 𝑎 𝑎 𝑎 𝑎 𝑎

39 Miller index 101 Miller-Bravais index 1 2 u  (2u'v') u  3 3 1 1 v  v  (2v'u') 3 3 w  1 w  w'

𝑐⃗ 𝑎 𝑎 𝑐⃗ 𝑎

𝑎

𝑎

𝑎 Miller index Miller-Bravais index

𝑐⃗ 𝑎 𝑎 𝑎 001

100

Miller index Miller-Bravais index

𝑐⃗ 𝑎 𝑎 𝑎 001 u' u  t  2u  v v' v  t  2v  u w' w

100 Miller index

42 Miller index Miller-Bravais index

𝑐⃗ 𝑎 𝑎 𝑎 001 u' u  t  2u  v 1010 v' v  t  2v  u 1 w' w u  (2u'v') 3 100 1 v  (2v'u') 3 w  w' 43 Miller-Bravais vs. Miller index system Directions in Hexagonal system

Conversion of 4 index system (Miller-Bravais) to 3 index (Miller)         t  u'a  v'a  w'c  ua  va  ta  wc Ex. M [100] 1 2 1 2 3 u=(1/3)(2*1-0)=2/3 v=(1/3)(2*0-1)=-1/3 Miller-Bravais to Miller Miller to Miller-Bravais w=0 4 to 3 axis 3axis to 4 axis system => 1/3[2 -1 -1 0] 1 u' u  t  2u  v u  (2u'v') 3 Ex. M-B [1 0 -1 0] u’=2*1+0=2 v' v  t  2v  u 1 v  (2v'u') v’=2*0+1=1 w' w 3 w’=0 => [2 1 0] w  w' 44 Hexagonal Crystal

• Miller-Bravais scheme

[]uvtw ()hkil tuv () ihk ()

45 Crystallographic Planes (HCP) • In hexagonal unit cells the same idea is used z

example a1 a2 a3 c 1. Intercepts 1  -1 1 2. Reciprocals 1 1/ -1 1 a 1 0 -1 1 2 3. Reduction 1 0 -1 1

a3

4. Miller-Bravais Indices (1011) a1

Adapted from Fig. 3.8(a), Callister 7e.

46 Crystallographic Planes (HCP) • In hexagonal unit cells the same idea is used z

example a1 a2 a3 c 1. Intercepts 1  -1 1 2. Reciprocals 1 1/ -1 1 a 1 0 -1 1 2 3. Reduction 1 0 -1 1

a3

4. Miller-Bravais Indices (1011) a1

Adapted from Fig. 3.8(a), Callister 7e.

47 Miller-Bravais index Miller index 𝑐⃗ 𝑐⃗

𝑎 𝑎

𝑎 𝑎

𝑎 𝑎

Inverse of 1 =1 Inverse of 1 =1 Position at 𝑎 =1 Position at 𝑐⃗ =1

Does not Meet with 𝑎 48 Miller index Miller-Bravais index

𝑎 𝑎 𝑎 𝑐⃗ 001

100 Miller index

49 𝑐⃗

𝑎

𝑎

𝑎

50 Schematic view of planes

1 Take c Reciprocal 

𝟏

𝟐 b

𝟏 1 𝟏a Inter-planar spacing 51 Schematic view of (111) plane c

b

a 52 Inter-planar distance (면간거리) d

(hkl) plane

  Interplanar spacing of the (hkl) plane The value of d which characterizes the distance between adjacent planes in the set of planes with Miller indices (hkl) is given by the following relations. The cell edges and the angles are a, b, c and α, β ,γ.

1 h2  k 2  l 2  Cubic : d 2 a 2 . 1 h2  k 2 l 2   Tetragonal : d 2 a 2 c 2 . 1 h2 k 2 l 2 Orthorhombic :    d 2 a 2 b2 c 2 . 1 4  h2  hk  k 2  l 2      Hexagonal : 2  2  2 d 3  a  c . 1 1  h2 k 2 sin 2 l 2 2hl cos         Rhombohedral : 2 2  2 2 2  d sin  a b c ac  . 1 (h2  k 2  l 2 )sin 2  2(hk kl  hl)(cos2  cos ) Monoclinic :   d 2 a 2 (1 3cos2  2cos3 ) .    1 1 2 2 2  Triclinic :  (S11h  S22k  S33l  2S12hk  2S23kl  2S31hl)  d 2 V 2  2 2 2 S11  b c sin    S  a 2c 2 sin 2 Where : 2 2 2 3 2 2 2 22 V  a b c (1 cos  cos  cos  2cos cos cos  ) 2 2 2 S33  a b sin  S  abc2 (cos cos  cos ) 12  S  a 2bc(cos  cos  cos ) 23  2 S31  ab c(cos cos  cos  ) 54 III. Crystalline and Noncrystalline Materials

CRYSTALS AS BUILDING BLOCKS • Some engineering applications require single crystals: -- single crystals --turbine blades Natural and artificial Fig. 8.30(c), Callister 6e. (Fig. 8.30(c) courtesy of Pratt and Whitney).

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

• Crystal properties reveal features of atomic structure. --Ex: Certain crystal planes in quartz fracture more easily than others. (Courtesy P.M. Anderson) 55 Single vs Polycrystals

• Single Crystals E (diagonal) = 273 GPa Data from Table 3.3, -Properties vary with Callister 7e. (Source of data is R.W. direction: anisotropic. Hertzberg, Deformation and Fracture Mechanics of -Example: the modulus Engineering Materials, 3rd ed., John Wiley and Sons, of elasticity (E) in BCC iron: 1989.)

E (edge) = 125 GPa • Polycrystals -Properties may/may not 200 m Adapted from Fig. 4.14(b), Callister 7e. vary with direction. (Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, -If grains are randomly the National Bureau of Standards, Washington, oriented: isotropic. DC [now the National Institute of Standards and (Epoly iron = 210 GPa) Technology, Gaithersburg, -If grains are textured, MD].) anisotropic. 56 Grain Boundaries

57 Polycrystals Anisotropic • Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of Callister 5e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

1 mm

• Nb-Hf-W plate with an electron beam weld. Isotropic • Each "grain" is a single crystal. • If grains are randomly oriented, overall component properties are not directional. • Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers). 58 Polymorphism

• Two or more distinct crystal structures for the same material (allotropy/polymorphism) iron system titanium liquid , -Ti 1538ºC -Fe carbon BCC diamond, graphite 1394ºC FCC -Fe 912ºC BCC -Fe

59 DEMO: HEATING AND COOLING OF AN IRON WIRE

The same atoms can • Demonstrates "polymorphism" have more than one Temperature, C crystal structure. Liquid 1536 BCC Stable 1391

longer heat up FCC Stable shorter! 914 BCC Stable longer! cool down Tc 768 magnet falls off shorter

60