Programming in Logic Without Logic Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Probabilistic Event Calculus for Event Recognition
A Probabilistic Event Calculus for Event Recognition ANASTASIOS SKARLATIDIS1;2, GEORGIOS PALIOURAS1, ALEXANDER ARTIKIS1 and GEORGE A. VOUROS2, 1Institute of Informatics and Telecommunications, NCSR “Demokritos”, 2Department of Digital Systems, University of Piraeus Symbolic event recognition systems have been successfully applied to a variety of application domains, extracting useful information in the form of events, allowing experts or other systems to monitor and respond when significant events are recognised. In a typical event recognition application, however, these systems often have to deal with a significant amount of uncertainty. In this paper, we address the issue of uncertainty in logic-based event recognition by extending the Event Calculus with probabilistic reasoning. Markov Logic Networks are a natural candidate for our logic-based formalism. However, the temporal semantics of the Event Calculus introduce a number of challenges for the proposed model. We show how and under what assumptions we can overcome these problems. Additionally, we study how probabilistic modelling changes the behaviour of the formalism, affecting its key property, the inertia of fluents. Furthermore, we demonstrate the advantages of the probabilistic Event Calculus through examples and experiments in the domain of activity recognition, using a publicly available dataset for video surveillance. Categories and Subject Descriptors: I.2.3 [Deduction and Theorem Proving]: Uncertainty, “fuzzy,” and probabilistic reasoning; I.2.4 [Knowledge Representation Formalisms and Methods]: Temporal logic; I.2.6 [Learning]: Parameter learning; I.2.10 [Vision and Scene Understanding]: Video analysis General Terms: Complex Event Processing, Event Calculus, Markov Logic Networks Additional Key Words and Phrases: Events, Probabilistic Inference, Machine Learning, Uncertainty ACM Reference Format: Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis and George A. -
Functional and Logic Programming - Wolfgang Schreiner
COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner FUNCTIONAL AND LOGIC PROGRAMMING Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz), Johannes Kepler University, A-4040 Linz, Austria, [email protected]. Keywords: declarative programming, mathematical functions, Haskell, ML, referential transparency, term reduction, strict evaluation, lazy evaluation, higher-order functions, program skeletons, program transformation, reasoning, polymorphism, functors, generic programming, parallel execution, logic formulas, Horn clauses, automated theorem proving, Prolog, SLD-resolution, unification, AND/OR tree, constraint solving, constraint logic programming, functional logic programming, natural language processing, databases, expert systems, computer algebra. Contents 1. Introduction 2. Functional Programming 2.1 Mathematical Foundations 2.2 Programming Model 2.3 Evaluation Strategies 2.4 Higher Order Functions 2.5 Parallel Execution 2.6 Type Systems 2.7 Implementation Issues 3. Logic Programming 3.1 Logical Foundations 3.2. Programming Model 3.3 Inference Strategy 3.4 Extra-Logical Features 3.5 Parallel Execution 4. Refinement and Convergence 4.1 Constraint Logic Programming 4.2 Functional Logic Programming 5. Impacts on Computer Science Glossary BibliographyUNESCO – EOLSS Summary SAMPLE CHAPTERS Most programming languages are models of the underlying machine, which has the advantage of a rather direct translation of a program statement to a sequence of machine instructions. Some languages, however, are based on models that are derived from mathematical theories, which has the advantages of a more concise description of a program and of a more natural form of reasoning and transformation. In functional languages, this basis is the concept of a mathematical function which maps a given argument values to some result value. -
Learning Effect Axioms Via Probabilistic Logic Programming
Learning Effect Axioms via Probabilistic Logic Programming Rolf Schwitter Department of Computing, Macquarie University, Sydney NSW 2109, Australia [email protected] Abstract Events have effects on properties of the world; they initiate or terminate these properties at a given point in time. Reasoning about events and their effects comes naturally to us and appears to be simple, but it is actually quite difficult for a machine to work out the relationships between events and their effects. Traditionally, effect axioms are assumed to be given for a particular domain and are then used for event recognition. We show how we can automatically learn the structure of effect axioms from example interpretations in the form of short dialogue sequences and use the resulting axioms in a probabilistic version of the Event Calculus for query answering. Our approach is novel, since it can deal with uncertainty in the recognition of events as well as with uncertainty in the relationship between events and their effects. The suggested probabilistic Event Calculus dialect directly subsumes the logic-based dialect and can be used for exact as well as a for inexact inference. 1998 ACM Subject Classification D.1.6 Logic Programming Keywords and phrases Effect Axioms, Event Calculus, Event Recognition, Probabilistic Logic Programming, Reasoning under Uncertainty Digital Object Identifier 10.4230/OASIcs.ICLP.2017.8 1 Introduction The Event Calculus [9] is a logic language for representing events and their effects and provides a logical foundation for a number of reasoning tasks [13, 24]. Over the years, different versions of the Event Calculus have been successfully used in various application domains; amongst them for temporal database updates, for robot perception and for natural language understanding [12, 13]. -
By Robert Kowalski
Edinburgh Research Explorer Review of "Computational logic and human thinking: How to be artificially intelligent" by Robert Kowalski Citation for published version: Bundy, A 2012, 'Review of "Computational logic and human thinking: How to be artificially intelligent" by Robert Kowalski', Artificial Intelligence, vol. 191-192, pp. 96-97. https://doi.org/10.1016/j.artint.2012.05.006 Digital Object Identifier (DOI): 10.1016/j.artint.2012.05.006 Link: Link to publication record in Edinburgh Research Explorer Document Version: Early version, also known as pre-print Published In: Artificial Intelligence General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Review of \Computational Logic and Human Thinking: How to be Artificially Intelligent" by Robert Kowalski Alan Bundy School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton St, Edinburgh, EH8 9AB, Scotland 1 August 2012 Abstract This is a review of the book \Computational Logic and Human Thinking: How to be Artificially Intelligent" by Robert Kowalski. Keywords: computational logic, human thinking, book review. -
Belgium a Logic Meta-Programming Framework for Supporting The
Vrije Universiteit Brussel - Belgium Faculty of Sciences In Collaboration with Ecole des Mines de Nantes - France 2003 ERSITEIT IV B N R U U S E S J I E R L V S C S I E A N R B T E IA N VIN TE CERE ECOLE DES MINES DE NANTES A Logic Meta-Programming Framework for Supporting the Refactoring Process A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science (Thesis research conducted in the EMOOSE exchange) By: Francisca Mu˜nozBravo Promotor: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel) Co-Promotors: Dr. Tom Tourw´eand Dr. Tom Mens (Vrije Universiteit Brussel) Abstract The objective of this thesis is to provide automated support for recognizing design flaws in object oriented code, suggesting proper refactorings and performing automatically the ones selected by the user. Software suffers from inevitable changes throughout the development and the maintenance phase, and this usually affects its internal structure negatively. This makes new changes diffi- cult to implement and the code drifts away from the original design. The introduced structural disorder can be countered by applying refactorings, a kind of code transformation that improves the internal structure without affecting the behavior of the application. There are several tools that support applying refactorings in an automated way, but little help for deciding where to apply a refactoring and which refactoring could be applied. This thesis presents an advanced refactoring tool that provides support for the earlier phases of the refactoring process, by detecting and analyzing bad code smells in a software application, proposing appropriate refactorings that solve these smells, and letting the user decide which one to apply. -
A Logic-Based Calculus of Events
10 A Logic-based Calculus of Events ROBERT KOWALSKI and MAREK SERGOT 1 introduction Formal Logic can be used to represent knowledge of many kinds for many purposes. It can be used to formalize programs, program specifications, databases, legislation, and natural language in general. For many such applications of logic a representation of time is necessary. Although there have been several attempts to formalize the notion of time in classical first-order logic, it is still widely believed that classical logic is not adequate for the representation of time and that some form of non-classical Temporal Logic is needed. In this paper, we shall outline a treatment of time, based on the notion of event, formalized in the Horn clause subset of classical logic augmented with negation as failure. The resulting formalization is executable as a logic program. We use the term ‘‘event calculus’’ to relate it to the well-known ‘‘situation calculus’’ (McCarthy and Hayes 1969). The main difference between the two is conceptual: the situation calculus deals with global states whereas the event calculus deals with local events and time periods. Like the event calculus, the situation calculus can be formalized by means of Horn clauses augmented with negation by failure (Kowalski 1979). The main intended applications investigated in this paper are the updating of data- bases and narrative understanding. In order to treat both cases uniformly we have taken the view that an update consists of the addition of new knowledge to a knowledge base. The effect of explicit deletion of information in conventional databases is obtained without deletion by adding new knowledge about the end of the period of time for which the information holds. -
7. Logic Programming in Prolog
Artificial Intelligence 7. Logic Programming in Prolog Prof. Bojana Dalbelo Baˇsi´c Assoc. Prof. Jan Snajderˇ University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2019/2020 Creative Commons Attribution{NonCommercial{NoDerivs 3.0 v1.10 Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 1 / 38 Outline 1 Logic programming and Prolog 2 Inference on Horn clauses 3 Programming in Prolog 4 Non-declarative aspects of Prolog Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 2 / 38 Outline 1 Logic programming and Prolog 2 Inference on Horn clauses 3 Programming in Prolog 4 Non-declarative aspects of Prolog Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 3 / 38 Logic programming Logic programming: use of logic inference as a way of programming Main idea: define the problem in terms of logic formulae, then let the computer do the problem solving (program execution = inference) This is a typical declarative programming approach: express the logic of computation, don't bother with the control flow We focus on the description of the problem (declarative), rather than on how the program is executed (procedural) However, we still need some flow control mechanism, thus: Algorithm = Logic + Control Different from automated theorem proving because: 1 explicit control flow is hard-wired into the program 2 not the full expressivity of FOL is supported Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 4 / 38 Refresher: Declarative programming -
Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint Answer Set Programming?
Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint Answer Set Programming? Joaqu´ınArias1;2, Zhuo Chen3, Manuel Carro1;2, and Gopal Gupta3 1 IMDEA Software Institute 2 Universidad Polit´ecnicade Madrid [email protected], [email protected],upm.esg 3 University of Texas at Dallas fzhuo.chen,[email protected] Abstract. Automated commonsense reasoning is essential for building human-like AI systems featuring, for example, explainable AI. Event Cal- culus (EC) is a family of formalisms that model commonsense reasoning with a sound, logical basis. Previous attempts to mechanize reasoning using EC faced difficulties in the treatment of the continuous change in dense domains (e.g., time and other physical quantities), constraints among variables, default negation, and the uniform application of differ- ent inference methods, among others. We propose the use of s(CASP), a query-driven, top-down execution model for Predicate Answer Set Pro- gramming with Constraints, to model and reason using EC. We show how EC scenarios can be naturally and directly encoded in s(CASP) and how its expressiveness makes it possible to perform deductive and abductive reasoning tasks in domains featuring, for example, constraints involving dense time and fluents. Keywords: ASP · goal-directed · Event Calculus · Constraints 1 Introduction The ability to model continuous characteristics of the world is essential for Com- monsense Reasoning (CR) in many domains that require dealing with continu- ous change: time, the height of a falling object, the gas level of a car, the water level in a sink, etc. Event Calculus (EC) is a formalism based on many-sorted predicate logic [13, 23] that can represent continuous change and capture the commonsense law of inertia, whose modeling is a pervasive problem in CR. -
Logic Programming Lecture 19 Tuesday, April 5, 2016 1 Logic Programming 2 Prolog
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages Logic programming Lecture 19 Tuesday, April 5, 2016 1 Logic programming Logic programming has its roots in automated theorem proving. Logic programming differs from theorem proving in that logic programming uses the framework of a logic to specify and perform computation. Essentially, a logic program computes values, using mechanisms that are also useful for deduction. Logic programming typically restricts itself to well-behaved fragments of logic. We can think of logic programs as having two interpretations. In the declarative interpretation, a logic pro- gram declares what is being computed. In the procedural interpretation, a logic program program describes how a computation takes place. In the declarative interpretation, one can reason about the correctness of a program without needing to think about underlying computation mechanisms; this makes declarative programs easier to understand, and to develop. A lot of the time, once we have developed a declarative program using a logic programming language, we also have an executable specification, that is, a procedu- ral interpretation that tells us how to compute what we described. This is one of the appealing features of logic programming. (In practice, executable specifications obtained this way are often inefficient; an under- standing of the underlying computational mechanism is needed to make the execution of the declarative program efficient.) We’ll consider some of the concepts of logic programming by considering the programming language Prolog, which was developed in the early 70s, initially as a programming language for natural language processing. 2 Prolog We start by introducing some terminology and syntax. -
Variants of the Event Calculus
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2519366 Variants of the Event Calculus Article · October 2000 Source: CiteSeer CITATIONS READS 42 88 2 authors: Fariba Sadri Robert Kowalski Imperial College London Imperial College London 114 PUBLICATIONS 2,761 CITATIONS 154 PUBLICATIONS 12,446 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Non-modal deontic logic View project SOCS - Societies of Computees View project All content following this page was uploaded by Fariba Sadri on 12 September 2014. The user has requested enhancement of the downloaded file. Variants of the Event Calculus ICLP 95 Fariba Sadri and Robert Kowalski Department of Computing, Imperial College of Science, Technology and Medicine, 180, Queens Gate, London SW7 2BZ [email protected] [email protected] Abstract The event calculus was proposed as a formalism for reasoning about time and events. Through the years, however, a much simpler variant (SEC) of the original calculus (EC) has proved more useful in practice. We argue that EC has the advantage of being more general than SEC, but the disadvantage of being too complex and in some cases erroneous. SEC has the advantage of simplicity, but the disadvantage of being too specialised. This paper has two main objectives. The first is to show the formal relationship between the two calculi. The second is to propose a new variant (NEC) of the event calculus, which is essentially SEC in iff-form augmented with integrity constraints, and to argue that NEC combines the generality of EC with the simplicity of SEC. -
Inconsistency Robustness for Logic Programs Carl Hewitt
Inconsistency Robustness for Logic Programs Carl Hewitt To cite this version: Carl Hewitt. Inconsistency Robustness for Logic Programs. Inconsistency Robustness, 2015, 978-1- 84890-159. hal-01148496v6 HAL Id: hal-01148496 https://hal.archives-ouvertes.fr/hal-01148496v6 Submitted on 27 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Inconsistency Robustness for Logic Programs Carl Hewitt This article is dedicated to Alonzo Church and Stanisław Jaśkowski Abstract This article explores the role of Inconsistency Robustness in the history and theory of Logic Programs. Inconsistency Robustness has been a continually recurring issue in Logic Programs from the beginning including Church's system developed in the early 1930s based on partial functions (defined in the lambda calculus) that he thought would allow development of a general logic without the kind of paradoxes that had plagued earlier efforts by Frege, etc.1 Planner [Hewitt 1969, 1971] was a kind of hybrid between the procedural and logical paradigms in that it featured a procedural embedding of logical sentences in that an implication of the form (p implies q) can be procedurally embedded in the following ways: Forward chaining When asserted p, Assert q When asserted q, Assert p Backward chaining When goal q, SetGoal p When goal p, SetGoal q Developments by different research groups in the fall of 1972 gave rise to a controversy over Logic Programs that persists to this day in the form of following alternatives: 1. -
Chapter 11. Knowledge Representation and Reasoning the Quest for Artificial Intelligence, Nilsson, N
Chapter 11. Knowledge Representation and Reasoning The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence Summarized by Ha, Jung-Woo and Lee, Beom-Jin Biointelligence Laboratory School of Computer Science and Engineering Seoul National Univertisy http://bi.snu.ac.kr Contents 11.1 Deductions in Symbolic Logic Deductions in Symbolic Logic 11.2 The Situation Calculus The Situation Calculus 11.3 Logic Programming Logic Programming 11.4 Semantic Networks Semantic Networks 11.5 Scripts and Frames Scripts and Frames Appendix © 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 2 Overview Methods for knowledge representation and reasoning from Mid-1960s and Mid-1970s Symbolic logic and its deductions Predicate calculus For proving theories Situation calculus Logic programming: PROLOG Sematic networks: HAM, MEMS, MENTAL Script and Frames © 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 3 Introduction Knowledge For intelligent system The mean to draw conclusion from or act on Knowledge representation Procedural Coordinate and control the specific action (ex. hitting a tennis ball) Programs using the knowledge Specific task program Declarative Declarative sentence (I am a 25 years old) Symbolic structures General task program © 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 4 Chapter 11. Knowledge Representation and Reasoning 11.1 Deductions in Symbolic Logic © 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 5 Deductions in Symbolic Logic The predicate calculus From Aristotle to G. Boole and McCarthy Ex. Aristotle syllogism 1. (∀ x)[Man(x) ⊃ Mortal(x)] (The expression “(∀ x)” is a way of writing “for all x”; and the expression “⊃” is a way of writing "implies that." “Man(x)” is a way of writing “x is a man”; and “Mortal(x)” is a way of writing “x is mortal.” Thus, the entire expression is a way of writing “for all x, x is a man implies that x is mortal” or, equivalently, “all men are mortal.”) 2.