THE SEARCH PROBLEM 395 /* File: Sortsrch.C */ #Include <Stdio.H>

Total Page:16

File Type:pdf, Size:1020Kb

THE SEARCH PROBLEM 395 /* File: Sortsrch.C */ #Include <Stdio.H> FINDING A DATA ITEM THE SEARCH PROBLEM File sortsrchc include stdioh include sortsrchh define DEBUG Linear or sequential search of an array x of size lim for an item key int seqsrchint x int lim int key int i foriilimi if xi key returni return Figure Co de for the function seqsrch File sortsrchh This file contains prototypes for sort and search functions int seqsrchint x int lim int key Figure Initial contents of sortsrchh We will implement the algorithm for search as a function seqsrch since searching an array may b e required in many programs and a function incorp orating linear search can b e used for many applications The function is passed the arrayofintegers xthenumb er of elements in the array limandthekey to searchforkey The function is shown in Figure The lo op compares each elementofthearraywithkey If an element with the same value is found at an index i i is returned The lo op terminates when the array limit is reached in which case no element equal to key was found in the array and is returned If there is more than one element in the array with the same value as key the function terminates the searchassoon as the rst element is found returning its index Wehave dened DEBUG in sortsrchc so that debug statements wemay add to the co de will b e compiled Wehave also included le sortsrchh in sortsrchc which as shown in Figure contains the prototyp es for functions dened in sortsrchc since some of the functions dened in sortsrchc may b e used by other functions to b e written in the le Wewillcontinue to add more functions to sortsrchc and corresp onding prototyp es to sortsrchh as we pro ceed through this chapter however we will not always show the additions of prototyp es to sortsrchh Our task now requires us to write a simple driver to rep eatedly call the function seqsrch For simplicitywe will declare an initialized array The driver uses a function pr aray lineto CHAPTER SORTING AND SEARCHING print an array with ten elements p er line to save space Figure shows the program driver The driver rst prints an initialized array id and then searches for items entered by the user If an item is found in the array its index is printed Otherwise a message is printed The aray line is included in sortsrchc and its prototyp e in sortsrchh These function pr additions are shown in Figure The function prints at successiveelements on one line until the array index mo dulo is zero when it prints a newline and continues A sample session for the program srcharayc is shown b elow Sequential Search The id array is Type an integer EOF to quit Item is not in the array Type an integer EOF to quit Item is found at index Type an integer EOF to quit Item is found at index Type an integer EOF to quit D Improving Search Sorting the Data As wementioned ab ove linear searchmay b e useful when the number of elements is small however when there are many data items in the array linear searchmay require a long time to nd the element matching the key In the case where suchanelement is not in the data base wemust search the entire collection to nd that out Consider the phone b o ok again When wewantto lo ok up someones phone number we do not start at the b eginning of the b o ok and lo ok line by line until we nd the name Instead we make use of the fact that the data items are sorted by name in the phone b o ok Of course if we had a phone numb er and wanted to nd the name we would hav e to resort to linear searchwe do not often do that Before wedevelop an algorithm to conduct a more ecient search of sorted data we rst describ e several algorithms which will sort an array of data There are numerous ways to sort data some more suitable than others for dierent applications In this section we will describ e three dierent standard algorithms selection sort bubble sort and insertion sort Selection Sort The idea of selection sort is rather simple we rep eatedly nd the next largest or smallest element in the arrayandmove it to its nal p osition in the sorted array Assume that we wish to sort the array in increasing order ie the smallest element at the b eginning of the array and the largest element at the end We b egin by selecting the largest elementandmoving it to the highest index IMPROVING SEARCH SORTING THE DATA Filesrcharayc Other Source Files sortsrchc Header Files sortsrchh This program searches an array sequentially for items typed in by the user It prints out the array index where an item is found or else prints a message include stdioh include sortsrchh main int id int n i printfSequential Searchnn printfThe array isn praraylineid printfType an integer EOF to quit while scanfd n EOF i seqsrchidn if i printfItem d is found at index dn n i else printfItem d is not in the arrayn n printfType an integer EOF to quit Figure Driver to test seqsrch CHAPTER SORTING AND SEARCHING File sortsrchc continued Prints an array horizontally void praraylineint x int lim int i foriilimi if i printfn printfd xi printfn File sortsrchh continued void praraylineint x int lim Figure Adding the co de for pr aray line p osition We can do this byswapping the element at the highest index and the largest element We then reduce the eective size of the arrayby one element and rep eat the pro cess on the smaller subarray The pro cess stops when the eective size of the array b ecomes an array of element is already sorted For example consider the following arrayshown with arrayelements in sequence separated by commas The leftmost element is at index zero and the rightmost element is at the highest array index in our case the eective size of our array is The largest element in this eectivearray index is at index Wehaveshown the largest element and the one at the highest index in bold We then swap the element at index with that at index The result is We reduce the eective size of the array to making the highest index in the eective array now The largest element in this eective array index is at index so weswap elements at index and in bold The next two steps give us The last eective array has only one element and needs no sorting The entire arrayisnow sorted The algorithm for an array xwithlim elements is easy to write down for effsize lim effsize effsize find maxpos the location of the largest element in the effective array index to effsize swap elements of x at index maxpos and index effsize IMPROVING SEARCH SORTING THE DATA The implementation of the selection sort algorithm in C together with a driver program is shown in Figure Sample Session Original array Sorted array sort to sort the array and prints the sorted The driver prints the array calls selection array The co de for selection sort follows the algorithm exactly it calls get maxpos to get the index of the largest elementinanarray of a sp ecied size Once maxpos is found the element size using the temp orary variable at that index is swapp ed with the element at index eff tmp Wemay b e concerned ab out the eciency of our algorithm and its implementation as a pro gram The eciency of an algorithm dep ends on the numb er of ma jor computations involved in p erforming the algorithm The eciency of the program dep ends on that of the algorithm and the eciency of the co de implementing the algorithm Notice we included the co de for swapping array elements within the lo op in selection sort rather than calling a function to p erform this op eration A function call requires added pro cessing time in order to store argumentvalues trans fer program control and retrieve the returned value When a function call is in a lo op that may b e executed many times the extra pro cessing time may b ecome signicant Thus if the arrayto b e sorted is quite large we can improve program eciency by eliminating a function call to swap data elements Similarlywemay include the co de for get maxpos in selection sort void selectionsortint x int lim int i effsize maxpos tmp for effsize lim effsize effsize foriieffsizei maxpos xi xmaxpos i maxpos tmp xmaxpos xmaxpos xeffsize xeffsize tmp Bubble Sort An alternate way of putting the largest element at the highest index in the array uses an algorithm called bubble sort While this metho d is neither as ecient nor as straightforward as selection sort it is p opularly used to illustrate sorting We include it here as an alternate metho d Like selection sort the idea of bubble sort is to rep eatedly move the largest element to the highest index p osition of the array As in selection sort each iteration reduces the eective size of the array The two algorithms dier in how this is done Rather than search the entire eective CHAPTER SORTING AND SEARCHING File selectc This program implements selection sort include stdioh define MAX void selectionsortint x int lim int getmaxposint x int lim void printarayint x int lim main int scoresMAX printfOriginal arrayn printarayscores selectionsortscores printfSorted arrayn printarayscores Selection sort function for an array x with lim elements void selectionsortint x int lim int effsize maxpos tmp for effsize lim effsize effsize maxpos getmaxposx effsize tmp xmaxpos xmaxpos xeffsize xeffsize tmp Function returns the index of the largest element in the array x int getmaxposint x int effsize int i maxpos for i i effsize i maxpos xi xmaxpos i maxpos return maxpos Function prints an integer array of size lim void printarayint x int lim int i for i i lim i printfd xi Figure
Recommended publications
  • Lecture 11: Heapsort & Its Analysis
    Lecture 11: Heapsort & Its Analysis Agenda: • Heap recall: – Heap: definition, property – Max-Heapify – Build-Max-Heap • Heapsort algorithm • Running time analysis Reading: • Textbook pages 127 – 138 1 Lecture 11: Heapsort (Binary-)Heap data structure (recall): • An array A[1..n] of n comparable keys either ‘≥’ or ‘≤’ • An implicit binary tree, where – A[2j] is the left child of A[j] – A[2j + 1] is the right child of A[j] j – A[b2c] is the parent of A[j] j • Keys satisfy the max-heap property: A[b2c] ≥ A[j] • There are max-heap and min-heap. We use max-heap. • A[1] is the maximum among the n keys. • Viewing heap as a binary tree, height of the tree is h = blg nc. Call the height of the heap. [— the number of edges on the longest root-to-leaf path] • A heap of height k can hold 2k —— 2k+1 − 1 keys. Why ??? Since lg n − 1 < k ≤ lg n ⇐⇒ n < 2k+1 and 2k ≤ n ⇐⇒ 2k ≤ n < 2k+1 2 Lecture 11: Heapsort Max-Heapify (recall): • It makes an almost-heap into a heap. • Pseudocode: procedure Max-Heapify(A, i) **p 130 **turn almost-heap into a heap **pre-condition: tree rooted at A[i] is almost-heap **post-condition: tree rooted at A[i] is a heap lc ← leftchild(i) rc ← rightchild(i) if lc ≤ heapsize(A) and A[lc] > A[i] then largest ← lc else largest ← i if rc ≤ heapsize(A) and A[rc] > A[largest] then largest ← rc if largest 6= i then exchange A[i] ↔ A[largest] Max-Heapify(A, largest) • WC running time: lg n.
    [Show full text]
  • Quick Sort Algorithm Song Qin Dept
    Quick Sort Algorithm Song Qin Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901 ABSTRACT each iteration. Repeat this on the rest of the unsorted region Given an array with n elements, we want to rearrange them in without the first element. ascending order. In this paper, we introduce Quick Sort, a Bubble sort works as follows: keep passing through the list, divide-and-conquer algorithm to sort an N element array. We exchanging adjacent element, if the list is out of order; when no evaluate the O(NlogN) time complexity in best case and O(N2) exchanges are required on some pass, the list is sorted. in worst case theoretically. We also introduce a way to approach the best case. Merge sort [4] has a O(NlogN) time complexity. It divides the 1. INTRODUCTION array into two subarrays each with N/2 items. Conquer each Search engine relies on sorting algorithm very much. When you subarray by sorting it. Unless the array is sufficiently small(one search some key word online, the feedback information is element left), use recursion to do this. Combine the solutions to brought to you sorted by the importance of the web page. the subarrays by merging them into single sorted array. 2 Bubble, Selection and Insertion Sort, they all have an O(N2) time In Bubble sort, Selection sort and Insertion sort, the O(N ) time complexity that limits its usefulness to small number of element complexity limits the performance when N gets very big. no more than a few thousand data points.
    [Show full text]
  • Binary Search
    UNIT 5B Binary Search 15110 Principles of Computing, 1 Carnegie Mellon University - CORTINA Course Announcements • Sunday’s review sessions at 5‐7pm and 7‐9 pm moved to GHC 4307 • Sample exam available at the SCHEDULE & EXAMS page http://www.cs.cmu.edu/~15110‐f12/schedule.html 15110 Principles of Computing, 2 Carnegie Mellon University - CORTINA 1 This Lecture • A new search technique for arrays called binary search • Application of recursion to binary search • Logarithmic worst‐case complexity 15110 Principles of Computing, 3 Carnegie Mellon University - CORTINA Binary Search • Input: Array A of n unique elements. – The elements are sorted in increasing order. • Result: The index of a specific element called the key or nil if the key is not found. • Algorithm uses two variables lower and upper to indicate the range in the array where the search is being performed. – lower is always one less than the start of the range – upper is always one more than the end of the range 15110 Principles of Computing, 4 Carnegie Mellon University - CORTINA 2 Algorithm 1. Set lower = ‐1. 2. Set upper = the length of the array a 3. Return BinarySearch(list, key, lower, upper). BinSearch(list, key, lower, upper): 1. Return nil if the range is empty. 2. Set mid = the midpoint between lower and upper 3. Return mid if a[mid] is the key you’re looking for. 4. If the key is less than a[mid], return BinarySearch(list,key,lower,mid) Otherwise, return BinarySearch(list,key,mid,upper). 15110 Principles of Computing, 5 Carnegie Mellon University - CORTINA Example
    [Show full text]
  • COSC 311: ALGORITHMS HW1: SORTING Due Friday, September 22, 12Pm
    COSC 311: ALGORITHMS HW1: SORTING Due Friday, September 22, 12pm In this assignment you will implement several sorting algorithms and compare their relative per- formance. The sorting algorithms you will consider are: 1. Insertion sort 2. Selection sort 3. Heapsort 4. Mergesort 5. Quicksort We will discuss all of these algorithms in class. You should run your experiments on the department servers, remus/romulus (if you would like to write your code on another machine that is fine, but make sure you run the actual tim- ing experiments on remus/romulus). Instructions for how to access the servers can be found on the CS department web page under “Computing Resources.” If you are a Five College stu- dent who has previously taken an Amherst CS course or who enrolled during preregistration last spring, you should have an account already set up (you may need to change your password; go to https://www.amherst.edu/help/passwords). If you don’t already have an account, you can request one at https://sysaccount.amherst.edu/sysaccount/CoursePetition.asp. It will take a day to create the new account, so please do this right away. Please type up your responses to the questions below. I recommend using LATEX, which is a type- setting language that makes it easy to make math look good. If you’re not already familiar with it, I encourage you to practice! Your tasks: 1) Theoretical predictions. Rank the five sorting algorithms in order of how you expect their run- times to compare (fastest to slowest). Your ranking should be based on the asymptotic analysis of the algorithms.
    [Show full text]
  • Sorting Algorithms
    Sorting Algorithms Next to storing and retrieving data, sorting of data is one of the more common algorithmic tasks, with many different ways to perform it. Whenever we perform a web search and/or view statistics at some website, the presented data has most likely been sorted in some way. In this lecture and in the following lectures we will examine several different ways of sorting. The following are some reasons for investigating several of the different algorithms (as opposed to one or two, or the \best" algorithm). • There exist very simply understood algorithms which, although for large data sets behave poorly, perform well for small amounts of data, or when the range of the data is sufficiently small. • There exist sorting algorithms which have shown to be more efficient in practice. • There are still yet other algorithms which work better in specific situations; for example, when the data is mostly sorted, or unsorted data needs to be merged into a sorted list (for example, adding names to a phonebook). 1 Counting Sort Counting sort is primarily used on data that is sorted by integer values which fall into a relatively small range (compared to the amount of random access memory available on a computer). Without loss of generality, we can assume the range of integer values is [0 : m], for some m ≥ 0. Now given array a[0 : n − 1] the idea is to define an array of lists l[0 : m], scan a, and, for i = 0; 1; : : : ; n − 1 store element a[i] in list l[v(a[i])], where v is the function that computes an array element's sorting value.
    [Show full text]
  • Sorting Algorithms Properties Insertion Sort Binary Search
    Sorting Algorithms Properties Insertion Sort Binary Search CSE 3318 – Algorithms and Data Structures Alexandra Stefan University of Texas at Arlington 9/14/2021 1 Summary • Properties of sorting algorithms • Sorting algorithms – Insertion sort – Chapter 2 (CLRS) • Indirect sorting - (Sedgewick Ch. 6.8 ‘Index and Pointer Sorting’) • Binary Search – See the notation conventions (e.g. log2N = lg N) • Terminology and notation: – log2N = lg N – Use interchangeably: • Runtime and time complexity • Record and item 2 Sorting 3 Sorting • Sort an array, A, of items (numbers, strings, etc.). • Why sort it? – To use in binary search. – To compute rankings, statistics (min/max, top-10, top-100, median). – Check that there are no duplicates – Set intersection and union are easier to perform between 2 sorted sets – …. • We will study several sorting algorithms, – Pros/cons, behavior . • Insertion sort • If time permits, we will cover selection sort as well. 4 Properties of sorting • Stable: – It does not change the relative order of items whose keys are equal. • Adaptive: – The time complexity will depend on the input • E.g. if the input data is almost sorted, it will run significantly faster than if not sorted. • see later insertion sort vs selection sort. 5 Other aspects of sorting • Time complexity: worst/best/average • Number of data moves: copy/swap the DATA RECORDS – One data move = 1 copy operation of a complete data record – Data moves are NOT updates of variables independent of record size (e.g. loop counter ) • Space complexity: Extra Memory used – Do NOT count the space needed to hold the INPUT data, only extra space (e.g.
    [Show full text]
  • Binary Search Algorithm Anthony Lin¹* Et Al
    WikiJournal of Science, 2019, 2(1):5 doi: 10.15347/wjs/2019.005 Encyclopedic Review Article Binary search algorithm Anthony Lin¹* et al. Abstract In In computer science, binary search, also known as half-interval search,[1] logarithmic search,[2] or binary chop,[3] is a search algorithm that finds a position of a target value within a sorted array.[4] Binary search compares the target value to an element in the middle of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in logarithmic time in the worst case, making 푂(log 푛) comparisons, where 푛 is the number of elements in the array, the 푂 is ‘Big O’ notation, and 푙표푔 is the logarithm.[5] Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are spe- cialized data structures designed for fast searching, such as hash tables, that can be searched more efficiently than binary search. However, binary search can be used to solve a wider range of problems, such as finding the next- smallest or next-largest element in the array relative to the target even if it is absent from the array. There are numerous variations of binary search.
    [Show full text]
  • Sorting Algorithms
    Sorting Algorithms Chapter 12 Our first sort: Selection Sort • General Idea: min SORTED UNSORTED SORTED UNSORTED What is the invariant of this sort? Selection Sort • Let A be an array of n ints, and we wish to sort these keys in non-decreasing order. • Algorithm: for i = 0 to n-2 do find j, i < j < n-1, such that A[j] < A[k], k, i < k < n-1. swap A[j] with A[i] • This algorithm works in place, meaning it uses its own storage to perform the sort. Selection Sort Example 66 44 99 55 11 88 22 77 33 11 44 99 55 66 88 22 77 33 11 22 99 55 66 88 44 77 33 11 22 33 55 66 88 44 77 99 11 22 33 44 66 88 55 77 99 11 22 33 44 55 88 66 77 99 11 22 33 44 55 66 88 77 99 11 22 33 44 55 66 77 88 99 11 22 33 44 55 66 77 88 99 Selection Sort public static void sort (int[] data, int n) { int i,j,minLocation; for (i=0; i<=n-2; i++) { minLocation = i; for (j=i+1; j<=n-1; j++) if (data[j] < data[minLocation]) minLocation = j; swap(data, minLocation, i); } } Run time analysis • Worst Case: Search for 1st min: n-1 comparisons Search for 2nd min: n-2 comparisons ... Search for 2nd-to-last min: 1 comparison Total comparisons: (n-1) + (n-2) + ... + 1 = O(n2) • Average Case and Best Case: O(n2) also! (Why?) Selection Sort (another algorithm) public static void sort (int[] data, int n) { int i, j; for (i=0; i<=n-2; i++) for (j=i+1; j<=n-1; j++) if (data[j] < data[i]) swap(data, i, j); } Is this any better? Insertion Sort • General Idea: SORTED UNSORTED SORTED UNSORTED What is the invariant of this sort? Insertion Sort • Let A be an array of n ints, and we wish to sort these keys in non-decreasing order.
    [Show full text]
  • Challenge 1: Pair Insertion Sort
    VerifyThis – Competition, Uppsala 2017 Challenge 1: Pair Insertion Sort Although it is an algorithm with O(n²) complexity, this sorting algorithm is used in modern library implementations. When dealing with smaller numbers of elements, insertion sorts performs better than, e.g., quicksort due to a lower overhead. It can be implemented more efficiently if the array traversal (and rearrangement) is not repeated for every element individually. A Pair Insertion Sort in which two elements are handled at a time is used by Oracle's implementation of the Java Development Kit (JDK) for sorting primitive values. In the following code snippet a is the array to be sorted, and the integer variables left and right are valid indices into a that set the range to be sorted. for (int k = left; ++left <= right; k = ++left) { int a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } int last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; (in DualPivotQuicksort.java line 245ff, used for java.util.Arrays.sort(int[]) ) (This is an optimised version which uses the borders a[left] and a[right] as sentinels.) While the problem is proposed here as a Java implementation, the challenge does not use specific language features and can be formulated in other languages easily. VerifyThis – Competition, Uppsala 2017 A simplified variant of the algorithm in pseudo code for sorting an array A whose indices
    [Show full text]
  • Unit 5 Searching and Sorting Algorithms
    Sri vidya college of engineering and technology course material UNIT 5 SEARCHING AND SORTING ALGORITHMS INTRODUCTION TO SEARCHING ALGORITHMS Searching is an operation or a technique that helps finds the place of a given element or value in the list. Any search is said to be successful or unsuccessful depending upon whether the element that is being searched is found or not. Some of the standard searching technique that is being followed in data structure is listed below: 1. Linear Search 2. Binary Search LINEAR SEARCH Linear search is a very basic and simple search algorithm. In Linear search, we search an element or value in a given array by traversing the array from the starting, till the desired element or value is found. It compares the element to be searched with all the elements present in the array and when the element is matched successfully, it returns the index of the element in the array, else it return -1. Linear Search is applied on unsorted or unordered lists, when there are fewer elements in a list. For Example, Linear Search 10 14 19 26 27 31 33 35 42 44 = 33 Algorithm Linear Search ( Array A, Value x) Step 1: Set i to 1 Step 2: if i > n then go to step 7 Step 3: if A[i] = x then go to step 6 Step 4: Set i to i + 1 Step 5: Go to Step 2 EC 8393/Fundamentals of data structures in C unit 5 Step 6: Print Element x Found at index i and go to step 8 Step 7: Print element not found Step 8: Exit Pseudocode procedure linear_search (list, value) for each item in the list if match item == value return the item‟s location end if end for end procedure Features of Linear Search Algorithm 1.
    [Show full text]
  • Introduction to Algorithms, Third Edition
    Introduction to Algorithms Third Edition IFoundations Introduction This part will start you thinking about designing and analyzing algorithms. It is intended to be a gentle introduction to how we specify algorithms, some of the design strategies we will use throughout this book, and many of the fundamental ideas used in algorithm analysis. Later parts of this book will build upon this base. Chapter 1 provides an overview of algorithms and their place in modern com- puting systems. This chapter defines what an algorithm is and lists some examples. It also makes a case that we should consider algorithms as a technology, along- side technologies such as fast hardware, graphical user interfaces, object-oriented systems, and networks. In Chapter 2, we see our first algorithms, which solve the problem of sorting asequenceofn numbers. They are written in a pseudocode which, although not directly translatable to any conventional programming language, conveys the struc- ture of the algorithm clearly enough that you should be able to implement it in the language of your choice. The sorting algorithms we examine are insertion sort, which uses an incremental approach, and merge sort, which uses a recursive tech- nique known as “divide-and-conquer.” Although the time each requires increases with the value of n,therateofincreasediffersbetweenthetwoalgorithms.We determine these running times in Chapter 2, and we develop a useful notation to express them. Chapter 3 precisely defines this notation, which we call asymptotic notation. It starts by defining several asymptotic notations, which we use for bounding algo- rithm running times from above and/or below. The rest of Chapter 3 is primarily apresentationofmathematicalnotation,moretoensurethatyouruseofnotation matches that in this book than to teach you new mathematical concepts.
    [Show full text]
  • Algorithms ROBERT SEDGEWICK | KEVIN WAYNE
    Algorithms ROBERT SEDGEWICK | KEVIN WAYNE 2.2 MERGESORT ‣ mergesort ‣ bottom-up mergesort Algorithms ‣ sorting complexity FOURTH EDITION ‣ divide-and-conquer ROBERT SEDGEWICK | KEVIN WAYNE https://algs4.cs.princeton.edu Last updated on 9/26/19 4:36 AM Two classic sorting algorithms: mergesort and quicksort Critical components in the world’s computational infrastructure. Full scientific understanding of their properties has enabled us to develop them into practical system sorts. Quicksort honored as one of top 10 algorithms of 20th century in science and engineering. Mergesort. [this lecture] ... Quicksort. [next lecture] ... 2 2.2 MERGESORT ‣ mergesort ‣ bottom-up mergesort Algorithms ‣ sorting complexity ‣ divide-and-conquer ROBERT SEDGEWICK | KEVIN WAYNE https://algs4.cs.princeton.edu Mergesort Basic plan. Divide array into two halves. Recursively sort each half. Merge two halves. input M E R G E S O R T E X A M P L E sort left half E E G M O R R S T E X A M P L E sort right half E E G M O R R S A E E L M P T X merge results A E E E E G L M M O P R R S T X Mergesort overview 4 Abstract in-place merge demo Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi]. lo mid mid+1 hi a[] E E G M R A C E R T sorted sorted 5 Mergesort: Transylvanian–Saxon folk dance http://www.youtube.com/watch?v=XaqR3G_NVoo 6 Merging: Java implementation private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) { for (int k = lo; k <= hi; k++) copy aux[k] = a[k]; int i = lo, j = mid+1; merge for (int k = lo; k <= hi; k++) { if (i > mid) a[k] = aux[j++]; else if (j > hi) a[k] = aux[i++]; else if (less(aux[j], aux[i])) a[k] = aux[j++]; else a[k] = aux[i++]; } } lo i mid j hi aux[] A G L O R H I M S T k a[] A G H I L M 7 Mergesort quiz 1 How many calls does merge() make to less() in order to merge two sorted subarrays, each of length n / 2, into a sorted array of length n? A.
    [Show full text]