Dirac Operators in Representation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetries on the Lattice
Symmetries On The Lattice K.Demmouche January 8, 2006 Contents Background, character theory of finite groups The cubic group on the lattice Oh Representation of Oh on Wilson loops Double group 2O and spinor Construction of operator on the lattice MOTIVATION Spectrum of non-Abelian lattice gauge theories ? Create gauge invariant spin j states on the lattice Irreducible operators Monte Carlo calculations Extract masses from time slice correlations Character theory of point groups Groups, Axioms A set G = {a, b, c, . } A1 : Multiplication ◦ : G × G → G. A2 : Associativity a, b, c ∈ G ,(a ◦ b) ◦ c = a ◦ (b ◦ c). A3 : Identity e ∈ G , a ◦ e = e ◦ a = a for all a ∈ G. −1 −1 −1 A4 : Inverse, a ∈ G there exists a ∈ G , a ◦ a = a ◦ a = e. Groups with finite number of elements → the order of the group G : nG. The point group C3v The point group C3v (Symmetry group of molecule NH3) c ¡¡AA ¡ A ¡ A Z ¡ A Z¡ A Z O ¡ Z A ¡ Z A ¡ Z A Z ¡ Z A ¡ ZA a¡ ZA b G = {Ra(π),Rb(π),Rc(π),E(2π),R~n(2π/3),R~n(−2π/3)} noted G = {A, B, C, E, D, F } respectively. Structure of Groups Subgroups: Definition A subset H of a group G that is itself a group with the same multiplication operation as G is called a subgroup of G. Example: a subgroup of C3v is the subset E, D, F Classes: Definition An element g0 of a group G is said to be ”conjugate” to another element g of G if there exists an element h of G such that g0 = hgh−1 Example: on can check that B = DCD−1 Conjugacy Class Definition A class of a group G is a set of mutually conjugate elements of G. -
Lie Algebras of Generalized Quaternion Groups 1 Introduction 2
Lie Algebras of Generalized Quaternion Groups Samantha Clapp Advisor: Dr. Brandon Samples Abstract Every finite group has an associated Lie algebra. Its Lie algebra can be viewed as a subspace of the group algebra with certain bracket conditions imposed on the elements. If one calculates the character table for a finite group, the structure of its associated Lie algebra can be described. In this work, we consider the family of generalized quaternion groups and describe its associated Lie algebra structure completely. 1 Introduction The Lie algebra of a group is a useful tool because it is a vector space where linear algebra is available. It is interesting to consider the Lie algebra structure associated to a specific group or family of groups. A Lie algebra is simple if its dimension is at least two and it only has f0g and itself as ideals. Some examples of simple algebras are the classical Lie algebras: sl(n), sp(n) and o(n) as well as the five exceptional finite dimensional simple Lie algebras. A direct sum of simple lie algebras is called a semi-simple Lie algebra. Therefore, it is also interesting to consider if the Lie algebra structure associated with a particular group is simple or semi-simple. In fact, the Lie algebra structure of a finite group is well known and given by a theorem of Cohen and Taylor [1]. In this theorem, they specifically describe the Lie algebra structure using character theory. That is, the associated Lie algebra structure of a finite group can be described if one calculates the character table for the finite group. -
Homological Stability of Diffeomorphism Groups 3
HOMOLOGICAL STABILITY OF DIFFEOMORPHISM GROUPS ALEXANDER BERGLUND AND IB MADSEN Abstract. In this paper we prove a stability theorem for block diffeomor- phisms of 2d-dimensional manifolds that are connected sums of Sd ×Sd. Com- bining this with a recent theorem of S. Galatius and O. Randal-Williams and Morlet’s lemma of disjunction, we determine the homology of the classifying space of their diffeomorphism groups relative to an embedded disk in a stable range. Dedicated to Dennis Sullivan on the occasion of his 70th birthday 1. Introduction The traditional method to obtain homotopical and homological information about diffeomorphism groups of high dimensional smooth manifolds is a two step procedure: the surgery exact sequence handles the larger group of block diffeomor- phisms and Waldhausen’s K-theory of spaces connects block diffeomorphisms and actual diffeomorphisms. In practice one is forced to retreat to rational information. The method was used by Farrell and Hsiang [17] to evaluate the rational homotopy groups of the orientation preserving diffeomorphism groups of spheres in a modest range of dimensions; Q, k ≡ 0 (4), n even n (1) πk(B Diff(S )) ⊗ Q = Q ⊕ Q, k ≡ 0 (4), n odd 0, otherwise. n n for 0 <k< 6 − 7. The orthogonal group SO(n + 1) is a subgroup of Diff(S ), and πkSO(n + 1) accounts for one Q when k ≡ 0 (4). The second Q in line two above is of a different nature. It comes from the connection between Waldhausen’s algebraic K-theory of spaces and the homotopy theory of the homogeneous space Diff(Sn)/ Diff(Sn) of block diffeomorphisms modulo diffeomorphisms. -
Clifford Algebras and the Classical Dynamical Yang-Baxter Equation
Mathematical Research Letters 10, 253–268 (2003) CLIFFORD ALGEBRAS AND THE CLASSICAL DYNAMICAL YANG-BAXTER EQUATION A. Alekseev and E. Meinrenken Abstract. We describe a relationship of the classical dynamical Yang-Baxter equation with the following elementary problem for Clifford algebras: Given a vector space V with quadratic form QV , how is the exponential of an element in ∧2(V ) under exterior algebra multiplication related to its exponential under Clifford multiplication? 1. Introduction Let g be a real Lie algebra, equipped with a non-degenerate invariant qua- dratic form Q. Let Θ ∈∧3g be the cubic element defined by the quadratic form and the Lie algebra structure. An element r ∈∧2g is called a classical r-matrix for g if it satisfies the (modified) classical Yang-Baxter equation (CYBE) 1 [r, r]g = Θ 2 for some coupling constant ∈ R. Here [r, r]g is defined using the extension of the Lie bracket to the Schouten bracket on the exterior algebra, [·, ·]g : ∧kg × ∧lg →∧k+l−1g. Drinfeld [8] and Semenov-Tian-Shansky [20] gave a geometric interpretation of the CYBE in terms of Poisson-Lie group structures, and a classification of r-matrices for semi-simple Lie algebras and = 0 was obtained by Belavin-Drinfeld [6]. The CYBE admits an important generalization known as the classical dynam- ical Yang-Baxter equation (CDYBE). Let k ⊂ g be a Lie subalgebra. A classical dynamical r-matrix is a k-equivariant (meromorphic)function r : k∗ →∧2g satisfying the (modified)CDYBE [11] ∂r 1 ∧ e + [r, r]g = Θ. ∂µ i 2 i i i ∗ Here ei is a basis on k with dual basis e ∈ k , and µi are the corresponding coordinates on k∗. -
A Mathematical Approach to Wick Rotations
A mathematical approach to Wick rotations by Christer Helleland Thesis submitted in fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR (PhD) ! Faculty of Science and Technology Department of Mathematics and Physics 2019 University of Stavanger NO-4036 Stavanger NORWAY www.uis.no ©2019 Christer Helleland ISBN: Click to enter ISBN. ISSN: Click to enter ISSN. PhD: Thesis UiS No. Click to enter PhD No. Contents List of Tables6 Acknowledgements8 Part 1. Introduction 9 Part 2. Preliminaries 12 1. Cartan involutions of linear Lie groups 12 2. Geometric invariant theory (GIT) 16 Part 3. Wick-rotations and real GIT 22 1. Introduction 22 2. Mathematical Preliminaries 23 2.1. Real form of a complex vector space 23 2.2. Real slices 24 2.3. Compatible real forms 25 3. Holomorphic Riemannian manifolds 27 3.1. Complexification of real manifolds 27 3.2. Complex differential geometry 28 3.3. Real slices from a frame-bundle perspective 29 4. Lie groups 31 4.1. Complex Lie groups and their real forms 31 4.2. Example: Split G2-holonomy manifolds 32 5. A standard Wick-rotation to a real Riemannian space 34 5.1. Minimal vectors and closure of real semi-simple orbits 34 5.2. Compatible triples and intersection of real orbits 36 5.3. The real Riemannian case 37 5.4. The adjoint action of the Lorentz groups O(n − 1; 1) 38 5.5. Uniqueness of real orbits and the class of complex Lie groups 41 6. Applications to the pseudo-Riemannian setting 45 6.1. Pseudo-Riemannian examples 47 Acknowledgements 48 Appendix A. -
On 2-Plectic Lie Groups
On 2-plectic Lie groups Mohammad Shafiee and Masoud Aminizadeh Abstract. A 2-plectic Lie group is a Lie group endowed with a 2-plectic structure which is left invariant. In this paper we provide some inter- esting examples of 2-plectic Lie groups. Also we study the structure of the set of Hamiltonian covectors and vectors of a 2-plectic Lie algebra. Moreover, the existence of i-isotropic and i-Lagrangian subgroups are in- vestigated. At last we obtain some results about the reduction of some 2-plectic structures. M.S.C. 2010: 53D05, 17B60. Key words: 2-plectic structure; quadratic Lie algebra; Hamiltonian vector. 1 Introduction A k-plectic manifold (M; !) is a smooth manifold M endowed with a (k + 1)-form ! which is closed and nondegenerate in the sense that ιX ! = 0, X 2 TM, implies that X = 0. In this case ! is called a k-plectic structure. These structures are general version of symplectic structures and they naturally appear in the Hamiltonian formulation of classical fields (see [4]and references therein ). Mathematically, in spite of general case, symplectic structures are very interesting and so they have been studied extensively. However, in recent years, 2-plectic structures also have been considered and these structures also are studied extensively ([1], [8]). An important class of 2-plectic manifolds are 2-plectic Lie groups. Similar to symplectic case, a 2-plectic Lie group is defined as follows. Definition 1.1. A 2-plectic Lie group (G; !) is a Lie group G endowed with a 2- plectic structure ! which is left invariant. -
GROUP REPRESENTATIONS and CHARACTER THEORY Contents 1
GROUP REPRESENTATIONS AND CHARACTER THEORY DAVID KANG Abstract. In this paper, we provide an introduction to the representation theory of finite groups. We begin by defining representations, G-linear maps, and other essential concepts before moving quickly towards initial results on irreducibility and Schur's Lemma. We then consider characters, class func- tions, and show that the character of a representation uniquely determines it up to isomorphism. Orthogonality relations are introduced shortly afterwards. Finally, we construct the character tables for a few familiar groups. Contents 1. Introduction 1 2. Preliminaries 1 3. Group Representations 2 4. Maschke's Theorem and Complete Reducibility 4 5. Schur's Lemma and Decomposition 5 6. Character Theory 7 7. Character Tables for S4 and Z3 12 Acknowledgments 13 References 14 1. Introduction The primary motivation for the study of group representations is to simplify the study of groups. Representation theory offers a powerful approach to the study of groups because it reduces many group theoretic problems to basic linear algebra calculations. To this end, we assume that the reader is already quite familiar with linear algebra and has had some exposure to group theory. With this said, we begin with a preliminary section on group theory. 2. Preliminaries Definition 2.1. A group is a set G with a binary operation satisfying (1) 8 g; h; i 2 G; (gh)i = g(hi)(associativity) (2) 9 1 2 G such that 1g = g1 = g; 8g 2 G (identity) (3) 8 g 2 G; 9 g−1 such that gg−1 = g−1g = 1 (inverses) Definition 2.2. -
Clifford Algebras and Lie Groups Lecture Notes, University of Toronto
Clifford algebras and Lie groups Eckhard Meinrenken Lecture Notes, University of Toronto, Fall 2009. Last revision: 12/2011 Contents Chapter 1. Symmetric bilinear forms 7 1. Quadratic vector spaces 7 2. Isotropic subspaces 9 3. Split bilinear forms 10 4. E.Cartan-Dieudonn´e'sTheorem 13 5. Witt's Theorem 16 6. Orthogonal groups for K = R; C 17 7. Lagrangian Grassmannians 23 Chapter 2. Clifford algebras 27 1. Exterior algebras 27 1.1. Definition 27 1.2. Universal property, functoriality 28 2. Clifford algebras 29 2.1. Definition and first properties 30 2.2. Universal property, functoriality 31 2.3. The Clifford algebras Cl(n; m) 32 2.4. The Clifford algebras Cl(n) 33 2.5. Symbol map and quantization map 34 2.6. Transposition 35 2.7. Chirality element 36 2.8. The trace and the super-trace 37 2.9. Extension of the bilinear form 38 2.10. Lie derivatives and contractions 38 2.11. The Lie algebra q(^2(V )) 40 2.12. A formula for the Clifford product 41 3. The Clifford algebra as a quantization of the exterior algebra 42 3.1. Differential operators 42 3.2. Graded Poisson algebras 44 3.3. Graded super Poisson algebras 45 3.4. Poisson structures on ^(V ) 46 Chapter 3. The spin representation 49 1. The Clifford group and the spin group 49 1.1. The Clifford group 49 1.2. The groups Pin(V ) and Spin(V ) 51 2. Clifford modules 54 2.1. Basic constructions 54 2.2. The spinor module SF 56 2.3. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups Tome 64, No 5 (2014), P
R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER K. H. NEEB Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups Tome 64, no 5 (2014), p. 1823-1892. <http://aif.cedram.org/item?id=AIF_2014__64_5_1823_0> © Association des Annales de l’institut Fourier, 2014, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 64, 5 (2014) 1823-1892 SEMIBOUNDED UNITARY REPRESENTATIONS OF DOUBLE EXTENSIONS OF HILBERT–LOOP GROUPS by K. H. NEEB (*) Abstract. — A unitary representation π of a, possibly infinite dimensional, Lie group G is called semibounded if the corresponding operators idπ(x) from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra g of G. We classify all irreducible semibounded represen- tations of the groups Lbφ(K) which are double extensions of the twisted loop group Lφ(K), where K is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and φ is a finite order automorphism of K which leads to one of the 7 irreducible locally affine root systems with their canonical Z-grading. -
Dirac Operators in Representation Theory
Jing-Song Huang and Pavle Pandˇzi´c Dirac Operators in Representation Theory SPIN Springer’s internal project number, if known – Monograph – December 14, 2005 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo Preface We begin with the origin of the Dirac equation and give a brief introduction of the Dirac operators due to Parthasarathy, Vogan and Kostant. Then we explain a conjecture of Vogan on Dirac cohomology, which we proved in [HP1], its applications and the organization of the book. 0.1 The Dirac equation. The Dirac equation has an interesting connection to E = mc2, the Einstein’s equation from his special theory of relativity. This equation relates the energy E of a particle at rest to its mass m through a conversion factor, the square of the speed c of light. However, this way of writing the equation obscures the underlying four-dimensional geometry. The relation for a particle in motion is a hyperbolic equation: E2 c2p p = (mc2)2. (0.1) − · Here the energy E is the first component of a vector (E,cp) = (E,cp1,cp2,cp3) and p is the vector that describes the momentum of the particle. This more general equation exhibits the mechanism of the conversion of mass into relative motion. 1 For describing relativistic spin 2 particles Dirac was to rewrite the quadratic Einstein relation (0.1) as a linear relation. This would seem impossible. But Dirac came up with a new idea by writing the relation as follows: 3 2 γ0E + c γj pj = mc I, (0.2) j=1 X where γ (k =0, 1, 2, 3) are 4 4 matrices and I is the 4 4 identity matrix. -
Lecture Notes: Basic Group and Representation Theory
Lecture notes: Basic group and representation theory Thomas Willwacher February 27, 2014 2 Contents 1 Introduction 5 1.1 Definitions . .6 1.2 Actions and the orbit-stabilizer Theorem . .8 1.3 Generators and relations . .9 1.4 Representations . 10 1.5 Basic properties of representations, irreducibility and complete reducibility . 11 1.6 Schur’s Lemmata . 12 2 Finite groups and finite dimensional representations 15 2.1 Character theory . 15 2.2 Algebras . 17 2.3 Existence and classification of irreducible representations . 18 2.4 How to determine the character table – Burnside’s algorithm . 20 2.5 Real and complex representations . 21 2.6 Induction, restriction and characters . 23 2.7 Exercises . 25 3 Representation theory of the symmetric groups 27 3.1 Notations . 27 3.2 Conjugacy classes . 28 3.3 Irreducible representations . 29 3.4 The Frobenius character formula . 31 3.5 The hook lengths formula . 34 3.6 Induction and restriction . 34 3.7 Schur-Weyl duality . 35 4 Lie groups, Lie algebras and their representations 37 4.1 Overview . 37 4.2 General definitions and facts about Lie algebras . 39 4.3 The theorems of Lie and Engel . 40 4.4 The Killing form and Cartan’s criteria . 41 4.5 Classification of complex simple Lie algebras . 43 4.6 Classification of real simple Lie algebras . 44 4.7 Generalities on representations of Lie algebras . 44 4.8 Representation theory of sl(2; C) ................................ 45 4.9 General structure theory of semi-simple Lie algebras . 48 4.10 Representation theory of complex semi-simple Lie algebras .