<<

Graviton Quantum Tree Graphs

Master’s thesis at the Faculty of of the Ludwig-Maximilians-Universität München

submitted by Ottavia Balducci

Title: Quantum Tree Graphs Author: Ottavia Balducci Department: Faculty of Physics, Ludwig-Maximilians-University Supervisor: Prof. Dr. Hofmann Abstract: The Schwarzschild metric is a well known solution to the Einstein field equations, when considering a spherically symmetric , with no charge or angular . In this thesis we consider two quantum field theory approaches for computing the vacuum ex- pectation value of the graviton, in the presence of the source of the Schwarzschild model. The first one is the straightforward calculation of the S-matrix element, which requires com- puting the 3-. The second one avoids this inconvenient calculation, by going directly to the equations of mo- tion and solving them iteratively. Each iteration corresponds to considering a new diagram contribution to the .

CONTENTS i

Contents

1 Introduction 1

2 The Schwarzschild solution and mass 3 2.1 Genericclassicalsolution ...... 3 2.1.1 The generic spherically symmetric metric tensor ...... 3 2.1.2 TheEinsteintensor...... 5 2.1.3 Energy-momentum tensor and mass renormalization ...... 7 2.1.4 Mass renormalization for a generic energy-momentum tensor ...... 11 2.2 SolutioninthedeDondergauge...... 11 2.2.1 DeDondergaugecondition ...... 11 2.2.2 Solution ...... 12 2.2.3 Finalresult ...... 13

3 theory approach to 15 3.1 Lagrangianandgaugeimplementation ...... 16 3.1.1 Einstein-Hilbertaction ...... 16 3.1.2 Gaugefixing...... 18 3.2 Thefreepropagator ...... 19 3.3 3-gravitoninteraction...... 20 3.3.1 Firstmethod ...... 21 3.3.2 Secondmethod ...... 23 3.3.3 Resultfromtheliterature ...... 24 3.4 Preliminary considerations on the vacuum expectation value ...... 24 3.4.1 Externalsource ...... 24 3.4.2 Generic expression for the vacuum expectation value ...... 25 3.4.3 Explicit form of the external gravitational potential...... 27 3.4.4 Someintegrals...... 29 3.5 Explicit computation of the vacuum expectation value ...... 29 3.5.1 00-component...... 30 3.5.2 ij-component ...... 32 3.5.3 Finalreformulationoftheresult ...... 34

4 φµν as the iterative solution to the equations of motion 37 4.1 Reformulation of the Einstein-Hilbert ...... 37 4.2 Variation of SD ...... 39 4.3 Coupling to an external source and corresponding equationsofmotion...... 41 4.4 Iterative solution of the equations of motion ...... 43 4.5 Comparison with the previous results ...... 44 4.5.1 Gaugefixing...... 44 4.5.2 0-thorder ...... 45 4.5.3 1-storder ...... 45 4.5.4 Finalresultandcomparison ...... 46

5 Conclusions 47 ii CONTENTS

A Computation of Goldberg’s expression for the Einstein-Hilbert Lagrangian 49

B Computations for the free 51 B.1 φα1β1 (x) φα2β2 (y) ...... 51 B.2 Proof that Gµνρσ satisfies(3.36) ...... 51

C 3-graviton interaction 52 C.1 Computation of Γ˜ ...... 52 C.2 Computation of the vertex function in position space ...... 53

D Explicit computation of the vacuum expectation value 54 D.1 00-component...... 56 D.2 ij-component ...... 56

E Proof of the relations stated in sections 3.4.3, 3.4.4 and 3.5.3 57 E.1 Proofof(3.86) ...... 57 E.2 Proofof(3.88)and(3.89) ...... 59 E.3 Proofof(3.114)...... 60 E.4 Proofof(3.115)...... 63 E.5 Proofof(3.116)...... 65 E.6 Proofof(3.119) ...... 66

F Calculations leading to (4.49) and (4.50) 67 1

1 Introduction

Since the time of Newton, scientists have always thought of gravity as a force acting between two bodies. The acceleration of a mass was seen as the result of the action of a gravitational field on it and, on the other hand, the gravitational field was expressed as a consequence of the mass configuration present in the universe. This has changed dramatically with the development of Einstein’s theory of General Relativ- ity, which treats gravity as the curvature of in the following sense: curves spacetime and a curved spacetime tells the matter how to move. This is similar to Newton’s theory, in the sense that we have the double role of matter, that is both a source of gravity and is acted upon by it, but it is also fundamentally different, because gravity is no longer treated as a force and it becomes part of the very fabric of our universe. Although Einstein’s field equations look very simple, they are indeed extremely non-linear. The solution of Einstein’s field equations is known only for some particular mass configurations, one of which will be discussed in this thesis. In order to apply to the physical world, it is useful to look at one of the simplest examples that can approximate a physical system, namely that of a perfectly static . To make the model as simple as possible, the star is assumed to be a perfect fluid, i.e. without any shear stresses. The reasonable prediction is that the metric tensor should then be independent of time, that it should be spherically symmetric and that it should be asymp- totically flat, at large distances from the star. The first part of this thesis computes precisely this solution, introducing at the same time the notation and the conventions that will be used throughout the whole work. Also at the beginning of the 20th century, another groundbreaking theory was developed: Quan- tum Mechanics. What started as a theory of a fixed amount of particles described by wave equations was then developed into a theory of fields, where particles are described by the modes of the fields and can be created or annihilated. This is of course the , which unites and . From Quantum Mechanics it takes the procedure and the whole for- malism of observables, while it inherits causality from Relativity. Quantum Field Theory has obtained many successes, the biggest of them being probably Quan- tum Electrodynamics, which is the best fundamental physical theory that we have at the mo- ment. It also paved the way for the Electroweak Theory and for Quantumchromodynamics. But gravity still can’t be included in these conceptual schemes. The focus of the second part of my work is to show, following [1], that it is indeed possible to reconstruct the Schwarzschild solution perturbatively, at least up to order G2, using the Feynman-Dyson expansion known from Quantum Field Theory. The usual gravitational potential of the Schwarzschild problem is recovered as the vacuum ex- pectation value of the graviton in the presence of an appropriate external source. The computations involved using this method are quite lengthy: among other things, the 3- point-vertex function of the graviton, which consists of 171 terms, needs to be determined. A more compact method, which is also more easily extendable to higher orders, is the core of 2 1 INTRODUCTION the third part of this thesis. In it the Einstein field equations are derived in such a way that they can be solved iteratively to get higher orders of perturbation. This yields once more the well known result. 3

2 The Schwarzschild solution and mass renormalization

The first part of the thesis focuses on a detailed derivation of the Schwarzschild solution, fol- lowing the usual approach of general relativity. We introduce the most generic spherically symmetric metric tensor in both spherical and carte- sian coordinates. This ansatz contains unknown functions that can be determined by consid- ering the 00-component of the Einstein field equations. The method of curvature 2-forms proves to be the quickest to compute the 00-component of the Einstein tensor. Then we can make a particular choice for the energy-momentum tensor, corresponding to a spherically symmetric mass density of radius r = ε. At this point we can define two different radii that will turn out to be relevant for the final solution: one is obtained from the length of a circumference on the equatorial plane and is denoted by εc and the other is the proper invariant radial distance, which will be called εr. As the concept of mass is not well defined in general relativity, we need to be careful with it. The bare mass m0 is defined as the along the proper radius of the mass density, while the renormalized mass m is just the mass density, that we are assuming to be constant, multiplied by the volume of a sphere of radius εc. The problem with the bare mass m0 is that then the gravitational potential expressed in these terms is divergent for ε 0. Introducing the renormalized mass m, which is indeed what an observer would measure→ using Kepler’s third law, cures the divergency. The result obtained in this way does not depend on whether the ansatz for the energy- momentum tensor has vanishing pressure or not. In order to determine the last unfixed parts of the metric, we need to choose a gauge. By imposing the de Donder gauge condition we finally arrive at the Schwarzschild solution and can expand it in orders of Newton’s constant G for later comparison. We will use the + + + convention for the Minkowski metric and the following index − labels for the metric tensor in spherical coordinates: 0= t, 1= r, 2= θ and 3= ϕ. 

2.1 Generic classical solution 2.1.1 The generic spherically symmetric metric tensor The goal of this first section is to find a generic classical solution to Einstein’s equations

1 G ν = κ2T ν, (2.1) µ −2 µ where κ2 = 16πG. We can make the following ansatz for a generic spherically symmetric line element

ds2 = F 2dr2 + H2dΩ2 N 2dt2, (2.2) − where dΩ2 = dθ2 + sin2 θdϕ2. 4 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

We can rewrite it in rectangular coordinates using the following relations:

dr2 = x2 + y2 + z2 (xdx + ydy + zdz)2 (2.3)  1 1 dθ2 = z2x2dx2 + z2y2dy2 + x2 + y2 2 dz2 r4 x2 + y2 +z2xydxdyh + z2xydydx zx x2+ y2 dxdz − zx x2 + y2 dzdx zy x2 + y2 dydz zy x2 + y2 dzdy (2.4) − −  −     1 sin2 θdϕ2 = y2dx2 + x2dy2 xydxdy xydydx . (2.5) (x2 + y2) r2 − −  This yields an expression for the line element ds2 with respect to the cartesian coordinates x, y and z. Then the spatial components of the metric can be immediately read off: H2 H2 x2 g = η + F 2 (2.6) xx r2 xx − r2 r2  

H2 H2 y2 g = η + F 2 (2.7) yy r2 yy − r2 r2  

H2 H2 z2 g = η + F 2 (2.8) zz r2 zz − r2 r2  

xy H2 g = g = F 2 (2.9) xy yx r2 − r2  

xz H2 g = g = F 2 (2.10) xz zx r2 − r2  

zy H2 g = g = F 2 (2.11) yz zy r2 − r2   These can be written in the more compact way H2 H2 x x g = η + F 2 i j , (2.12) ij r2 ij − r2 r2   where i and j indicate the cartesian coordinates x, y and z in this case. The 00-component of the metric can be read off immediately: g = N 2. 00 − 2.1 Generic classical solution 5

2.1.2 The Einstein tensor Our goal is now to use this generic form of the metric to compute the 00-component of the Einstein tensor. This allows us to write down the 00-component of the Einstein field equations and then solve it to obtain gµν. To this purpose we use the method of curvature 2-forms. Let us briefly outline the idea of this method, before starting the explicit computations. Given a linear connection , its corresponding curvature tensor is defined by ∇ R (X,Y ) Z = [ , ] Z Z, (2.13) ∇X ∇Y −∇[X,Y ] for some vector fields X,Y,Z Γ(T M). ∈ Let eµ be a coordinate frame. We usually represent the curvature tensor with the curvature { } µ matrix R ν , which satisfies ν R (X,Y ) eµ = R µeν. (2.14) The curvature matrix is the usual Ricci tensor in which we are interested. µ µ After defining ω ν as the matrix of one-forms satisfying X eν = ω ν (X) eµ, Cartan’s equation tells us that ∇ Rµ = dωµ + ωµ ωγ . (2.15) ν ν γ ∧ ν µ Thus all we need to do, in order to compute the Ricci tensor, is determine ω ν . This can be done in the following way. 1 µ µ We consider the 1 -tensor d = eµω , where ω is the basis of one-forms, corresponding   P { } to e . Since we know that d2 =0, we immediately have { µ} P 0 = de ωµ + e dωµ µ ∧ µ = e (ωµ ων + dωµ) , µ ν ∧ µ where we have used deν = ω ν eν. µ This means that the condition needed to determine ω ν is ωµ ων + dωµ =0. (2.16) ν ∧ At this point an appropriate choice of the one-forms ωµ is necessary, to make the computations as easy as possible.

The line element in spherical coordinates can be explicitly written as ds2 = F 2dr2 + H2dθ2 + H2 sin2 (θ) dϕ2 N 2dt2. (2.17) − We can then define the 1-forms: ωt = Ndt

ωr = F dr (2.18) ωθ = Hdθ

ωϕ = H sin θdϕ 6 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

With this notation: 2 ds2 = ωt 2 +(ωr)2 + ωθ +(ωϕ)2 (2.19) − Recalling that the exterior derivative can be computed by

∂ωJ d ′ω dxj1 ... dxjk = ′ dxi dxj1 ... dxjk , (2.20) J ∧ ∧ ∂xi ∧ ∧ ∧ J ! J i X X X we can write down the following two-forms: ′ dωt = N ωr ωt NF ∧ dωr = F˙ ωt ωr NR ∧ (2.21) ′ dωθ = H˙ ωt ωθ + H ωr ωθ HN ∧ HF ∧ ′ dωϕ = H˙ ωt ωϕ + H ωr ωϕ + 1 cot θωθ ωϕ. HN ∧ HF ∧ H ∧ We can then find the connection forms ωµν satisfying (2.16) by choosing 1 ω = (c + c c ) ωα. (2.22) µν 2 µνα µαν − ναµ α γ cµν are the commutation coefficients of the basis and are defined by [eα, eβ]= cαβ eγ. γ γ Note that this implies that cαβ = cβα . γ − µ cαβγ and cαβ are related by: cαβγ = gγµcαβ .

Using the definition of the commutation relation coefficients and dα,u v = ∂u α,u ∂ α,u α, [u, v] for a one-form α and two vectors u and v, oneh can show∧ i that h i − v h i −h i dωα = c αωµ ων. (2.23) − |µν| ∧ From this we see that ω defined as in (2.22) satisfies dωµ + ωµ ων =0. µν ν ∧ α We can use (2.23) to read the non-vanishing cµν ’s directly off of (2.21): ′ ′ c t = N c r = F˙ c θ = H˙ c θ = H tr NF tr − FN tθ − HN rθ − HN

′ c ϕ = H c ϕ = 1 cot(θ) rϕ − HF θϕ − H With these we can calculate ωµν : ′ ω = N ωt F˙ ωr tr − NF − FN ω = H˙ ωθ tθ − HN

H˙ ϕ ωtϕ = HN ω − (2.24) ′ ω = H ωθ rθ − HF ′ ω = H ωϕ rϕ − HF ω = 1 cot(θ) ωϕ θϕ − H 2.1 Generic classical solution 7

β From the definition of the Einstein tensor via the double dual of the Riemann tensor G δ = Rµβ = 1 ǫµβµ1ν1 R µ2ν2 1 ǫ it is easy to see that G 0 = (R12 + R23 + R31 ). µδ 2 µ1ν1 2 µ2ν2µδ 0 − 12 23 31 In order to proceed, we must compute these components of the Riemann tensor. They are µν µν α β µ µ µ α obtained from R = R |αβ|ω ω and R ν = dω ν + ω α ω ν . The result is ∧ ∧

1 F˙ H˙ H′′ H′F ′ Rrθ rθ = 2 + 2 (2.25) FH N − F F ! 1 H˙ 2 H′ 2 Rθϕ = + (2.26) θϕ H2 H2N 2 − H2F 2 1 H′′ H′F ′ F˙ H˙ Rrϕ , rϕ = 2 2 (2.27) −HF " F − F − N # 0 which means that for G0 we can write

1 F˙ H˙ H′′ H′F ′ 1 G 0 0 = 2 + 2 + 2 − FH N − F F ! H H˙ 2 H′ 2 1 H′′ H′F ′ F˙ H˙ . + 2 2 2 2 2 2 (2.28) H N − H F − FH F − F − N !! We are interested in the solution corresponding to a spherically symmetric mass density. This solution wil be in general time dependent, since the mass might be expanding and then recollaps- ing. At the turning point, however, we expect the metric to be locally static, i.e. F˙ = H˙ =0. This will become true at all times once we assume a static mass distribution by allowing a non-vanishing pressure. Under these conditions the final result for the 00-component of the Einstein tensor is:

1 H′ 2 H′′ H′F ′ G 0 = 2 +2 (2.29) 0 − H2 − H2F 2 − HF 2 F 3H   2.1.3 Energy-momentum tensor and mass renormalization

µ µ Now we can pick an explicit energy-momentum tensor. We know: T ν = µu uν. At the turning point we have: uµ = 1000 . Thus from g uµuν = 1 follows: u0u = 1 and µν − 0 −  T 0 = µ (r)= ρθ (ε r) , (2.30) − 0 − 1 ε r 0 where ρ is the density of the cloud of dust and θ is as usual θ (ε r)= − ≥ . − 0 ε r< 0  − Inserting this in (2.1) with the help of (2.29), we get

2 H′ 2 ′ H 1 = 16πGρθ (ε r) . (2.31) H2H′ − F 2 −    8 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

H′ After defining K = F , we can rewrite the equation as 1 H 1 K2 ′ = H2H′16πGρθ (ε r) . (2.32) − 2 −   We can now integrate over r and get two solutions K− and K+, inside and outside of the dust cloud respectively. Inside of the dust cloud, i.e. for x<ε, we get

x H (x) 1 K2 (x) H (0) 1 K2 (0) = H2H′8πGρdr, (2.33) − − − − − Z0   which means, since H (0) = 0,

8πGρ H2 K2 (r)=1 H2 (r)=1 (r) (2.34) − − 3 − R2

2 3 with R = 8πGρ . Outside of the dust cloud, i.e. for x>ε, ε 8πGρ H (x) 1 K2 (x) = H2H′8πGρdr = H3 (ε) , (2.35) − + 3 Z0  which means 8πGρ 1 2Gm K2 (r)=1 H3 (ε) =1 (2.36) + − 3 H (r) − H (r) 4πρ 3 with m = 3 H (ε). We can now define two different radii:

1. The first one is derived from the invariant circumference

2π 2π ds = √gϕϕdϕ = H (ε) dϕ =2πH (ε) . (2.37) Zγ Z0 Z0 π This is the path length of a maximal cicumference, i.e. one with θ = 2 . We see that H (ε) is the radius of this invariant circumference. We denote it by εc = H (ε) . (2.38)

2. The second radius that we can define is the invariant one. It is defined as the distance µ ν from the origin to a point at r = ε. Since the path length is ds = gµνdx dx = √grrdr = F (r) dr in this case, the invariant radius can be computed from p ε εr = F (r) dr. (2.39) Z0

Of course one should be careful and take the interior solution F− (r) for F , since we are integrating inside the dust cloud. 2.1 Generic classical solution 9

2πεc

εr

Figure 1: An embedding diagram of the equatorial plane of a spherically symmetric star with constant mass density. Represented are also the invariant circumference of length 2πεc and the invariant radius of length εr.

These two definitions of radii are represented in Figure 1.

′ F H From − = K− we have RH′ F− = 1 . (2.40) (R2 H2) 2 − The invariant radius is then H(ε) 1 εr = 1 dH (2.41) 2 0 H 2 1 2 Z − R εc = R arcsin  (2.42) R   with εc = H (ε). Let us now define 3g to be the determinant of the spatial part of the metric. Then after long computations using (2.12) we get

H2 H2 xixj FH2 2 3g = det η + F 2 = . (2.43) r2 ij − r2 r2 r2       Analogous to the two definitions of radii, we can consider two different as well. On the one hand we can define the bare mass, which is simply the volume integral over the mass density ε 1 3 2 3 m0 = g d r. (2.44) Z0  10 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

We define the renormalized mass as the integral over the radius obtained from the invariant circumferences, i.e. H, of the mass density:

H(ε) m = ρd3H. (2.45) Z0 There are various reasons why we call this the renormalized mass. This is the mass that we would measure if we were to use Kepler’s third law. The adjective renormalized refers to the fact that it allows us to write the gravitational potential in a form that is no longer divergent for ε 0. → Let us now compute the bare mass explicitly: d3H m = µ 0 K Z εc dH = 4π µH2 K Z0 εc H2dH = 4πρ 1 2 0 H 2 Z 1 R2 − 1 2 2 εc εc ε πρR3 C , = 2 arcsin 1 2 " R − R − R #     2 x dx 1 2 where we have used 1 = arcsin (x) x√1 x . (1−x2) 2 2 − − R εc  Using the Taylor expansions of arcsin R ε ε 1 ε3 3 ε5 arcsin c = c + c + c + ε7 (2.46) R R 6 R3 40 R5 O c 1    2 2 εc and of 1 R2 − 1   ε2 2 ε2 ε4 1 c =1 c c + ε6 , (2.47) − R2 − 2R2 − 8R4 O c    it is possible to write down a polynomial expression for m0: 4 3 ε2 m = πρε3 1+ c + ε2 . (2.48) 0 3 c 10 R2 O c    4 3 2 3 Using m = 3 πρεc and R = 8πGρ we can finally find a relation between m and m0:

2 3 m 2 m0 = m + G + G . (2.49) 5 εc O  Inverting this we get the following mass renormalization formula up to order G:

2 3 m0 2 m = m0 G + G . (2.50) − 5 εc O  2.2 Solution in the de Donder gauge 11

2.1.4 Mass renormalization for a generic energy-momentum tensor It is possible to generalize this result for a spherically symmetric energy-momentum tensor of ν µ µ the form T µ =(µ + p) u uν + pδν . We are of course assuming a constant mass density, i.e. µ˙ =0. The mass renormalization formula remains unchanged, beacuse

T 0 =(µ + p) u0u + pδ0 = µ p + p = µ. (2.51) 0 0 0 − − − 2.2 Solution in the de Donder gauge 2.2.1 De Donder gauge condition We now pick a specific gauge, in order to solve the Einstein equations completely. The one that we choose is the de Donder gauge, which can be expressed by imposing the condition

1 ( g) 2 gµν =0. (2.52) − ,ν h i In our case we have g0i =0 and a static metric, such that

1 1 ( g) 2 gµν = ( g) 2 gij =0. (2.53) − ,ν − ,j h i h i Using the determinant computed in (2.43) we can easily calculate the determinant for the whole metric: NFH2 2 det (g)= N 2 det 3g = , (2.54) − − r2   which means  1 NFH2 ( g) 2 = . (2.55) − r2

Furthermore we need to compute the inverse of gij. After some calculations we find r2 1 r2 xixj g = η + . (2.56) ij H2 ij F 2 − H2 r2   This allows us to rewrite

1 NFH2 1 r2 xixj ( g) 2 gij = NF ηij + . (2.57) − r2 F 2 − H2 r2   ∂r xj ∂ 1 4xj Using = and 4 = 3 we can compute the derivative with respect to a spatial ∂xj r ∂xj r − r coordinate of the above expression. The derivative of the first term with respect to xj is

∂ ∂r xi NF ηij = (NF )′ ηij = (NF )′ . (2.58) ∂xj ∂xj r  12 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

The derivative of the second term is ∂ xixj NH2 xi NH2 ′ xi r2NF = 2rNF + r2 (NF )′ . (2.59) ∂xj r4 F − r3 F − r3       Thus, the de Donder gauge condition can be rewritten as

xi xi NH2 ′ 2xi xi (NF )′ + NF (NF )′ =0, (2.60) r r3 F − r2 − r   which reduces to the compact expression

NH2 ′ =2rNF. (2.61) F   2.2.2 Solution A solution of this differential equation outside of the dust cloud is given by r + Gm r Gm H = r + Gm , F 2 = , N 2 = − . (2.62) + + r Gm + r + Gm − Indeed, if we insert this in the right hand side of (2.61) we get

(r + Gm)(r Gm) 2rN F = 2r − = 2r (2.63) + + ± (r Gm)(r + Gm) ± s − and on the left hand side of (2.61)

′ 2 ′ 2 ′ 2 N+H+ 2N+H+H+ N+H+F+ (r + Gm) d r Gm + 2 = − F+ F+ − F+ r+Gm dr r + Gm r−Gm r q r Gm r Gm +2 − − (r + Gm) r Gm r Gm r + r + r Gm r Gm d r + Gm − (r + Gm)2 − − r + Gm r + Gm dr r Gm r   r − 2Gm (r + Gm)2 r Gm = 2 − +2(r Gm) (r + Gm) r−Gm r + Gm − 2 r+Gm r

2Gm q 1 2 r Gm + 2 (r + Gm) − (r Gm) 2 r+Gm r + Gm − r−Gm   = Gm +2r 2Gmq + Gm − = 2r (2.64)

With this solution the invariant size of the sphere becomes

εc = H+ (ε)= ε + Gm. (2.65) 2.2 Solution in the de Donder gauge 13

We can use this result to reexpress (2.50). Indeed we obtain 2 3 Gm0 m = m0 . (2.66) − 5 ε + Gm0 2 Gm0 The Taylor expansion of ε+Gm0 is

Gm2 m2 0 = 0 G + G2 (2.67) ε + Gm0 ε O  and thus 3 Gm2 m = m 0 + G2 . (2.68) 0 − 5 ε O Note that, since the final result is going to be proportional  to positive powers of m, it would be divergent for ε 0 if we were to express it in terms of the bare mass m . → 0 We can now look at the interior solutions. They are to lowest order

3 r 1 r3 3 1 1 r2 H = r + Gm , F =1+ Gm (2.69) − 2 ε − 2 ε3 − 2 ε − 2 ε3     3 Gm 1 Gmr2 1 N = 1 1 , p (r)= κ2ρ ε2 r2 θ (ε r) . (2.70) − 2 − ε − 2 − ε3 24 − −      2.2.3 Final result We can finally insert these results in the metric to obtain the Schwarzschild solution up to order G2. For r>ε the 00-component of the metric is

00 1 g = 2 (2.71) −N+ r + Gm = (2.72) −r Gm − 2Gm 2m2 = 1 G2 + G3 . (2.73) − − r − r2 O  The ij-component is r2 1 r2 xixj gij = ηij + . (2.74) H2 F 2 − H2 r2 +  + +  We can calculate the following Taylor expansions, which will allow us to write gij as a polynomial in G: 1 1 1 2Gm 3m2 G2 G3 2 = 2 = 2 3 + 4 + (2.75) H+ (r + Gm) r − r r O  1 r Gm 2mG 2m2G2 G3 2 = − =1 + 2 + (2.76) F+ r + Gm − r r O  14 2 THE SCHWARZSCHILD SOLUTION AND MASS RENORMALIZATION

Thus we obtain 2Gm 3m2G2 m2G2 gij = 1 + ηij xixj + G3 . (2.77) − r r2 − r4 O    For r<ε the 00-component of the metric is

00 1 g = 2 (2.78) −N− 1 = 2 2 . (2.79) 3 Gm 1 Gmr 2 − 1 + 1 3 + (G ) 2 ε − 2 − ε O After a Taylor expansion we obtain the final result  1 g00 = 3 Gm 1 Gmr2 2 − 1+ 3 − 2 ε − 2 ε 1 =  2  4 2 3 r 2 2 9 1 1 r 3 r −1+ Gm + 3 + G m 2 + 6 4 − ε ε 4 ε 4 ε − 2 ε 3Gm Gmr2 = 1 + + G2 .  (2.80) − − ε ε3 O  The ij-component is r2 1 r2 xixj gij = ηij + . (2.81) H2 F 2 − H2 r2 −  − −  Again computing the analogous Taylor expansions 1 1 1 3Gm Gm = = + + G2 (2.82) 2 3 r 1 r3 2 2 2 3 H− r − εr ε O r + 2 ε 2 ε3 Gm −  1 1  3mG mGr2 r2 = =1 + + G2 = + G2 (2.83) 2 3 1 1 r2 2 3 2 F− − ε ε O H− O 1+ 2 ε 2 ε3 Gm −   we obtain    r2 3Gm Gmr2 gij ηij ηij ηij ηij G2 . = 2 = + 3 + (2.84) H− − ε ε O  15

3 Field theory approach to gravity

In this section we will treat gravity using the quantum field theory approach and try to repro- duce the solution for the spacetime metric obtained in section 2. In order to do this, we will consider the field given by the metric gµν and compute its vacuum expectation value in the presence of a source J, that represents the mass density of section 2. As in any field theory, we will start with a Lagrangian density. This will consist of the usual Einstein-Hilbert term, another term that ensures that we are working in the harmonic gauge, and a source term, which describes the coupling of the gravitational field to the spherical and homogeneous mass density. Once we have written the Lagrangian, we can define gµν = ηµν + κφµν for some symmetric φµν . This will allow us to expand the Lagrangian in orders of perturbation from the flat spacetime. With this expedient we obtain the Lagrangian written as a kinetic part plus some interaction terms. The kinetic part gives the free propagator for the field φµν. The first interaction term gives us the 3-point ineteraction represented in Figure 2. Since the computations for the 3-point interaction are already quite involved, we will not con- sider interactions of higher order. A big part of the computations involves calculating the 3-point vertex function, because it requires variating the action three times. ˜µν 1 µν µν This will be done by introducing an auxiliary field φ = κ (√ gg η ) and using [2] and [3] for the actual computations. This implies some technicalities− that− will be explained better in this section and in the appendix C. Once we have obtained the 3-point vertex function, we can insert everything in the expression for the vacuum expectation value, including the explicit form of the external source. After solving some and going back from φµν to gµν, we will be able to compare the result with the one obtained in section 2.

φ

φ

φ

Figure 2: The three graviton interaction that will be con- sidered for the vacuum expectation value of the gravita- tional field. 16 3 FIELD THEORY APPROACH TO GRAVITY

3.1 Lagrangian and gauge implementation As anticipated in the introduction, we will be using the following action:

A = d4x ( + + )= A + A + A (3.1) LG Lφ LJ G φ J Z is the usual Einstein-Hilbert Lagrangian LG 1 1 = ( g) 2 R. (3.2) LG κ2 − is the gauge fixing term and describes the coupling to the external source. Lφ LJ In this section we will focus on expressing the Einstein-Hilbert action in a nicer way and on picking the correct gauge. Since the source term is not important at this stage, we will temporarily leave it aside.

3.1.1 Einstein-Hilbert action Let us first focus on the Einstein-Hilbert part of the Lagrangian. We start by defining 1 gµν =( g) 2 gµν. (3.3) − µν µ Then its inverse must satisfy g gνρ = δ ρ and thus must be given by

1 g =( g)− 2 g . (3.4) µν − µν Note that this implies the following relation between the determinant of gµν and the one of gµν

g = det (gαβ) 1 = det ( g)− 2 g − αβ = ( g)−2 g  − = g−1. (3.5) We can now express the Einstein-Hilbert Lagrangian with respect to the newly defined gµν . To this purpose we use Goldberg’s expression [4]

1 1 A = dnx ( g) 2 gµνR G κ2 − µν Z 1 1 = dnx gρσg g gακ gλτ gρσg g gακ gλτ 2g gακ gρτ (3.6) 4κ2 λα κτ ,ρ ,σ − n 2 ακ λτ ,ρ ,σ − ατ ,ρ ,κ Z  −  where n is the dimensionality of the spacetime. More details on this relation can be found in the appendix A. In our case, for n =4, we get 1 = 2gρσg g gακ gλτ gρσg g gακ gλτ 4g gακ gρτ LG 8κ2 λα κτ ,ρ ,σ − ακ λτ ,ρ ,σ − ατ ,ρ ,κ 1 = (2 gρσg g gρσg g 4δσ δρ g ) glκ gλτ .  (3.7) 8κ2 λι κτ − ικ λτ − κ λ ιτ ,ρ ,σ 3.1 Lagrangian and gauge implementation 17

We can now write gµν as the flat spacetime metric plus a perturbation from it,

gµν = ηµν + κφ˜µν (3.8) for some symmetric φ˜µν. We would like to rewrite the Lagrangian through this new perturbation field φ˜µν . First of all we need to express the inverse of gµν via φ˜µν as well. gµν must satisfy βγ γ gαβg = δα . (3.9) We can make the ansatz g = A(1) + κA(2) + κ2A(3) + (κ3) and thus get the equation αβ αβ αβ αβ O A(1) + κA(2) + κ2A(3) + κ3 ηβγ + κφ˜βγ = δ γ . (3.10) αβ αβ αβ O α     To order κ0 we obtain  (1) βγ γ Aαβ η = δα , (3.11) i.e. (1) Aαβ = ηαβ. (3.12) To order κ we obtain ˜βγ (2) βγ ηαβκφ + κAαβ η =0 (3.13) A(2)ηβγ = η φ˜βγ, (3.14) ⇒ αβ − αβ i.e. A(2) = φ˜ . (3.15) αλ − αλ Amd finally to order κ2 we obtain

κ2φ˜ + κ2A(3)ηβγ =0 (3.16) − αβ αβ A(3) = φ˜ φ˜βγ η . (3.17) ⇒ αλ αβ γλ 2 Thus, up to order κ , gαβ is given by g = η κφ˜ + κ2η φ˜ φ˜λγ + κ3 . (3.18) αβ αβ − αβ γβ αλ O αβ ˜αβ  We furthermore note that g ,γ = κφ ,γ and thus 1 = (2gρσg g gρσg g 4δσ δρ g ) φ˜ικ φ˜λτ . (3.19) LG 8 λι κτ − ικ λτ − κ λ ιτ ,ρ ,σ After eliminating gµν from this relation, we can write the Lagrangian as a sum of terms with increasing powers of κ = ˜(0) + κ ˜(1) + κ2 ˜(2) + ..., (3.20) LG LG LG LG where the ˜(i)’s have no κ dependence. LG Then we see that ˜(0) is obtained by taking the 0-th order of both gαβ and g . Thus: LG αβ 1 ˜(0) = (2ηρση η ηρση η 4δσ δρ η ) φ˜ικ φ˜λτ . (3.21) LG 8 λι κτ − ικ λτ − κ λ ιτ ,ρ ,σ 18 3 FIELD THEORY APPROACH TO GRAVITY

˜(1) ˜ αβ αβ ˜αβ In order to compute G we insert gαβ = ηαβ κφαβ and g = η + κφ in G and then take all the terms of orderL κ. − L 1 = 2 ηρσ + κφ˜ρσ η κφ˜ η κφ˜ ηρσ + κφ˜ρσ LG 8 λι − λι κτ − κτ −       ρ    η κφ˜ η κφ˜ 4δσ δ η κφ˜ φ˜ικ φ˜λτ (3.22) × ικ − ικ λτ − λτ − κ λ ιτ − ιτ ,ρ ,σ Then       1 κ ˜(1) = 2ηρση κφ˜ 2ηρση κφ˜ +2κφ˜ρση η + ηρση κφ˜ + ηρση κφ˜ LG 8 − λι λτ − κτ λι λι κτ ικ λτ λτ ικ  ρ κφ˜ρση η +4δσ δ κφ˜ φ˜ικ φ˜λτ − ικ λτ κ λ ιτ ,ρ ,σ κ = 2ηρση η η 2ηρση η η +2δρ δσ η η + ηρση η η 8 − λι κα τβ − κτ λα ιβ α β λι κτ ικ λα βτ +ηρση η η δρ δσ η η +4δσ δρ η η φ˜αβφ˜ικ φ˜λτ λτ ια κβ − α β ικ λτ κ λ αι τβ ,ρ ,σ κ ρσ ρσ ρ σ ρ σ = 4η ηλιηκαητβ +2η ηικηλαηβτ +2δ δ ηλιηκτ δ δ ηικηλτ 8 − α β − α β σ ρ ˜αβ ˜ικ ˜λτ +4δ κδ ληαιητβ) φ φ ,ρφ ,σ. (3.23)

˜(0) (1) Thus, to summarize, we can write the Lagrangian as = + κ ˜ + ... with LG LG LG 1 ˜(0) = (2ηρση η ηρση η 4δσ δρ η ) φ˜ικ φ˜λτ (3.24) LG 8 λι κτ − ικ λτ − κ λ ιτ ,ρ ,σ 1 ˜(1) = 4ηρση η η +2ηρση η η +2δρ δσ η η δρ δσ η η LG 8 − λl κα τβ lκ λα τβ α β κτ λl − α β lκ λτ ρ σ ˜αβ ˜lκ ˜λτ +4δ λδ κηlαητβ) φ φ ,ρφ ,σ. (3.25)

3.1.2 Gauge fixing We want to work in the harmonic gauge, i.e. µν g ,ν =0, (3.26) which in our case means ˜µν φ ,ν =0. (3.27) The equations of motion for the free field are (0) ∂ G 1 ρσ ρσ σ ρ ∂α L = ∂α (2η ηλιηκτ η ηικηλτ 4δ κδ ληιτ ) βγ 8 { − − ∂ ∂αφ˜   δα Iικ φ˜λτ + δα Iλτ φ˜ικ × ρ βγ σ σ βγ ρ 1  o = ∂ (2ηρση η ηρση η 4δσ δρ η ) δα Iικ φ˜λτ 4 α λι κτ − ικ λτ − κ λ ιτ ρ βγ σ 1 n o = (2ηρση η ηρση η 4δσ δρ η ) Iικ φ˜λτ 4 λι κτ − ικ λτ − κ λ ιτ βγ σρ 1 n o = η η φ˜λτ η η φ˜λτ η Iικ φ˜λτ 4 λβ γτ − βγ λτ − ιτ βγ ,κλ 1 n o 1 = η η φ˜λτ η η φ˜λτ η φ˜λτ + η φ˜λτ . (3.28) 4 λβ γτ − βγ λτ − 2 βτ ,γλ γτ ,βλ n o   3.2 The free propagator 19

In order to get rid of the last two terms we then must introduce the following gauge fixing term 1 1 = η gµα gνβ = η φ˜µα φ˜νβ . (3.29) Lφ 2κ2 µν ,α ,β 2 µν ,α ,β Indeed:

∂ φ 1 µα ˜νσ να ˜µρ ∂α L = ηµν∂α Iβγ φ ,σ + Iβγ φ ,ρ ∂ ∂ φ˜βγ 2 α h i   1 = η Iµαφ˜νσ 2 µν βγ ,σα 1 = η φ˜νσ + η φ˜νσ . (3.30) 2 βν ,σγ γν ,σβ h i This cancels the unwanted terms in (3.28).

3.2 The free propagator We now compute the free propagator of this theory. This can be obtained with the usual generating functional method, which will be outlined here for the case of gravity. Some more detailed computations can be found in the appendix. The free propagator is usually defined as

1 δ δ 0 T φ˜α1β1 (x) φ˜α2β2 (y) 0 = i i Z [J] , (3.31) Z [J] − δJ 1 1 (x) − δJ 2 2 (y)  α β   α β  J=0 D n o E where the generating functional is

Z [J]= φ˜ exp iS φ˜ + iS φ,J˜ . (3.32) D 0 src Z n h i h io J is the auxiliary source that will be then set to 0 in this prescription. The action for the free theory is

1 S φ˜ = d4x (2ηρση η ηρση η 4δσ δρ η +4η δρ δσ ) φ˜ικ φ˜λτ (3.33) 0 8 λι κτ − ικ λτ − κ λ ιτ ιλ κ τ ,ρ ,σ h i Z Note how we are considering only the kinetic part of the Lagrangian and its gauge fixing term. µν On the other hand, the action for the coupling of φ˜ to the auxiliary source Jµν is

4 µν Ssrc φ,J˜ = d xJµν (x) φ˜ (x) . (3.34) h i Z After following the usual procedure, we find the following expression for the generating func- tional 1 Z [J] = exp d4xd4yJ iGµναβ (x y) J (x) Z [0] , (3.35) −2 µν − − αβ  Z   20 3 FIELD THEORY APPROACH TO GRAVITY where iGµναβ solves the equation − 1 (2ηρση η ηρση η 4δσ δρ η +4η δρ δσ ) 8 λι κτ − ικ λτ − κ λ ιτ ιλ κ τ i ∂ ∂ iGλτµν (x y) = Iµν δ (x y) (3.36) ρ σ − − −2 ικ −  and has the symmetries Gαβµν = Gµναβ = Gβαµν = Gαβνµ. A quick computation, which can be found in the appendix B.1, shows

0 T φ˜α1β1 (x) φ˜α2β2 (y) 0 = iGα2β2α1β1 (x y) , (3.37) − − D n o E i.e. Gα2β2α1β1 is indeed the propagator, for which we werte looking. It is easy to check that the propagator defined by (3.36) in momentum space is given by

1 Gµνρσ k2 =(ηµρηνσ + ηρνηµσ ηµν ηρσ) . (3.38) − k2  A proof of this can be found in appendix B.2. For simplicity, let us define

dµνρσ = ηµρηνσ + ηµσηνρ ηµνηρσ (3.39) − and then write the propagator as

1 Gµνρσ k2 = dµνρσ . (3.40) k2  3.3 3-graviton interaction

In order to compute the vacuum expectation value for the gravitational field, we will consider the interaction between 3 . To this purpose, we compute in this section the 1-particle irreducible 3-point vertex, represented in Figure 3.

The 3-graviton vertex function can be computed from

δ3A Γ x1, x2, x3 = . (3.41) α1β1α2β2α3β3 α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η 

There are various possibilities to tackle the task of computing these three variations. We will first follow the method suggested in [1]. Then we will try to do the variations directly on a computer. Finally we will consider the result for the vertex given in [5]. 3.3 3-graviton interaction 21

ΓΓ

Figure 3: The 1-particle irreducible 3-point vertex

3.3.1 First method We will start by computing an easier variation δ3A ˜ 1 2 3 Γ 1 1 2 2 3 3 x , x , x = . (3.42) α β α β α β α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η  3 µν δ Aφ Since Aφ depends only quadratically on g , we have δgα1β1 (x1)δgα2β2 (x2)δgα3β3 (x3) =0 and thus δ3A ˜ 1 2 3 G Γ 1 1 2 2 3 3 x , x , x = . (3.43) α β α β α β α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η 

Since doing the three variations by hand is quite demanding, we can do them on a computer to get the following result in momentum space: κ Γ˜ (k ,k ,k ) = symP ( 4η η η k k +2η η k k α1β1α2β2α3β3 1 2 3 − 6 8 − α3α2 β2α1 β3β1 2 · 3 α2β2 α3α1 2 · 3 η η k k +2η η k k − α2β2 α3β3 2α1 3β1 α3α2 β2β3 2α1 3β1 +4ηα2α1 ηβ3β1 k2α3 k3β2 ) , (3.44) where sym means that we have to symmetrize over α1, β1, α2, β2 and α3, β3 and P6 means that we have to sum over all permutations (cyclic and anticyclic) of α1, β1,k1, α2, β2,k2 and ˜ α3, β3,k3. There are then 78 terms in the explicit expression for Γα1β1α2β2α3β3 . A sketch of the idea behind the computation can be found in the appendix C.1. Then, in order to get the complete 3-graviton vertex, we can use the following trick: δ3 (A + A ) Γ x1, x2, x3 = G φ α1β1α2β2α3β3 α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η  δ3A = G α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η δ3A + φ . (3.45) α1β1 1 α2β2 2 α3β3 3 δg (x ) δg (x ) δg (x ) µν µν g =η

22 3 FIELD THEORY APPROACH TO GRAVITY

Now note that δA δA δgµ1ν1 (y1) G = d4y G . (3.46) δgα1β1 (x1) δgµ1ν1 (y1) δgα1β1 (x1) Z We need to vary this two more times and use the Leibniz rule before inserting it in the expression for the vertex function. I.e. the expression to be computed is

3 3 µ1ν1 δ AG 4 δ g (˜x1) δAG 2 2 = d x˜1 2 2 δgα3β3 (x ) δgα β (x ) δgα1β1 (x ) δgα3β3 (x ) δgα β (x ) δgα1β1 (x ) δgµ1ν1 (˜x ) 3 2 1 Z 3 2 1 1 δ2gµ1ν1 (˜x ) δgµ2ν2 (˜x ) + d4x˜ d4x˜ 1 2 1 2 α2β2 α1β1 α3β3 δg (x2) δg (x1) δg (x3) Z 2 2 µ1ν1 δ AG 4 4 δ g (˜x1) + d x˜2d x˜1 ×δgµ2ν2 (˜x ) δgµ1ν1 (˜x ) δgα3β3 (x ) δgα1β1 (x ) 2 1 Z 3 1 δgµ2ν2 (˜x ) δ2A δgµ1ν1 (˜x ) 2 G + d4x˜ d4x˜ 1 α2β2 µ2ν2 µ1ν1 1 2 α1β1 × δg δg (˜x2) δg (˜x1) δg (x1) 2 µ2ν2 2 Z δ g (˜x2) δ AG α3β3 α2β2 µ2ν2 µ1ν1 ×δg (x3) δg (x2) δg (˜x2) δg (˜x1) µ1ν1 µ2ν2 µ3ν3 4 4 4 δg (˜x1) δg (˜x2) δg (˜x3) + d x˜1d x˜2d x˜3 δgα1β1 (x ) δgα2β2 (x ) δgα3β3 (x ) Z 1 2 3 δ3A G . (3.47) µ3ν3 µ2ν2 µ1ν1 ×δg (˜x3) δg (˜x2) δg (˜x1)

This is a quite lengthy expression, but it contains only variations of AG with respect to g, which we have already computed. δgµν (x′) δgαβ (x) We also need to determine δgαβ (x) . We’ll do this by first finding δgµν (x′) and then inverting it. We can write δgαβ (x) δgαβ = δ (x, x′) δgµν (x′) δgµν 1 δ ( g)− 2 gαβ = δ (x, x′) −  δgµν  1 − 1 1 δ ( g) 2 ′ − 2 α β α β gαβ = δ (x, x ) ( g) δ µδ ν + δ ν δ µ + − µν . (3.48) " − 2 δg #  We have to write the last term in a better form. Remembering that g = g−1, we can write

1 1 δ ( g)− 2 = δ ( g) 2 . (3.49) − − Using the following relation 1 δ√h = √hh δhαβ, (3.50) −2 αβ which is known for example from [6], we get 1 1 1 1 δ ( g)− 2 = δ ( g) 2 = ( g) 2 g δgµν . (3.51) − − −2 − µν 3.3 3-graviton interaction 23

Thus 1 − δ ( g) 2 1 1 − = ( g)− 2 g . (3.52) δgµν −2 − µν Inserting this in (3.48) we obtain the final result:

δgαβ (x) 1 1 = ( g)− 2 δα δβ + δα δβ g gαβ δ (x, x′) . (3.53) δgµν (x′) 2 − µ ν ν µ − µν  δgµν (x′) For δgαβ (x) we only need to compute the inverse of (3.53):

δgµν (x′) 1 1 = ( g) 2 δµ δν + δν δµ g gµν δ (x, x′) (3.54) δgαβ (x) 2 − α β α β − αβ  It is also useful to know that: δg δ (g g gµν) α1β1 = µα1 νβ1 δgα2β2 δgα2β2

µν µν δgνβ1 µν δgµα1 = I gµα1 gνβ1 + g gµα1 + g gνβ1 α2β2 δgα2β2 δgα2β2

µν δgα1β1 = I gµα1 gνβ1 +2 α2β2 δgα2β2 which implies:

δgα1β1 µν 1 = I gµα1 gνβ1 = (gα2α1 gβ2β1 + gβ2α1 gα2β1 ) (3.55) δgα2β2 − α2β2 −2 We can analogously compute the second and third variation ot g with respect to g, but this is best done on a computer. Unfortunately, after doing so, we obtain a result that differs from the one given in [1]. The latter is explicitly given by: 1 κ dµ1ν1α1β1 dµ2ν2α2β2 dµ3ν3α3β3 Γ = Γ˜µ1ν1µ2ν2µ3ν3 P (δµ1ν1µ2ν2 ηµ3ν3 δµ3ν3µ1ν1 ηµ2ν2 8 α1β1α2β2α3β3 − 4 3 − 1 δµ2ν2µ3ν3 ηµ1ν1 + ηµ1ν1 ηµ2ν2 ηµ3ν3 k2 (3.56) − 2 3  where P3 indicates a sum over all cyclic permutations of µ1, ν1,k1 , µ2, ν2,k2 and µ3, ν3,k3 . Furthermore δµ1ν1µ2ν2 is defined as: { } { } { } 1 δµ1ν1µ2ν2 = (ηµ1µ2 ην1ν2 + ηµ1ν2 ην1µ2 ) (3.57) 2

3.3.2 Second method (1) We will now attempt to compute the three variations of AG and Aφ directly with respect to g using [2] and [3]. This is done in position space and then Fourier transformed, for later comparison with the 24 3 FIELD THEORY APPROACH TO GRAVITY result given in section 3.3.1.

α1β1 ′ δg (x ) α1β1 ′ We start by defining the following variation rule: δgµ1ν1 (x) = I µ1ν1 δ (x x). α1β1 ′ − δg ,γ (x ) α1β1 ′ We also need to define the variation of the derivative as: δgµ1ν1 (x) = I µ1ν1 ∂γ δ (x x). We will later get rid of the derivative on the delta function via integration by parts. − After variating three times, we can perform the integration over d4x included in the action to get rid of one of the delta functions. We choose to eliminate the one that is not acted upon by a partial derivative. At this point we are ready to Fourier transform. This is done by substituting for example:

∂ [δ (x x )] ∂ [δ (x x )] k k (3.58) α 1 − 2 β 3 − 1 −→ − 2α 3β Unfortunately, the final result does not coincide with the one found in [1]. The crucial points of the code used for the calculations can be found in the appendix C.2.

3.3.3 Result from the literature Finally, we quote the result known from [5]: 1 1 1 Γµνστρλ = sym P k k ηµνηστ ηρλ P kσpτ ηµνηρλ + P k k ηµσηντ ηρλ −4 3 1 · 2 − 4 6 1 1 4 3 1 · 2  1  1  1  + P k k ηµνησρητλ + P kσkληµνητρ P kτ kµηνσηρλ + P kρkληµσηντ 2 6 1 · 2 3 1 1 − 2 3 1 2 2 3 1 2 +P kσkλητµηνρ + P  kσkµητρηλν P  k k ηνσητρηλµ  (3.59) 6 1 2 3 1 2 − 3 1 · 2 It is important to note, that this expression for the vertex function is different from one given in [1], but this doesn’t make any difference in the end, because the final results obtained for the vacuum expectation value coincide anyways.

3.4 Preliminary considerations on the vacuum expectation value 3.4.1 External source Let us now consider the source term of the action. We begin by defining: 1 J =( g) 2 T (3.60) µν − µν Remember that we have in the rest frame: µ 0 0 0 0 p 0 0 T µν = (3.61)  0 0 p 0   0 0 0 p     1  If we multiply the Einstein equations by ( g) 2 we get: − 1 1 Jµν ( g) 2 G + =0 (3.62) κ2 − µν 2 3.4 Preliminary considerations on the vacuum expectation value 25

1 δAG 1 2 Now, since = 2 ( g) G , we are left with: δgµν κ − µν

δA 1 J = J (3.63) δgµν 2 µν

Taking 1 A = d4xgµν (x) J (x) (3.64) J 2 µν Z is then the correct choice, since then

δA 1 1 J = δµ δν J = J (3.65) δgαβ 2 α β µν 2 αβ

3.4.2 Generic expression for the vacuum expectation value

We can then compute the S-matrix using the Feynman-Dyson expression:

4 S = T exp i d x [ int + (x)] (3.66) J L LJ   Z 

Since we are only considering the 3 graviton interaction, the interaction part of the Lagrangian is in our case = κ ˜(1). Lint LG The coupling with the external source J is described by (3.64). 2 4 µν We can expand up to order κ the part of exp i d x J that contains a φ dependence in the following way: L R  iκ iκ exp d4xφµν (x) J (x) = 1+ d4xφµν (x) J (x) 2 µν 2 µν  Z  Z 1 κ2 d4xd4yφµν (x) φαβ (y) J (x) J (y) (3.67) −8 µν αβ Z

On the other hand, the expansion of exp i d4x gives: Lint R  exp i d4x = 1+ iκ d4xΓ φα1β1 (x) φα2β2 (x) φα3β3 (x) (3.68) Lint α1β1α2β2α3β3  Z  Z

1 where we have defined Γα1β1α2β2α3β3 = κ Γα1β1α2β2α3β3 , so that the dependence on κ is clear and only in front of the integral. 26 3 FIELD THEORY APPROACH TO GRAVITY

The product of the two up to order κ3 is then: exp i d4x [ + ] = 1+ iκ d4xΓ φα1β1 (x) φα2β2 (x) φα3β3 (x) Lint LJ α1β1α2β2α3β3  Z  Z iκ + d4xφµν (x) J (x) 2 µν Z κ2 d4xd4yΓ φα1β1 (x) φα2β2 (x) φα3β3 (x) φµν (y) J (y) − 2 α1β1α2β2α3β3 µν Z 1 κ2 d4xd4yφµν (x) φαβ (y) J (x) J (y) −8 µν αβ Z iκ3 d4xd4yd4zΓ φα1β1 (x) φα2β2 (x) φα3β3 (x) φµν (y) − 8 α1β1α2β2α3β3 Z φαβ (z) J (y) J (z) (3.69) × µν αβ

Mutiplying this by φµν (x) yields:

µν µν µν 4 α1β1 α2β2 α3β3 φ (x) SJ = φ (x)+ iκφ (x) d yΓα1β1α2β2α3β3 φ (y) φ (y) φ (y) iκ Z + φµν (x) d4yφαβ (y) J (y) 2 αβ Z κ2 φµν (x) d4yd4zΓ φα1β1 (y) φα2β2 (y) φα3β3 (y) φαβ (z) J (z) − 2 α1β1α2β2α3β3 αβ Z κ2 φµν (x) d4yd4zφαβ (y) φρσ (z) J (y) J (z) − 8 αβ ρσ Z iκ3 φµν (x) d4yd4zd4wΓ φα1β1 (y) φα2β2 (y) φα3β3 (y) φαβ (z) φρσ (w) − 8 α1β1α2β2α3β3 Z J (z) J (w) (3.70) × αβ ρσ

µν We can then use Wick’s theorem to compute the expectation value of T φ (x) SJ . The only non-vanishing terms are the ones containing an even number of{φ’s. } Furthermore, we want to consider only tree diagrams. This means that we must neglect any terms involving contractions between two fields evaluated at the same point, e.g. no contraction

α1β1 α2β2 µν φ (y) φ (y) is allowed in the second term of φ (x) SJ . The only non-vanishing terms remaining are then:

iκ 0 T φµν (x) S 0 = d4yφµν (x) φαβ (y) J (y) h | { J }| i 2 αβ Z iκ3 d4yd4zd4wφµν (x)Γ φα1β1 (y) − 8 α1β1α2β2α3β3 Z φα2β2 (y) φα3β3 (y) φαβ (z) φρσ (w) J (z) J (w) (3.71) × αβ ρσ 3.4 Preliminary considerations on the vacuum expectation value 27

φµ2ν2 + φµ1ν1 φµ1ν1 φµ3ν3

Figure 4: The expansion in tree-level diagrams of the vacuum expectation value.

Then the vacuum expectation value can be written in momentum space as:

1 1 κ φµ1ν1 (k ) = κ2Gµ1ν1α1β1 k2 J (k ) κ4 đ4k đ4k Gµ1ν1α1β1 k2 h 1 iJ 2 1 α1β1 1 − 8 2 3 1 Z Gµ2ν2α2β2 k2 Gµ3ν3α3β3 k2 δ4 (k + k + k ) Γ (k ,k ,k ) × 2 3 1 2 3 α1β1α2β2α3β3 1 2 3 J (k ) J (k ) (3.72) × µ2ν2 2 µ3ν3 3 

dk where đk = 2π . A diagrammtical representation of this can be found in Figure 4. Remembering (3.38), we can write:

1 1 đ4k đ4k κ φµ1ν1 (k ) = κ2Gµ1ν1α1β1 k2 J (k ) κ4 2 3 dµ1ν1α1β1 h 1 iJ 2 1 α1β1 1 − 8 k2k2k2 Z 1 2 3 dµ2ν2α2β2 dµ3ν3α3β3 δ4 (k + k + k )Γ (k ,k ,k ) × 1 2 3 α1β1α2β2α3β3 1 2 3 J (k ) J (k ) (3.73) × µ2ν2 2 µ3ν3 3

The explicit form for the contraction of the vertex with 1 dµ1ν1α1β1 dµ2ν2α2β2 dµ3ν3α3β3 is 8 × × known from (3.56).

3.4.3 Explicit form of the external gravitational potential

Let us now abandon briefly these computations for some considerations on the source. We can define: 4 λ = πρε3 (3.74) 3 28 3 FIELD THEORY APPROACH TO GRAVITY

Remember the following relations from section 2: 4 4 m = πρH3 (ε) = πρε3 +4πρε2Gm + G2 (3.75) 3 3 O H (ε) = ε + Gm  (3.76) 3 Gm2 m = m 0 + G2 (3.77) 0 − 5 ε O Thus:  4 λ = πρε3 3 = m 4πρε2 Gm + G2 − O =3 m +O(G) ε  3Gm2 = m | {z }+ G2 (3.78) − ε O Using (3.77) we obtain:  3 Gm2 3G λ = m 0 m2 + G2 0 − 5 ε − ε 0 O 18 Gm2  = m 0 + G2 (3.79) 0 − 5 ε O Let us now define:  1 eikx V (x)= κ2 đ4k µ (k) (3.80) 4 k2 Z where µ (k) is the Fourier transform of µ (x), i.e.

µ (k) = d4xe−ik·xµ (~x) Z 0 ~ = dx0e−ik0x d3xe−ik·~xµ (~x) Z Z ~ = (2π) δ k0 d3xe−ik·~xµ (~x) Z = (2π) δ k0 µ ~k (3.81)   Thus we can rewrite V (x) as: 

i~k~x 1 0 0 e V (x) = κ2 đ3~kdk0δ k0 e−ik x µ ~k 4 k0 2 + ~k2 Z −   1 ei~k~x  = κ2 đ3~k µ ~k (3.82) 4 ~k2 Z   We can directly read off from this expression the Fourier transform of V (x): ~ 1 µ k V (k)= (3.83) κ2 ~k2  3.5 Explicit computation of the vacuum expectation value 29

Furthermore we should remember that:

µ (~x)= µ ( ~x )= µ (r)= ρθ (ε r) (3.84) | | − i.e. µ (~x) depends only on the absolute value of ~x. This implies:

1 ei~k~x 1 e−i~k~x V (x)= V ( ~x )= κ2 đ3~k µ ~k = κ2 đ3~k µ ~k (3.85) | | 4 ~k2 4 ~k2 Z   Z   An explicit calculation of the integral, which can be found in the appendix E.1, yields:

3 1 1 r′ 2 1 V (x′)=( Gλ) θ (ε r′) + θ (r′ ε) (3.86) − − 2 ε − 2 ε3 − r′    

3.4.4 Some integrals Let us now state three relations that will prove to be useful when computing the vacuum ex- pectation value of φµν.

p (~x′) 1 d3x′ = p (~x) (3.87) − 4π ~x ~x′ 2 Z | − | ∇ ki kj 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 2 ~ ~ 1 i j κ đ k1đ k2đ k3e δ k1 + k2 + k3 µ k2 µ k3 = V ∂ ∂ V (3.88) 16 ~k2~k2~k2 ∆ Z 1 2 3        ki kj 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 3 ~ ~ 1 i j κ đ k1đ k2đ k3e δ k1 + k2 + k3 µ k2 µ k3 = ∂ V ∂ V (3.89) 16 ~k2~k2~k2 ∆ Z 1 2 3        The first one is equivalent to

p (~x′) p (~x)= d3x′∆ (3.90) − ~x 4π ~x ~x′ Z | − | and is clear, since we know that

1 ∆ = δ (~x ~x′) . (3.91) − ~x 4π ~x ~x′ − | − | A proof of the other two relations can be found in the appendix E.2.

3.5 Explicit computation of the vacuum expectation value With (3.87), (3.88) and (3.89) we are now in a position to compute the vacuum expectation value from (3.73). We will rely again on a computer for some particularly long calculations. 30 3 FIELD THEORY APPROACH TO GRAVITY

3.5.1 00-component Let us first consider the 00-component. We have: 1 1 κ φ00 (k ) = κ2G00α1β1 k2 J (k )+ κ4 đ4k đ4k G00α1β1 k2 Gµ2ν2α2β2 k2 1 J 2 1 α1β1 1 8 2 3 1 2 Z Gµ3ν3α3β3 k2 δ4 (k + k + k )Γ (k ,k ,k )  × 3 1 2 3 α1β1α2β2α3β3 1 2 3 J (k ) J (k ) (3.92) × µ2ν2 2 µ3ν3 3 We begin with the first term. Using (3.38) it can be written as:

1 2 00α1β1 2 1 2 0α1 0β1 0β1 0α1 00 α1β1 1 κ G k1 Jα1β1 (k1) = κ η η + η η η η 2 Jα1β1 (k1) 2 2 − k1   2 00 00 J00 (k1) 1 2 00 1 α1β1 = κ η η 2 κ η 2 η Jα1β1 (k1) k1 − 2 k1

2 µ (k1) 1 2 1 00 1 2 1 ij = κ 2 + κ 2 η J00 (k1)+ κ 2 η Jij (k1) k1 2 k1 2 k1

2 µ (k1) 1 2 1 1 2 1 ij = κ 2 κ 2 µ (k1)+ κ 2 η ηijp (k1) k1 − 2 k1 2 k1

1 2 µ (k1) 3 2 1 = κ 2 + κ 2 p (k1) 2 k1 2 k1 3 1 = 2V κ2 p (3.93) − 2 ∆ 1 2 µ(k) where we used that V (k)= 4 κ k2 , J00 (k)= µ (k) and Jij (k)= ηijp (k). Next we note that the second term in (3.92) contains the expression that we computed explicitly in (3.56). Thus we can rewrite the second term as: 1 κ4 đ4k đ4k δ4 (k + k + k ) J (k ) J (k ) Γ˜00µ2ν2µ3ν3 2 3 k2k2k2 1 2 3 µ2ν2 2 µ3ν3 3 Z 1 2 3 1 1 κ4 đ4k đ4k δ4 (k + k + k ) J (k ) J P δ00µ2ν2 ηµ3ν3 −4 2 3 k2k2k2 1 2 3 µ2ν2 2 µ3ν3 3 Z 1 2 3 1 δµ3ν300ηµ2ν2 δµ2ν2µ3ν3 η00 + η00ηµ2ν2 ηµ3ν3 (3.94) − − 2  All of the terms involved can be calculated by using the relations found in section 3.4.4. Some more details on how this was done can be found in the appendix D. Here we can show just two examples explicitly that should give an idea of how the procedure works. The first example that we consider is the following term from (3.94): 1 1 κ4 đ4k đ4k δ4 (k + k + k ) J (k ) J δ00µ2ν2 ηµ3ν3 k2 (3.95) 4 2 3 k2k2k2 1 2 3 µ2ν2 2 µ3ν3 3 Z 1 2 3 Note that: 1 δ00µ2ν2 = η0µ2 η0ν2 η0ν2 η0µ2 = η0µ2 η0ν2 (3.96) 2  3.5 Explicit computation of the vacuum expectation value 31

Thus our example can be rewritten as:

1 1 κ4 đ4k đ4k δ4 (k + k + k ) 4 2 3 k2k2 1 2 3 Z 1 2 1 1 J (k ) J (k ) η0µ2 η0ν2 ηµ3ν3 = κ4 đ4k đ4k δ4 (k + k + k ) µ (k ) ηµ3ν3 J (k ) × µ2ν2 2 µ3ν3 3 4 2 3 k2k2 1 2 3 2 µ3ν3 3 Z 1 2 1 1 = κ4 đ4k đ4k δ4 (k + k + k ) µ (k ) 4 2 3 k2k2 1 2 3 2 Z 1 2 [ J (k )+ J (k )] (3.97) × − 00 3 ii 3

We consider now only the part proportional to J00, because we are interested in the dependence on V . Using J00 (k3)= µ (k3) we then have:

1 1 κ4 đ4k đ4k −4 2 3 k2k2 Z 1 2 1 1 δ4 (k + k + k ) µ (k ) µ (k ) = κ4 đ4k đ4k δ4 (k + k + k )(2π) δ k0 µ ~k × 1 2 3 2 3 −4 2 3 k2k2 1 2 3 2 2 Z 1 2    (2π) δ k0 µ ~k × 3 3   1 4 3  3 1 3 ~ ~ ~ ~ ~ = κ đ k2đ k3 δ k1 + k2 + k3 µ k2 µ k3 −4 ~k2~k2 Z 1 2  i      1 4 3 3 3 ~ ~ ~ k3k3 i ~ ~ = κ đ k2đ k3δ k1 + k2 + k3 µ k2 µ k3 −4 ~k2~k2~k2 Z 1 2 3 1 16 1       = κ2 (V ∆V ) (3.98) −4 κ4 ∆

where we used (3.89) in the last step. 1 i j As a second example we would like to find a term that leads to a proportionality to ∆ ∂ V ∂ V . In (3.94) the first term looks like:

J J κ4 đ4k đ4k Γ˜00µ2ν2µ3ν3 µ2ν2 µ3ν3 δ4 (k + k + k ) (3.99) 2 3 k2k2k2 1 2 3 Z 1 2 3 32 3 FIELD THEORY APPROACH TO GRAVITY

00µ2ν2µ3ν3 0µ3 ν3µ2 0ν2 Let us consider as an example just one term in Γ˜ , namely 4η η η k3 k1. Thus we get: − · k k 4κ4 đ4k đ4k η0µ3 ην3µ2 η0ν2 3 · 1 − 2 3 k2k2k2 Z 1 2 3 ~ ~ 4 4 3 3 00 00 00 k3 k1 ~ ~ Jµ2ν2 Jµ3ν3 δ (k1 + k2 + k3) = 4κ đ k2đ k3η η η · µ k2 µ k3 × − ~k2~k2~k2 Z 1 2 3     δ3 ~k + ~k + ~k × 1 2 3 2 2  ~ ~ ~ 2 ~ ~ k3 + k1 k3 k2 + k3 4 3 3 − − ~ = 2κ đ k2đ k3 µ k2   ~k2~k2~k2   Z 1 2 3   µ ~k δ3 ~k + ~k + ~k × 3 1 2 3    ~ 2 ~ 2 ~ 2 ~ 2 ~ ~ 4 3 3 k2 k3 k2 k3 2k2 k3 ~ ~ = 2κ đ k2đ k3 − − − − · µ k2 µ k3 ~k2~k2~k2 Z 1 2 3     δ3 ~k + ~k + ~k × 1 2 3  ~2 ~ ~ 4 3 3 k3 + k2 k3 ~ ~ = 4κ đ k2đ k3 · µ k2 µ k3 − ~k2~k2~k2 Z 1 2 3     δ3 ~k + ~k + ~k × 1 2 3 16 16 = 4 V ∆V + η ∂kV ∂lV (3.100) − ∆ kl ∆   where we have used again (3.88) and (3.89). After doing this repeatedly (see appendix D), we obtain the following final result: 3κ2 1 4 8 κ φ00 =2V + p η ∂kV ∂lV (V ∆V ) (3.101) J 2 ∆ − ∆ kl − ∆ Note that doing the same calculations with the vertex given in [5] yields the same expression. Doing this with the expression calculated explicitly as described in 3.3.2 gives instead: 3κ2 1 8 16 κ φ00 =2V + p η ∂kV ∂lV (V ∆V ) , (3.102) J 2 ∆ − ∆ kl − ∆ i.e. there is a difference of a factor of 2. 

3.5.2 ij-component Let us now consider the ij-components of the vacuum expectation value: 1 1 κ φij (k ) = κ2Gijα1β1 k2 J (k )+ κ4 đ4k đ4k Gijα1β1 k2 Gµ2ν2α2β2 k2 1 J 2 1 α1β1 1 8 2 3 1 2 Z Gµ3ν3α3β3 k2 δ4 (k + k + k )Γ (k ,k,k )  × 3 1 2 3 α1β1α2β2α3β3 1 2 3 J (k ) J (k ) (3.103) × µ2ν2 2 µ3ν3 3 3.5 Explicit computation of the vacuum expectation value 33

We can again compute immediately the first term to get:

1 2 ijα1β1 2 1 2 ijα1β1 1 κ G k1 Jα1β1 = κ d 2 Jα1β1 (k1) 2 2 k1  1 2 1 ij00 1 2 1 ijab = κ 2 d J00 (k1)+ κ 2 d Jab (k1) (3.104) 2 k1 2 k1 Now: dij00 = ηi0ηj0 + ηi0ηj0 ηij η00 = ηij (3.105) − =−1 ijab ia jb ib ja ij 00 ia jb ij ab d = η η + η η η η =2|{z}η η η η (3.106) − − where we used the fact that Jab is symmetric with respect to a and b. Thus:

1 2 ijα1β1 2 1 2 1 ij 1 2 1 ia jb ij ab κ G k1 Jα1β1 = κ 2 η µ (k1) + κ 2 2η η η η ηabp (k1) 2 2 k1 2 k1 −  =2V ηij  1 1 | ij {z 2 } ij ij = 2V η + κ 2 2η 3η p (k1) 2 k1 − ij 1 2 1 ij  = 2V η κ 2 p (k1) η − 2 k1 1 =− ∆ p(k1) 1 1 = ηij 2V + κ|2 {zp } (3.107) 2 ∆   Next we will use again the relations from section 3.4.4 to simplify the second term in (3.103). We show here just two examples, but a more complete discussion can be found in the appendix D. For the first example we note that Γ˜ contains a term of the form: 1 η η k k . α1β1α2β2α3β3 − 8 α2β2 α3β3 2 α1 3 β1 This means that κ φij includes a term of the form: h i 1 đ4k đ4k κ4 2 3 ηµ2ν2 ηµ3ν3 ki kjJ (k ) J (k ) δ4 (k + k + k ) (3.108) −8 k2k2k2 2 3 µ2ν2 2 µ3ν3 3 1 2 3 Z 1 2 3

Again we are only interested in the V proportionalities, so we consider µ2 = ν2 = µ3 = ν3 =0. This leaves us with:

4 4 3 3 1 4 đ k2đ k3 i j 4 1 4 đ k2đ k3 i j ~ ~ κ k k µ (k2) µ (k3) δ (k1 + k2 + k3) = κ k k µ k2 µ k3 2 2 2 2 3 2 2 2 2 3 −8 k1k2k3 −8 ~k ~k ~k Z Z 1 2 3     δ3 ~k + ~k + ~k × 1 2 3 2   = ∂iV ∂j V (3.109) −∆  where we have used (3.89) in the last step. 34 3 FIELD THEORY APPROACH TO GRAVITY

As a second example we consider now the case i = j. ˜ 1 We know that Γα1β1α2β2α3β3 contains the term 4 ηα2β2α3α1 ηβ3β1 k2 k3 and its permutations. In particular it contains the term: 1 η η −η k k . · − 4 α1β1 α3α2 β3β2 1 · 3 So we focus on: κ4 đ4k đ4k 2 3 k k ηiiηµ3µ2 ην3ν2 J (k ) J (k ) δ4 (k + k + k ) (3.110) − 4 k2k2k2 1 · 3 µ2ν2 2 µ3ν3 3 1 2 3 Z 1 2 3 After setting µ2 = ν2 = µ3 = ν3 =0, this leads us to: κ4 đ4k đ4k 2 3 k k (2π)2 δ k0 δ k0 − 4 k2k2k2 1 · 3 2 3 Z 1 2 3   4 3 3 ~ ~ 3 ~ ~ ~ κ đ k2đ k3 ~ ~ ~ ~ µ k2 µ k3 δ k1 + k2 + k3 = k1 k3µ k2 µ k3 × − 4 ~k2~k2~k2 ·       Z 1 2 3     δ3 ~k + ~k + ~k × 1 2 3 4  3 3  κ đ k2đ k3 ~ ~ ~ ~ ~ = k2 + k3 k3µ k2 µ k3 4 ~k2~k2~k2 · Z 1 2 3       δ3 ~k + ~k + ~k × 1 2 3 4  3 3  κ đ k2đ k3 ~ ~ ~ 2 ~ ~ = k2 k3 + k3 µ k2 µ k3 4 ~k2~k2~k2 · Z 1 2 3       δ3 ~k + ~k + ~k × 1 2 3 1 1 = 4 (V ∆V )+ η ∂iV ∂jV (3.111) ∆ ∆ ij   All these computations can be implemented on a computer and the final result that we get is: κ2 1 4 4 κ φij = 2V p + η ∂kV ∂l ηij + ∂iV ∂jV (3.112) J − 2 ∆ ∆ kl ∆     Again the result obtained using the vertex from [5] coincides with this one, while the one calculated in 3.3.2 yields: κ2 1 8 4 κ φij = 2V p η ∂kV ∂l ηij + ∂iV ∂j V , (3.113) J − 2 ∆ − ∆ kl ∆     i.e. the only difference is in the third term, where there is a factor of 8 instead of a factor of 4. −

3.5.3 Final reformulation of the result In order to write our results in a better form we need to insert the expression for V that is known from (3.86). We will make use of the following relations: 1 6 15 3r2 3 r4 V ∆V = G2λ2θ (r ε)+ + G2λ2θ (ε r) (3.114) ∆ 5rε − 8ε2 − 4ε4 40 ε6 −     3.5 Explicit computation of the vacuum expectation value 35

1 1 6 3 r4 η ∂kV ∂lV = G2λ2θ (r ε)+ + G2λ2θ (ε r) (3.115) ∆ kl 2r2 − 5rε − −4ε2 20ε6 −     κ2 1 1 3 r2 3r4 p = G2λ2θ (r ε)+ + G2λ2θ (ε r) (3.116) 4 ∆ −5rε − −8ε2 4ε4 − 40ε6 −     A proof of these relations can be found in the appendix E. Using these relations, we have for r>ε:

3κ2 1 4 8 κ φ00 = 2V + p η ∂kV ∂lV (V ∆V ) J 2 2 − 2 kl − 2 ∇ ∇ ∇ 2Gλ 1  1 6 6 = +6 G2λ2 + 4 8 G2λ2 − r −5rε − 2r2 − 5rε − 5rε       2Gλ 2 6 = + G2λ2 (3.117) − r −r2 − rε   and for r<ε:

3κ2 1 4 8 κ φ00 = 2V + p η ∂kV ∂lV (V ∆V ) J 2 2 − 2 kl − 2 ∇ 2 ∇ 2 ∇ 4 3 r 3 r  3r = Gλ + +6 + G2λ2 −ε ε3 −8ε2 4ε4 − 40ε6     12 4r4 15 24r2 3 r4 +G2λ2 + 4ε2 − 20ε6 − ε2 4ε4 − 5 ε6   3 r2 57 15 r2 5 r4 = Gλ + + + G2λ2 (3.118) −ε ε3 −4ε2 2 ε4 − 4 ε6     Now we can do the same for κ φij , but we first need one more relation: h iJ 1 2 xixj ∂iV ∂jV = ∆ ηij G2λ2 for r>ε (3.119) 4r2 − 5rε − 4r4    A proof of this relation can be found in the appendix E.6. With this we obtain:

κ2 1 4 4 κ φij = 2V ηij p + η ∂kV ∂l ηij + ∂iV ∂jV J − 2 2 2 kl 2 ∇ ∇ ∇ 2Gλ 1  1 6  = ηij 2 G2λ2 ηij +4G2λ2 ηij − r − −5rε 2r2 − 5rε     1 2 xixj +4G2λ2 ηij 4r2 − 5rε − 4r4    2Gλ 3 6G2λ2 xixj = ηij + G2λ2 G2λ2 + G3 (3.120) − r r2 − rε − r4 O    for r>ε. 36 3 FIELD THEORY APPROACH TO GRAVITY

Inserting now (3.78) in the expression for κ φ00 for r>ε we obtain finally: h iJ g00 = 1+ κφ00 − 2G 3Gm2 2 6 3Gm2 = 1 m + G2 + m + G2 G2 − − r − ε O −r2 − rε − ε O       2Gm 2G2m2   = 1 + G3 for r>ε (3.121) − − r − r2 O  And doing the same for r<ε the result is:

3 r2 57 15r2 5r4 g00 = 1+ + Gλ + + G2λ2 + G3 − −ε ε3 −4ε2 2ε4 − 4ε6 O     3 r2 3Gm2 57 15r2 5r4 = 1+ + G m + G2 + + G2m2 + G2 − −ε ε3 − ε O −4ε2 2ε4 − 4ε6 O       3Gm r2Gm 21 9r2 5r4  = 1 + + G2m2 + + G3 (3.122) − − ε ε3 −4ε2 2ε4 − 4ε6 O    And finally the exterior solution for the spatial part of the metric is:

2Gλ 3 6G2λ2 xixj gij = ηij 1 + G2λ2 G2λ2 + G3 − r r2 − rε − r4 O   2Gm 6G2m2 3G2m2 6G2m2 G2m 2xixj = ηij 1 + + + G3 − r rε r2 − rε − r4 O   2Gm 3G2m2 G2m2xixj  = ηij 1 + + G3 (3.123) − r r2 − r4 O    These results coincide with the ones obtained in section 2. 37

4 φµν as the iterative solution to the equations of motion

In this section, we consider a different approach to the same problem. We start by rewriting the Einstein-Hilbert action a bit differently. We split it into a part relevant for the equations of motion Seom and a boundary term S∂, which vanishes upon variation. Seom can then be written as a Taylor expansion around the perturbation from flat spacetime φµν. After carefully variating Seom, we can define the coupling of the gravitational field to an external source. The external source will of course be chosen to be the same as the one described in sections 2 and 3. We will then obtain a final equation of motion that can be solved iteratively. We will first find a solution of order κ. Then we will use this solution to find further contributions, this time of order κ3. The main difference with respect to section 3 is that we are solving directly the equations of motion and not using the S-matrix formalism. This will allow us to find a final expression for φµν that can be compared to the ones already obtained.

4.1 Reformulation of the Einstein-Hilbert action One of the crucial parts of this different approach is to rewrite the Einstein-Hilbert action in a more compact way. To this purpose we first of all split it into a boundary part, that will not contribute to the equations of motion, and an inner part, that will be relevant for the further computations. Indeed the Einstein-Hilbert action SEH [g] can be rewritten as:

SEH [g]= Seom [g]+ S∂ [g] (4.1) with eom 1 1 S [g]= d4x ( g) 2 gµρ Γα Γν Γα Γν (4.2) κ2 − µρ αν − νρ αµ Z and  1 S∂ [g]= d4x∂ T λ (4.3) κ2 λ Z We can see this with a straightforward computation:

1 1 SEH [g] = d4x ( g) 2 R κ2 − Z 1 1 = d4x ( g) 2 gµρ ∂ Γλ ∂ Γλ +Γλ Γν Γλ Γν κ2 − λ µρ − ρ µλ λν µρ − ρν µλ Z 1 1  = d4x ( g) 2 gµρ Γλ Γν Γλ Γν κ2 − λν µρ − ρν µλ Z =Seom[g]  1 1 +| d4x ( g) 2 gµρ{z ∂ Γλ ∂ Γλ } (4.4) κ2 − λ µρ − ρ µλ Z =S∂[g]  | {z } 38 4 φµν AS THE ITERATIVE SOLUTION TO THE EQUATIONS OF MOTION

We can rewrite T λ in a more compact form as:

1 T λ = ( g) 2 gµνΓλ gλµΓν − µν − µν 1 1 1 = ( g) 2 gµν gλα (g + g g ) gλµ gνα (g + g g ) − 2 αµ,ν αν,µ − µν,α − 2 αµ,ν αν,µ − µν,α   1 1 = ( g) 2 2gµνgλαg gµνgλαg gλµgναg gλµgναg + gλµgναg − 2 αµ,ν − µν,α − αµ,ν − αν,µ µν,α 1 2 µν λα µα λν = ( g) g g g g gαµ,ν  − 1 − 2 αλµν = ( g)  (g) ∂ν gµα  (4.5) − M where we defined: αβµν (g)= gµνgαβ gµαgβν (4.6) M − A bit more computations are needed to write Seom in a more compact form, but, using a computer, they are straightforward too. The result is: eom 4 αβγµνρ S = d x∂αgβγM (g) ∂µgνρ (4.7) Z with

1 1 M αβγµνρ (g)= gαµ βνγρ + gαµ νβργ +2gαρ βγνµ +2gµγ µρβα ( g) 2 (4.8) 8 M M M M −   Now we can expand g around the flat metric, i.e. set gµν = ηµν + κφµν . As seen in section 3, for the inverse we have g = η κφ + (κ2). µν µν − µν O Note that ∂αgβγ = κ∂αφβγ. Furthermore we can− introduce a directional functional derivative: δ D [g]= κ d4xφ (x) (4.9) φ − αβ δg Z αβ With this notation we can write down the Taylor expansion of M (g) around φ:

M (g)= M (η + κφ) = exp D [g] M (g) { φ } |g=η ∞ (D [g])n = φ M (g) n! n=0 g=η X 4 δ 2 = M (η) κ d xφαβ (x) M (g) + h (4.10) − δg (x) O Z αβ g=η  eom This allows us to obtain our final form for S [g]:

eom 4 αβγµνρ S [g] = d x (∂αφβγ)(x) M (η + κφ)(x)(∂µφνρ)(x) Z = d4x (∂ φ )(x) exp D [g] M αβγµνρ (g) (x)(∂ φ )(x) (4.11) α βγ { φ } g=η µ νρ Z   4.2 Variation of SD 39

4.2 Variation of SD

Now that we have obtained this very compact form of writing Seom, we can vary it with respect to the perturbation φ from flat spacetime. I.e. the goal of this section is to compute δ Seom [φ]. δφµν Using the product rule we can immediately obtain:

δ δ αβγρστ Seom [φ] = d4y (∂ φ )(y) exp D [g] M (g) (y)(∂ φ )(y) δφ (x) δφ (x) α βγ { φ } |g=η ρ στ µν µν Z  δ (∂ φ )(y) h αβγρστ i = d4y α βγ exp D [g] M (g) (y)(∂ φ )(y) δφ (x) { φ } |g=η ρ στ Z µν   h i αβγρστ δ (∂ φ )(y) + d4y (∂ φ )(y) exp D [g] M (g) (y) ρ στ α βγ { φ } |g=η δφ (x) Z   µν h δ i αβγρστ + d4y (∂ φ )(y) exp D [g] M (g) (y) (∂ φ )(y) α βγ δφ (x) { φ } |g=η ρ στ Z  µν  δφ (y) h αβγρστ i = d4y βγ ∂ exp D [g] M (g) (∂ φ ) (y) − δφ (x) α { φ } |g=η ρ στ Z µν   h iαβγρστ δφ (y) d4y∂ (∂ φ ) exp D [g] M (g) (y) στ − ρ α βγ { φ } |g=η δφ (x) Z   µν h i αβγρστ 4 δ + d y (∂αφβγ )(y) exp Dφ [g] M (g) g=η (y) (∂ρφστ )(y) δφµν (x) { } | Z  hαµνρστ i  = ∂ exp D [g] M (g) (∂ φ ) (x) − α { φ } |g=η ρ στ nh i αβγρµνo ∂ (∂ φ ) exp D [g] M (g) (x) − ρ α βγ { φ } |g=η   h δ i αβγρστ + d4y (∂ φ )(y) exp D [g] M (g) (y) α βγ δφ (x) { φ } |g=η Z  µν  (∂ φ )(y) h i (4.12) × ρ στ where we also used integration by parts. Let us now make a couple of considerations. First of all we note that:

δ δ δ D [g] = κ d4yφ (y) δφ (x) φ δφ (x) − αβ δg (y) µν µν  Z αβ  δφ (y) δ = κ d4y αβ − δφ (x) δg (y) Z µν αβ 1 δ = κ d4y δµ δν + δµ δν δ (y x) − 2 α β β α − δg (y) Z αβ δ  = κ (4.13) − δgµν (x) 40 4 φµν AS THE ITERATIVE SOLUTION TO THE EQUATIONS OF MOTION

Secondly we can use this to vary exp D [g] : { φ } δ δ ∞ (D (g))n exp D [g] = φ δφ (x) { φ } δφ (x) n! µν µν n=0 X ∞ n (D [g])n−1 δD [g] = φ φ n! δφµν (x) n=0 X ∞ (D [g])n−1 δ = κ h − (n 1)! δg (x) n=1 − µν X δ = κ exp Dφ [g] (4.14) − { } δgµν (x) We may now use this and δ M (g)(y)= ∂M(g) δ (y x) to go on with the variation of Seom: δgµν (x) ∂gµν − αµνρστ δ eom S [φ] = ∂α exp Dφ [g] M (g) g=η (∂ρφστ ) (x) δφµν (x) − { } | nh i αβγρµνo ∂ (∂ φ ) exp D [g] M (g) (x) − ρ α βγ { φ } |g=η   h i αβγρστ ∂M (g) κ d4y (∂ φ )(y) exp D [g] δ (y x) (y)(∂ φ )(y) − α βγ { φ } ∂g − ρ στ Z " µν g=η# αµνρστ = ∂ exp D [g] M (g) (∂ φ ) (x) − α { φ } |g=η ρ στ nh i αβγρµνo ∂ (∂ φ ) exp D [g] M (g) (x) − ρ α βγ { φ } |g=η   h i αβγρστ ∂M (g) κ (∂ φ )(x) exp D [g] (x)(∂ φ )(x) − α βγ { φ } ∂g ρ στ " µν g=η# αµνρστ = 2 ∂ exp D [g] M (g) (x)(∂ φ )(x) − α { φ } |g=η ρ στ  h αµνρστi  2 exp D [g] M (g) (x)(∂ ∂ φ )(x) − { φ } |g=η α ρ στ h i αβγρστ ∂M (g) κ (∂ φ )(x) exp D [g] (x)(∂ φ )(x) (4.15) − α βγ { φ } ∂g ρ στ " µν g=η#

αβγµνρ µνραβγ where we have relabeled some indices and used the property M = M . We are now going to expand this first variation in orders of φ. This corresponds to an expansion in powers of κ, since each φ comes with such a factor. Note that every term in the expansion has at least one power of φ, and the last term in (4.15) has at least two. There are of course no 0-th order terms, since we haven’t coupled the field to an external source yet. We can summarize the expansion as: eom δS [φ] eom eom 3 = δS(1) + δS(2) + φ (4.16) δφµν O  4.3 Coupling to an external source and corresponding equations of motion 41

Taking only the terms containing one power of φ, we get:

δSeom = 2(∂ M αµνρστ (η)) (x)(∂ φ )(x) 2M αµνρστ (η)(∂ ∂ φ )(x) (1) − α ρ στ − α ρ στ =0 = 2M αµνρστ (η)(∂ ∂ φ )(x) (4.17) − | {z α} ρ στ Analogously, but remembering this time to take into account the last term in (4.15), we can compute:

αµνρστ δSeom = 2 ∂ D [g] M (g) (x)(∂ φ )(x) (2) − α φ |g=η ρ στ  h αµνρστi  2 D [g] M (g) (x)(∂ ∂ φ )(x) − φ |g=η α ρ µν h ∂M αβγρστi (g) κ (∂ φ )(x) (∂ φ )(x) (4.18) − α βγ ∂g ρ στ µν g=η

In order to simplify further this expression, we need to know that:

δ D [g] M (g)(x) = κ d4yφ (y) M (g)(x) φ − αβ δg (y) Z αβ ∂M = κ d4yφ (y) δ (y x) − αβ ∂g − Z αβ ∂M = κφαβ (x) (x) (4.19) − ∂gαβ

eom Then δS(2) can be written as:

∂M αµνρστ ∂M αµνρστ δSeom = 2κ ∂ φ (x)(∂ φ )(x)+2κφ (x)(∂ ∂ φ )(x) (2) α α1β1 ∂g ρ στ α1β1 ∂g α ρ στ " α1β1 g=η#! α1β1 g=η

∂M αβγρστ κ (∂ φ )(x) (∂ φ )(x) (4.20) − α βγ ∂g ρ στ µν g=η

4.3 Coupling to an external source and corresponding equations of motion Let us now introduce the coupling to an external source:

source 4 αβ S [φ]= κ d xφαβ (x) J (x) (4.21) Z Note that since J αβ represents an external source, its variation with respect to φ vanishes. Thus the first variation of Ssource is: δSsource [φ] = κJ µν (x) (4.22) δφµν (x) 42 4 φµν AS THE ITERATIVE SOLUTION TO THE EQUATIONS OF MOTION

After imposing the coupling to an external source, the equations of motion coming from im- posing δ (Seom + Ssource)=0 are then: δSeom = κJ µν (x) (4.23) δφµν (x) −

eom We already know the expression for δS from (4.15), so that we obtain: δφµν (x) αµνρστ 2 ∂ exp D [g] M (g) (x)(∂ φ )(x) − α { φ } |g=η ρ στ  h i αµνρστ 2 exp D [g] M (g) (∂ ∂ φ )(x) − { φ } |g=η α ρ στ h i αβγρστ ∂M (g) κ (∂ φ )(x) exp D [g] (∂ φ )(x) = κJ µν (x) (4.24) − α βγ { φ } ∂g ρ στ − " µν g=η#

We can now write down the following expansion of exp Dφ [g] M (g) : { } |g=η ∞ n (Dφ [g]) exp Dφ [g] M (g) g=η = M (η)+ Dφ [g] M (g) g=η + M (g) (4.25) { } | | n! n=2 g=η X and use it to rewrite (4.24) up to (φ3): O αµνρστ 2 ∂ D [g] M (g) (x)(∂ φ )(x) − α φ |g=η ρ στ αµνρστ  h 2Mi (η)(∂α∂ρφστ )(x) − αµνρστ 2 D [g] M (g) (x)(∂ ∂ φ )(x) − φ |g=η α ρ στ h ∂M αβγρστi κ (∂ φ )(x) (∂ φ )(x)+ κJ µν (x) = h3 (4.26) − α βγ ∂g ρ στ O µν g=η  eom eom µν where we used that ∂αM (η)=0. This corresponds to setting δS(1) + δS(2) + κJ (x)=0. We can further reformulate this expression by first noting that: ∂M D [g] M (g) (x) = κ d4yφ (y) δ (x y) φ |g=η − αβ ∂g − Z αβ g=η

∂M = κφαβ (x) (4.27) − ∂g αβ g=η

This means that we can finally write the equations of motion including the coupling to the external source as: αµνρστ ∂M αµνρστ 2κ∂αφα1β1 (x) (∂ρφστ )(x) 2M (η)(∂α∂ρφστ )(x) ∂g 1 1 − α β g=η αµνρστ ∂M +2κφα1β1 (x) (∂α∂ρφστ )(x) ∂g α1β1 g=η αβγρστ ∂M µν 3 κ (∂αφβγ )(x) (∂ρφστ )(x)+ κJ (x) = φ (4.28) − ∂g O µν g=η 

4.4 Iterative solution of the equations of motion 43

4.4 Iterative solution of the equations of motion

It is now possible to solve the equations of motion iteratively. Let us start by considering the following expansion of φ:

φ = φ(0) + φ(1) + φ(2) + ... (4.29) where φ(0) is proportional to κ, φ(1) is proportional to κ3, and so on. Each iteration step corresponds to taking new diagrams into account. As we will see soon, φ(0) takes into account just one coupling with the external source, φ(1) considers two of them and so on. This is represented in Figure 5.

φ(0) φ(1) φ(2)

Figure 5: Each iteration step corresponds to taking new diagrams into account.

The differential equation to determine φ(0) must then be:

2M αµνρστ (η) ∂ ∂ φ(0) (x)= κJ µν (x) (4.30) − α ρ στ −  i.e. κ M αµνρστ (η) ∂ ∂ φ(0) (x)= J µν (x) (4.31) α ρ στ 2  Using the method of Green’s function we see that the solution must be:

κ φ(0) (x)= d4zG(0) (x z) J µν (z) (4.32) στ 2 στµν − Z

(0) where Gστµν satisfies:

M αµνρστ (η) ∂ ∂ G(0) (x y)= δµν δ (x y) (4.33) α ρ στα1β1 − α1β1 − 44 4 φµν AS THE ITERATIVE SOLUTION TO THE EQUATIONS OF MOTION

Now we consider the equation of motion of the next order, that is: αµνρστ (0) ∂M (0) αµνρστ (1) 2κ∂αφα1β1 (x) ∂ρφστ (x) 2M (η) ∂α∂ρφστ (x) ∂g 1 1 − α β g=η  αµνρστ  (0) ∂M (0) +2κφ 1 1 (x) ∂α∂ρφ (x) α β ∂g στ α1β1 g=η αβγρστ  (0) ∂M (0) κ ∂αφ (x) ∂ρφ (x) = 0 (4.34) − βγ ∂g στ µν g=η    αµνρστ (0) κ µν where we have already used the fact that 2M (η) ∂α∂ρ φστ (x) J (x)=0. − − 2 αµνρστ (1)   Solving this for M (η) ∂α∂ρφστ gives us: ∂M αµνρστ M αµνρστ (η) ∂ ∂ φ(1) (x) = κ∂ φ(0) (x) ∂ φ(0) (x) α ρ στ α α1β1 ∂g ρ στ α1β1 g=η αµνρστ  (0) ∂M (0) +κφ 1 1 (x) ∂α∂ρφστ (x) α β ∂g α1β1 g=η αβγρστ  1 (0) ∂M (0) κ ∂αφ (x) ∂ρφ (x) (4.35) −2 βγ ∂g στ µν g=η    (1) Which leads to the following expression for φστ : αµνρα2 β2 (1) 4 (0) (0) ∂M (0) φστ (x) = κ d yGστµν (x y) ∂αφα1β1 (y) ∂ρφα2β2 (y) − ∂g 1 1 Z α β g=η  αµνρα 2 β2   4 (0) (0) ∂M (0) +κ d yG φ (y) ∂α∂ρφ (y) στµν α1β1 ∂g α2β2 Z α1β1 g=η αβγρα2 β2  1 4 (0) (0) ∂M (0) κ d yG (x y) ∂αφ (y) ∂ρφ (y) (4.36) −2 στµν − βγ ∂g α2β2 Z µν g=η     We can write this equation in Fourier space as:

αµνρα2 β2 (1) ∂M 4 4 (0) (0) (0) φστ (k1) = κ đ k2đ k3 k2 αk3 ρGστµν (k1) φα1β1 (k2) φα2β2 (k3) δ (k1 + k2 + k3) − ∂g 1 1 α β g=η Z αµνρα2 β2 ∂M 4 4 (0) (0) (0) κ đ k2đ k3 k3 αk3 ρGστµν (k1) φα1β1 (k2) φα2β2 (k3) δ (k1 + k2 + k3) − ∂g 1 1 α β g=η Z αβγρα2 β2 κ ∂M 4 4 (0) (0) (0) + đ k2đ k3 k2 αk3 ρG (k1) φ (k2) φ (k3) 2 ∂g στµν βγ α2β2 µν g=η Z

δ (k1 + k2 + k3 ) (4.37) × 4.5 Comparison with the previous results 4.5.1 Gauge fixing At this point, we can use part of what we did in section 3.2 to fix the gauge. We need to do this in order to compute the explicit expressions for φ(0) and φ(1). 4.5 Comparison with the previous results 45

We already know the form of the free propagator in the harmonic gauge: 1 1 G(0)µνρσ k2 = (ηµρηνσ + ηµσηνρ ηµν ηρσ) (4.38) 2 k2 − Its inverse gives us the kinetic part  of the Lagrangian after fixing the gauge: µνρσ 1 G(0)−1 k2 = k2 (ηµρηνσ + ηµσηνρ ηµνηρσ) (4.39) 2 − Thus instead of (4.31), our0-th order equation of motion can be rewritten after gauge fixing as: κ M αµνρστ (η) ∂ ∂ φ(0) (x)= J µν (x) (4.40) G α ρ στ 2 where  1 M αµνρστ (η)= (ηµτ ηνσ + ηµσηντ ηµν ητσ) ηαρ (4.41) G 2 −

4.5.2 0-th order Let us now proceed to solving the equation of motion (4.31) for φ(0). We use the same external source and set thus Jµν (x) = Tµν (x), where Tµν is the energy- momentum tensor defined in section 3.4.1. This yields: κ φ(0) αβ (x)= d4zG(0)αβµν (x z) T (z) (4.42) 2 − µν Z In Fourier space this is simply the product of the Fourier transforms: κ φ(0)αβ (k)= G(0)αβµν (k) T (k) (4.43) 2 µν This is in perfect harmony with the first term in the formula (3.73) for the vacuum expectation value obtained previously. Thus the results will be the same, i.e.: 3 κ2 κφ(0)00 =2V + p (4.44) 2 ∆ and κ2 1 κφ(0)ij = 2V p ηij (4.45) − 2 ∆   4.5.3 1-st order We now turn to the equation (4.37) and compute φ(0) στ explicitly. We can rewrite (4.37) as:

3 αµνρα2 β2 αµνρα2 β2 (1) στ κ 4 4 ∂MG ∂MG φ (k1) = đ k2đ k3 2 k2 αk3 ρ 2 k3 αk3 ρ 8 − ∂gα1β1 − ∂gα1β1 Z g=η g=η

αα1 β1ρα2β2 ∂MG (0) στ (0) µ1ν1 (0) µ2ν2 + k2 αk3 ρ G µν (k1) G α1β1 (k2) G α2β2 (k3) ∂gµν  g=η 4 T 1 1 (k ) T 2 2 (k ) δ (k + k k ) (4.46) × µ ν 2 µ ν 3 2 3 − 1 46 4 φµν AS THE ITERATIVE SOLUTION TO THE EQUATIONS OF MOTION

This looks very similar to (3.73) and is in accordance with the diagrammatical representation of Figure 5. We can use the same integrals as the ones described in section 3.4.4 to compute the final result as a function of V and p. We implement the same rules on a computer and obtain: 1 2 κφ(1) 00 = η ∂kV ∂lV V ∆V (4.47) −∆ kl − ∆ and ηab 1 κφ(1) ij = ∂ V ∂ V ηij ∂iV ∂j V (4.48) ∆ a b − ∆  4.5.4 Final result and comparison Remembering that φ = φ(0) + φ(1) + ... we obtain the following final result:

3 κ2 1 2 κφ00 = 2V + p η ∂kV ∂lV V ∆V (4.49) 2 ∆ − ∆ kl − ∆   and κ2 1 η 1 κφij = 2V p + ab ∂aV ∂bV ηij ∂iV ∂jV (4.50) − 2 ∆ ∆ − ∆   Some more details on these calculations can be found in appendix F.  These results have the same form as the ones obtained in (3.101) and (3.112), up to a factor of 1 i j 4 and a sign in the term proportional to ∆ (∂ V ∂ V ). The origin of the problem is still unknown, but probably hides in the computer calculations. 47

5 Conclusions

The goal of this thesis was to study a particular approach for the computation of the vacuum expectation value of the gravitational potential. The mass configuration considered was the one of a perfectly spherically symmetric homoge- neous density. We first derived the classical result using the standard procedure of general relativity. Then we considered two different approaches, both based on the formulation of gravity as a quantum field theory. The first approach, following [1], requires the 3-vertex function , when writing the vacuum expectation value as the sum of a diagram involving one coupling to the external source and one involving two. There are many options to calculate the 3-vertex function and even the results from the liter- ature do not always agree. We considered three different possibilities that led to results differing at most by a factor of 4. Secondly, we computed the vacuum expectation value by means of writing the equations of motion in a form that can be solved iteratively. This allows us to avoid the computation of the 3-vertex function and requires only one partial derivative of a matrix with respect to the metric. The results obtained with this method differ only by a factor of 2 from the previous ones. The reason behind this disagreement has most probably nothing to do with the method used, but rather with some mistake in the calculations.

49

A Computation of Goldberg’s expression for the Einstein- Hilbert Lagrangian

We start with the usual form of the Einstein-Hilbert Lagrangian:

2 1 = ( g) 2 gµνR (A.1) L κ2 − µν We are using the following convention for the Ricci tensor:

R =Γρ Γρ Γσ Γρ +Γρ Γσ (A.2) µν µρ,ν − µν,ρ − µν σρ σν µρ and for the Christoffel symbol: 1 Γα = gαγ (∂ g + ∂ g ∂ g ) (A.3) βγ 2 γ λβ β λγ − λ γβ Our goal is to reexpress this Lagrangian using the tensor density gαβ:

n gαβ = √ ggαβ det gαβ = det √ ggαβ = √ g det gαβ − ⇒ − − where n is the dimensionality of our spacetime.     Note that: n n−2 det gαβ =( g) 2 −1 =( g) 2 (A.4) − − −1 =(−g) 

2 n−2 g |= {z( g}) n−2 g = ( g) 2 (A.5) ⇒ − − ⇒ − − µν αβ µν Using the relation ∂ρ (det (g )) = gαβg ,ρ det (g ), we obtain:

n−2 ∂ g = ∂ ( g) 2 ρ ρ − −   2 = ∂ ( det (gµν )) n−2 − ρ − 2 2  −1 = ( det (gµν )) n−2 ∂ det (gµν) n 2 − ρ − 2 2 −1 = ( det (gµν )) n−2 g gαβ det (gµν ) n 2 − αβ ,ρ −2 2 = ( 1)( det (gµν)) n−2 g gαβ n 2 − − αβ ,ρ − =g 2 = g|g gαβ {z } (A.6) n 2 αβ ,ρ − Furthermore:

∂ gαβ = gµαgνβ (∂ g ) (A.7) γ − γ µν ∂ g = g g ∂ gµν (A.8) γ αβ − µα νβ γ 50 A COMPUTATION OF GOLDBERG’S EXPRESSION . . .

We can use all of this information to rewrite the Christoffel symbol: 1 Γα = gαλ (∂ g + ∂ g ∂ g ) βγ 2 β λγ γ λβ − λ βγ 1 1 = ( g)− 2 gαλ ( g g ∂ gµν g g ∂ gµν + g g ∂ gµν) 2 − − µλ νγ β − µλ νβ γ µβ γν λ 1 1 1 1 1 1 1 1 = ( g)− 2 gαλ ( g) 2 ( g) 2 g g ∂ ( g)− 2 gµν ( g) 2 ( g) 2 g g ∂ ( g)− 2 gµν 2 − − − − µλ νγ β − − − − µλ νβ γ − 1 1 1     +( g) 2 ( g) 2 g g ∂ ( g) 2 gµν − − µβ γν λ − 1 1  1  1 1 = ( g) 2 gαλ g g ∂ ( g)− 2 gµν g g ∂ ( g)− 2 gµν + g g ∂ ( g) 2 gµν 2 − − µλ νγ β − − µλ νβ γ − µβ γν λ − 1 1   1  1   1  = ( g) 2 gαλ g g gµν ∂ ( g)− 2 g g ( g)− 2 ∂ gµν g g gµν∂ ( g)− 2 2 − − µλ νγ β − − µλ νγ − β − µλ νβ γ − 1 1 1 − − − g g ( g) 2 ∂ gµν + g g gµν∂ ( g) 2 + g g ( g) 2 ∂ gµν (A.9) − µλ νβ − γ µβ γν λ − µβ γν − λ  In order to get rid of the derivatives of the determinant, we compute:

1 1 3 ∂ ( g)− 2 = ( g)− 2 ∂ g α − 2 − α 1 3 2 = ( g)− 2 gg gµν 2 − n 2 µν ,α 1 −1 = ( g) 2 g gµν (A.10) −n 2 − µν ,α − So we can finally compute an expression for the Christoffel symbol, that depends only on the tensor density gµν:

1 1 1 1 1 Γα = ( g) 2 gαλ g g gµν ( g)− 2 g gπσ g g ( g)− 2 gµν βγ 2 − − µλ νγ −n 2 − πσ ,β − µλ νγ − ,β   −  1 1 1 g g gµν ( g)− 2 g gπσ g g ( g)− 2 gµν − µλ νβ −n 2 − πσ ,γ − µλ νβ − ,γ  −  1 1 1 +g g gµν ( g)− 2 g gπσ + g g ( g)− 2 gµν µβ γν −n 2 − πσ ,λ µβ γν − ,λ  −   1 1 1 = gαλ g g gµν g gπσ g g gµν + g g gµν g gπσ 2 n 2 µλ νγ πσ ,β − µλ νγ ,β n 2 µλ νβ πσ ,γ  − − 1 g g gµν g g gµν g gπσ + g g gµν − µλ νβ ,γ − n 2 µβ γν πσ ,λ µβ γν ,λ −  1 1 1 = δαg gπσ g gαν + δαg gπσ g gαν 2 n 2 γ πσ ,β − νγ ,β n 2 β πσ ,γ − νβ ,γ  − − 1 g gαλg gπσ + g g gαλgµν −n 2 γβ πσ ,λ µβ γν ,λ −  1 1 1 = δαg gπσ + g gαµ δαg gπσ + g gαµ −2 −n 2 γ πσ ,β µγ ,β − n 2 β πσ ,γ µβ ,γ  − − 1 + g gαλg gπσ g g gαλgµν (A.11) n 2 γβ πσ ,λ − βµ γν ,λ −  51

After inserting the explicit form of the Christoffel symbol in the Ricci tensor and some compu- tations that are too long even for the appendix, we obtain the following:

1 S = dnx4gµν R EH 2κ2 µν Z 1 8 2n 4 = dnx − gµν g gαβ + gµν g gαβ +4gαρ 2κ2 n 2 αβ,ν ,µ n 2 αβ ,µν ,αρ Z  − − 1 µν αβ α′β′ µν αρ σα′ µν αρ g g g ′ ′ g g g g g ′ g g +4g g g −n 2 αβ α β ,µ ,ν − σα ρα ,ν ,µ µα,ρ ,ν − ρα α′σ 4 ργ αβ +2g ′ g g + g g g (A.12) αα ,σ ,ρ n 2 ,ρ αβ ,γ −  Integration by parts yields then the desired result:

1 n µν α′β′ αβ 1 µν αβ α′β′ S = d x g g ′ g g g g g ′ ′ g g EH 2κ2 αα ,ν ,µ − n 2 αβ α β ,µ ,ν Z  − 2g gαρ gσβ (A.13) − αβ ,σ ,ρ  B Computations for the free propagator

B.1 φα1β1 (x) φα2β2 (y)

We can now check that φα1β1 (x) φα2β2 (y)= iGα1β1α2β2 (x y): − −

φα1β1 (x) φα2β2 (y)= iGα1β1α2β2 (x y) = 0 T φα1β1 (x) φα2β2 (y) − − 1  δ δ = i i Z [J] Z[J] − δJ 1 1 (x) − δJ 2 2 (y)  α β   α β  J=0 δ 1 4 ′ 4 ′ α2β2 ′ = d x d y I µν δ (y y) −Z[J] δJ 1 1 (x) − − α β  Z ( i) Gαβµν (x′ y′) J (x′) Z [J] × − − αβ J=0 1 = i d4x′Gαβα2β2 (x′ y) Iα1β1 − Z[J] − αβ Z δ (x′ x)] Z (J) × − |J=0 = iGα1β1α2β2 (x y) (B.1) − −

B.2 Proof that Gµνρσ satisfies (3.36)

µνρσ 2 1 µρ νσ ρν µσ µν ρσ 1 We now show that G (k )= (η η + η η η η ) 2 satisfies (3.36). 2 − k 52 C 3-GRAVITON INTERACTION

Indeed in momentum space we have: 1 (2ηρση η ηρσ 4δσ δρ η +4δρ δσ η ) 8 λι κτ − − κ λ ιτ κ τ ιλ 1 i k k ( i) ηλµητν + ηµτ ηλν ηλτ ηµν = − 2k2η η k2η η × ρ σ − − k2 8 λι κτ − ικ λτ  4kκkληιτ +4kκkτ ηιλ) − 1 ηλµητν + ηµτ ηλν ηλτ ηµν × − k2 i = − 2k2δµ δν +2k2δµ δν 2k2η ηµν 8 ι κ κ ι − κι 2 µν 2 µν 2 µν kηικη k ηικη 4k ηικη − µ ν − κ ν µ − µν 4kκk δ ι 4k k δ ι +4kκkιη − ν µ − µ ν µν +4kκk δ ι +4kκk δ ιη ) i = − (δµ δν + δµ δν ) 4 ι κ κ ι i = − Iµν (B.2) 2 ικ

C 3-graviton interaction

C.1 Computation of Γ˜

We need to compute three variations of AG with respect to g. In order to do this, we will use the xTensor package from Mathematica, contained in the xAct bundle. This package allows us to perform tensor calculus, inculding variations. The desired expression can be rewritten as a function of φ˜:

δ3 d4xκ (1) ˜ G Γα1β1α2β2α3β3 (x1, x2, x3)= L (C.1) ˜α1β1 ˜α2β2 ˜α3β3 δφ (x1) δφ (x2) δφ (x3) R φ˜=0

Remembering that 1 ˜(1) = 4ηρση η η +2ηρση η η +2δρ δσ η η δρ δσ η η LG 8 − λι κα τβ ικ λα βτ α β λι κτ − α β ικ λτ σ ρ ˜αβ ˜ικ ˜λτ +4δ κδ ληαιητβ) φ φ ,ρφ ,σ (C.2) we leave the contraction with the Minkowski metric aside for the moment and vary just ˜αβ ˜ικ ˜λτ φ φ ,ρφ ,σ.

We define this as follows in Mathematica:

❬ ❢ ✱ ❤ ❪ ✁ ❬ ❞ ✱ ❡ ✱ ✲ ❛ ❪ ✁ ❬ ❝ ✱ ❣ ✱ ✲ ❜ ❪ where ψ is a shorthand for ∂φ˜. After defining some variation rules, we are ready to do the actual computations:

C.2 Computation of the vertex function in position space 53

✴✿ ❱✁✂✄❬ ♣☎✂✆✝❬ ✁✝ ✱ ❜✝ ❪ ✱ ✄ ❪❬ ❬ ❞❴ ✱ ❡❴ ✱ ✲ ❛❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠✠♠ ✝❬ ✲ ❛ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ✁✝ ❪ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ❜✝ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ✁✝ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ❜✝ ❪ ✮ ❡✞✟❀

✴✿ ❱✁✂✄❬ ♣☎✂✆✷❬ ✁✷ ✱ ❜✷ ❪ ✱ ✄ ❪❬ ❬ ❞❴ ✱ ❡❴ ✱ ✲ ❛❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠✠♠ ✷❬ ✲ ❛ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ✁✷ ❪ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ❜✷ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ✁✷ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ❜✷ ❪ ✮ ❡✞✟❀

✴✿ ❱✁✂✄❬ ♣☎✂✆✌❬ ✁✌ ✱ ❜✌ ❪ ✱ ✄ ❪❬ ❬ ❞❴ ✱ ❡❴ ✱ ✲ ❛❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠✠♠ ✌❬ ✲ ❛ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ✁✌ ❪ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ❜✌ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❡ ✱ ✲ ✁✌ ❪ ♠ ☎✆✂✡☛☞ ❬ ❞ ✱ ✲ ❜✌ ❪ ✮ ❡✞✟❀

✍ ✴✿ ❱✁✂✄❬ ♣☎✂✆✝❬ ✁✝ ✱ ❜✝ ❪ ✱ ✄ ❪❬ ✍ ❬ ❢❴ ✱ ❤❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ✁✝ ❪ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ❜✝ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ✁✝ ❪ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ❜✝ ❪ ✮ ❡✞✟❀

✍ ✴✿ ❱✁✂✄❬ ♣☎✂✆✷❬ ✁✷ ✱ ❜✷ ❪ ✱ ✄ ❪❬ ✍ ❬ ❢❴ ✱ ❤❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ✁✷ ❪ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ❜✷ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ✁✷ ❪ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ❜✷ ❪ ✮ ❡✞✟❀

✍ ✴✿ ❱✁✂✄❬ ♣☎✂✆✌❬ ✁✌ ✱ ❜✌ ❪ ✱ ✄ ❪❬ ✍ ❬ ❢❴ ✱ ❤❴ ❪ ✱ ❡✞✟❴ ❪ ✿❂

✭ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ✁✌ ❪ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ❜✌ ❪ ✰ ♠ ☎✆✂✡☛☞ ❬ ❤ ✱ ✲ ✁✌ ❪ ♠ ☎✆✂✡☛☞ ❬ ❢ ✱ ✲ ❜✌ ❪ ✮ ✯ ❡✞✟❀

✭ ❈✁✂✄☎✆✝ ✆✝ ✈✞✟✠✞✆✠✁✡☛✯

✟✝☛ ❂ ❱✞✟☞❬ ✄✝✟✆❬ ✞ ✱ ❜ ❪ ✱ ☞ ❪❬ ✌ ❬ ❢ ✱ ❪ ✍ ❬ ❞ ✱ ✝ ✱ ✲ ✞ ❪ ✍ ❬ ❝ ✱ ❣ ✱ ✲ ❜ ❪ ❪ ❀

✭ ❢✠✟☛✆ ✈✞✟✠✞✆✠✁✡✯

✟✝☛✎ ❂ ❱✞✟☞❬ ✄✝✟✆✎❬ ✞✎ ✱ ❜✎ ❪ ✱ ☞ ❪❬ ✟✝☛❪ ❀ ✭ ☛✝❝✁✡❞ ✈✞✟✠✞✆✠✁✡✯

✟✝☛✏ ❂ ❱✞✟☞❬ ✄✝✟✆✏❬ ✞✏ ✱ ❜✏ ❪ ✱ ☞ ❪❬ ✟✝☛✎❪ ❀

✭ ✆✠✟❞ ✈✞✟✠✞✆✠✁✡✯

We can then multiply this by the prefactor that we had left away to obtain the result stated in (3.44).

C.2 Computation of the vertex function in position space

The variation rules used to work in position space are:

♠✁✂✄☎✆ ✴✿ ❱✝✂✞❬ ✈✝✂✟❬ ♠✟ ✱ ♥✟ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠❴ ✱ ✡❴ ❪ ✱ ☛☞✌❴ ❪ ✿❂

❱✝✂✞❬ ♠✁✂✄☎✆ ❬ ♠✟ ✱ ♥✟ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠ ✱ ✡ ❪❪ ✯ ❞ ✍✁✝✎✎✟ ✯ ☛☞✌

♠✁✂✄☎✆ ✴✿ ❱✝✂✞❬ ✈✝✂✏❬ ♠✏ ✱ ♥✏ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠❴ ✱ ✡❴ ❪ ✱ ☛☞✌❴ ❪ ✿❂

❱✝✂✞❬ ♠✁✂✄☎✆ ❬ ♠✏ ✱ ♥✏ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠ ✱ ✡ ❪❪ ✯ ❞ ✍✁✝✎✎✏ ✯ ☛☞✌

♠✁✂✄☎✆ ✴✿ ❱✝✂✞❬ ✈✝✂✑❬ ♠✑ ✱ ♥✑ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠❴ ✱ ✡❴ ❪ ✱ ☛☞✌❴ ❪ ✿❂

❱✝✂✞❬ ♠✁✂✄☎✆ ❬ ♠✑ ✱ ♥✑ ❪ ✱ ✞ ❪❬ ♠✁✂✄☎✆ ❬ ✠ ✱ ✡ ❪❪ ✯ ❞ ✍✁✝✎✎✑ ✯ ☛☞✌

54 D EXPLICIT COMPUTATION OF THE VACUUM EXPECTATION VALUE

✴✿ ❱✁✂✄❬ ✈✁✂☎❬ ♠☎ ✱ ♥☎ ❪ ✱ ✄ ❪❬ ❬ ❛❴ ✱ ❜❴ ✱ ✲ ❝❴ ❪ ✱ ✆✝✞❴ ❪ ✿❂

✄ ❬ ✲ ❝ ❪❬ ❱✁✂✄❬ ♠✟✠✂✡☛☞ ❬ ♠☎ ✱ ♥☎ ❪❪❬ ♠✟✠✂✡☛☞ ❬ ❛ ✱ ❜ ❪❪ ❞✟✌✠ ✁✍✍☎❪ ✯ ✆✝✞

✴✿ ❱✁✂✄❬ ✈✁✂✎❬ ♠✎ ✱ ♥✎ ❪ ✱ ✄ ❪❬ ❬ ❛❴ ✱ ❜❴ ✱ ✲ ❝❴ ❪ ✱ ✆✝✞❴ ❪ ✿❂

✄ ❬ ✲ ❝ ❪❬ ❱✁✂✄❬ ♠✟✠✂✡☛☞ ❬ ♠✎ ✱ ♥✎ ❪❪❬ ♠✟✠✂✡☛☞ ❬ ❛ ✱ ❜ ❪❪ ❞✟✌✠ ✁✍✍✎❪ ✯ ✆✝✞

✴✿ ❱✁✂✄❬ ✈✁✂✏❬ ♠✏ ✱ ♥✏ ❪ ✱ ✄ ❪❬ ❬ ❛❴ ✱ ❜❴ ✱ ✲ ❝❴ ❪ ✱ ✆✝✞❴ ❪ ✿❂

✄ ❬ ✲ ❝ ❪❬ ❱✁✂✄❬ ♠✟✠✂✡☛☞ ❬ ♠✏ ✱ ♥✏ ❪❪❬ ♠✟✠✂✡☛☞ ❬ ❛ ✱ ❜ ❪❪ ❞✟✌✠ ✁✍✍✏❪ ✯ ✆✝✞

where Ωαβ is a shorthand for gαβ and deltaXX1 stands for δ (x x ) and so on. γ ,γ − 1

The rules for integrating over d4x are:

✐✁✂✄ ✿❂ ❞☎✆✁✝✂✂✄ ✯ ✞ ❬ ❛❴ ❪❬ ❞☎✆✁✝✂✂✟❪ ✞ ❬ ❜❴ ❪❬ ❞☎✆✁✝✂✂✠❪ ✡

✞ ❬ ✝ ❪❬ ❞☎✆✁✝✂✟✂✄❪ ✞ ❬ ☛ ❪❬ ❞☎✆✁✝✂✄✂✠❪

✐✁✂✠ ✿❂ ❞☎✆✁✝✂✂✠ ✯ ✞ ❬ ❛❴ ❪❬ ❞☎✆✁✝✂✂✄❪ ✞ ❬ ❜❴ ❪❬ ❞☎✆✁✝✂✂✟❪ ✡

✞ ❬ ✝ ❪❬ ❞☎✆✁✝✂✄✂✠❪ ✞ ❬ ☛ ❪❬ ❞☎✆✁✝✂✠✂✟❪

✐✁✂✟ ✿❂ ❞☎✆✁✝✂✂✟ ✯ ✞ ❬ ❛❴ ❪❬ ❞☎✆✁✝✂✂✠❪ ✞ ❬ ❜❴ ❪❬ ❞☎✆✁✝✂✂✄❪ ✡

✞ ❬ ✝ ❪❬ ❞☎✆✁✝✂✠✂✟❪ ✞ ❬ ☛ ❪❬ ❞☎✆✁✝✂✟✂✄❪

and the rules for performing the Fourier transformation are:

❞✁✂✄☎✆✝✞✟✠ ✿❂ ✡ ❬ ❛❴ ❪❬ ❞☎✄✞☛✆✝✆☞❪ ✡ ❬ ❜❴ ❪❬ ❞☎✄✞☛✆✌✆✝❪ ✍ ✲ ✠✠☞❬ ☛ ❪ ✠✠✌❬ ✂ ❪ ❀

❞✁✂✄☎✆☞✞✟✠ ✿❂ ✡ ❬ ❛❴ ❪❬ ❞☎✄✞☛✆☞✆✌❪ ✡ ❬ ❜❴ ❪❬ ❞☎✄✞☛✆✝✆☞❪ ✍ ✲ ✠✠✌❬ ☛ ❪ ✠✠✝❬ ✂ ❪ ❀

❞✁✂✄☎✆✌✞✟✠ ✿❂ ✡ ❬ ❛❴ ❪❬ ❞☎✄✞☛✆✌✆✝❪ ✡ ❬ ❜❴ ❪❬ ❞☎✄✞☛✆☞✆✌❪ ✍ ✲ ✠✠✝❬ ☛ ❪ ✠✠☞❬ ✂ ❪ ❀

where mom2[a] means k2α and so on.

D Explicit computation of the vacuum expectation value

The generic rules that we will need for computing the integrals in the vacuum expectation value are

55

✭ ❍✁✂✁ ❛✂✁ ❢✄ ✂☎✆ ✆ ✁ ❞✁❢✄✝✄✆✄✞✝☎ ✞❢ ✆ ✁ ✂✟✁☎ ✆ ❛✆ ■

✇✄ ✟✟ ❜ ✁ ☎✄✝✉ ✆ ✞ ❝✞✠✡✆✁ ✆ ✁ ❢ ❛❝✆✞✂☎ ✄ ✝ ❢ ✂✞✝✆ ✞❢ ❱☛❱

❛✝❞ ❞❱❞❱✳✯

✠✁✆✂✄❝✆✞☎❝❛✟❛✂ ❂ ✠✁✆✂✄❝✉ ❬ ☞❴ ✱ ✌❴ ❪ ✍ ✲ ✶ ❀

✠✞✠♠✆✞✎☛✎ ❂ ✠✞✠♠❬ ☞❴ ❪ ✠✞✠♠❬ ✲ ☞❴ ❪ ✍ ✶✏ ✎☛✎❀

✠✞✠✑✆✞✎☛✎ ❂ ✠✞✠✑❬ ☞❴ ❪ ✠✞✠✑❬ ✲ ☞❴ ❪ ✍ ✶✏ ✎☛✎❀

✠✞✠✑♠✆✞❞✎❞✎ ❂ ✠✞✠✑❬ ☞❴ ❪ ✠✞✠♠❬ ✲ ☞❴ ❪ ✍ ✶✏ ❞✎❞✎❀

✠✞✠♠✑✆✞❞✎❞✎ ❂ ✠✞✠♠❬ ☞❴ ❪ ✠✞✠✑❬ ✲ ☞❴ ❪ ✍ ✶✏ ❞✎❞✎❀

✭ ❚✁☎✁ ❛✂✁ ✆ ✁ ✂✟✁☎ ❢ ✞✂ ☎ ✁✆✆✄✝✉ ✆ ✁ ✠✞✠✁✝✆❛ ✆ ✞ ✵ ✱

✇ ✁✝ ✆ ✁ ✄ ✝❞✄❝✁☎ ❛✂✁ ✵

✭ ❜ ✁❝❛☎✁ ✞❢ ✆ ✁ ❞✁✟✆❛ ✄ ✝ ✆ ✁ ✠ ✭ ❦ ✯ ✆ ✁✂✠✯✳ ✯

✠✞✠✑✠✶✆✞✵ ❂ ✠✞✠✑❬ ✠✶ ❪ ✍ ✵ ❀

✠✞✠✑✝✶✆✞✵ ❂ ✠✞✠✑❬ ✝✶ ❪ ✍ ✵ ❀

✠✞✠✑✠♠✆✞✵ ❂ ✠✞✠✑❬ ✠♠ ❪ ✍ ✵ ❀

✠✞✠✑✝♠✆✞✵ ❂ ✠✞✠✑❬ ✝♠ ❪ ✍ ✵ ❀

✠✞✠✑✠✑✆✞✵ ❂ ✠✞✠✑❬ ✠✑ ❪ ✍ ✵ ❀

✠✞✠✑✝✑✆✞✵ ❂ ✠✞✠✑❬ ✝✑ ❪ ✍ ✵ ❀

✠✞✠♠✠✶✆✞✵ ❂ ✠✞✠♠❬ ✠✶ ❪ ✍ ✵ ❀

✠✞✠♠✝✶✆✞✵ ❂ ✠✞✠♠❬ ✝✶ ❪ ✍ ✵ ❀

✠✞✠♠✠♠✆✞✵ ❂ ✠✞✠♠❬ ✠♠ ❪ ✍ ✵ ❀

✠✞✠♠✝♠✆✞✵ ❂ ✠✞✠♠❬ ✝♠ ❪ ✍ ✵ ❀

✠✞✠♠✠✑✆✞✵ ❂ ✠✞✠♠❬ ✠✑ ❪ ✍ ✵ ❀

✠✞✠♠✝✑✆✞✵ ❂ ✠✞✠♠❬ ✝✑ ❪ ✍ ✵ ❀

✭ ❚✄☎ ✄☎ ❢ ✞✂ ✇ ✁✝ ✠✶ ✒

✝✶ ❛✝❞ ✁✝❝✁ ✆ ✁ ✠✁✆✂✄❝ ❛☎ ✆ ✞ ❜ ✁ ☎ ✁✆ ✆ ✞ ③✁✂✞✳✯

✓✔ ✕✖✗✘ ✕✙✚ ✛ ✓✔ ✕✖✗✘ ✜ ✢ ✓✣✤ ♥ ✣✥ ✦ ✚ ✧

✭ ❲✁✝ ✠✶ ✞✂ ✝✶ ❛✂✁ ✒ ✵ ❛✝❞ ❛★ ✄☎ ✵ ✱

✆ ✁ ✠✁✆✂✄❝ ☎ ✞✟❞ ❛✟☎✞ ❜ ✁ ☎ ✁✆ ✆ ✞ ✵✳ ✯

✠✁✆✂✄❝✠✶❛✟✡❛✆✞✵ ❂ ✠✁✆✂✄❝✉ ❬ ✠✶ ✱ ☞❴ ❪ ✍ ✵ ❀

✠✁✆✂✄❝✝✶❛✟✡❛✆✞✵ ❂ ✠✁✆✂✄❝✉ ❬ ☞❴ ✱ ✝✶ ❪ ✍ ✵ ❀

✠✁✆✂✄❝❛✟✡❛✠✶✆✞✵ ❂ ✠✁✆✂✄❝✉ ❬ ☞❴ ✱ ✠✶ ❪ ✍ ✵ ❀

✠✁✆✂✄❝❛✟✡❛✝✶✆✞✵ ❂ ✠✁✆✂✄❝✉ ❬ ✝✶ ✱ ☞❴ ❪ ✍ ✵ ❀

✠✁✆✂✄❝✆✞✶ ❂ ✠✁✆✂✄❝✉ ❬ ✠✶ ✱ ✝✶ ❪ ✍ ✶ ❀

✠✁✆✂✄❝✆✞✶☎✩✠✠ ❂ ✠✁✆✂✄❝✉ ❬ ✝✶ ✱ ✠✶ ❪ ✍ ✶ ❀

✠✁✆✂✄❝✉✁✝✁✂✄❝✆✞✶ ❂ ✠✁✆✂✄❝✉ ❬ ☞❴ ✱ ✌❴ ❪ ✍ ✶ ❀

✭ ❚✄☎ ✄☎ ✆ ✁ ❛❝✆❛✟ ☎ ❜☎✆✄✆✆✄✞✝ ✄ ✝✆✞ ✆ ✁✂✠☎ ✡✂✞✡✞✂✆✄✞✝❛✟

✆ ✞ ❞✄❱❞✪❱ ✳ ✯

❞✄❱❞✪❱✎✶ ❂ ✠✞✠♠❬ ✠✶ ❪ ✠✞✠✑❬ ✝✶ ❪ ✍ ✶✏ ❞✄❱❞✪❱ ❀

❞✄❱❞✪❱✎♠ ❂ ✠✞✠✑❬ ✠✶ ❪ ✠✞✠♠❬ ✝✶ ❪ ✍ ✶✏ ❞✄❱❞✪❱ ❀ 56 D EXPLICIT COMPUTATION OF THE VACUUM EXPECTATION VALUE

D.1 00-component

1 1 i The implementation of the rules for calculating the factors in front of ∆ V ∆V and ∆ ∂iV ∂ V

is

✈✁✂✄☎✆✝✞✂✁✟✠✝✡ ✴✳ ♠✂✁✠☛✂✆✞☛✟☞✟✁❀

♠✆♠✌✂✆✈✍✈❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✎✂✆✈✍✈❀

♠✆♠✎✌✂✆✡✈✡✈ ❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✌✎✂✆✡✈✡✈ ❀

✪ ✴✳ ♠✆♠✎♠✏✂✆✑❀

♠✆♠✎✝✏✂✆✑❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✎♠✌✂✆✑❀

♠✆♠✎✝✌✂✆✑❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✎♠✎✂✆✑❀

✪ ✴✳ ♠✆♠✎✝✎✂✆✑❀

✪ ✴✳ ♠✆♠✌♠✏✂✆✑❀

✪ ✴✳ ♠✆♠✌✝✏✂✆✑❀

✪ ✴✳ ♠✆♠✌♠✌✂✆✑❀

✪ ✴✳ ♠✆♠✌✝✌✂✆✑❀

✪ ✴✳ ♠✆♠✌♠✎✂✆✑❀

✪ ✴✳ ♠✆♠✌✝✎✂✆✑

D.2 ij-component

1 i j

The implementation of the rules to determine the factors in front of ∆ ∂ V ∂ V are

✁✂✄☎✆✝✞✆✟✞ ❂ ✈☎✠✡☛☞✁☎✌✝☞✆ ✴✳ ♠☎✝✍☎☛✎❀

✪ ✴✳ ♠☎✝✍♠✏✌✄✑✒✌☎☛✎ ❀

✪ ✴✳ ♠☎✝✍☞✏✌✄✑✒✌☎☛✎ ❀

✪ ✴✳ ♠☎✝✍✌✄✑✒✌♠✏☎☛✎ ❀

✪ ✴✳ ♠☎✝✍✌✄✑✒✌☞✏☎☛✎ ❀

✪ ✴✳ ✆✝✞✆✟✞✈✏❀

✪ ✴✳ ✆✝✞✆✟✞✈❞❀

✪ ✴✳ ♠☎✝✍✓☞✝✍☎☛✏

ij 1 k and for the factors in front of η ∆ ∂ V ∂kV

57

✈✁✂✄☎✆✝✞✂✁✟✠✝✡ ✲ ✁✞☛✂✡✠☞✡✌☞ ✴✳ ♠✂✁✠✍✂✆✎❀

✪ ✴✳ ♠✂✁✠✍✂✆✎✞✏♠♠❀

♠✆♠✑♠✑✂✆✒❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✑✝✑✂✆✒❀

✪ ✴✳ ♠✆♠✑♠✓✂✆✒❀

♠✆♠✑✝✓✂✆✒❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✓♠✑✂✆✒❀

♠✆♠✓✝✑✂✆✒❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✓♠✓✂✆✒❀

✪ ✴✳ ♠✆♠✓✝✓✂✆✒❀

♠✂✁✠✍✔✝✁✠✍✂✆✎ ❀ ✪ ✴✳

✪ ✴✳ ♠✆♠✑✓✂✆✡✈✡✈ ❀

♠✆♠✓✑✂✆✡✈✡✈ ✪ ✴✳

E Proof of the relations stated in sections 3.4.3, 3.4.4 and 3.5.3

E.1 Proof of (3.86)

We begin by noting that

ik·x′ 1 e ~ V (x′) = κ2 đ4k (2π) δ k0 d3xe−ik·~xµ (~x) 4 k2 Z Z ′ 1 κ2 ei~k·(~x −~x) = d3xµ (~x) d3~k 4 (2π)3 ~k2 Z Z 2 ∞ θ=π 1 κ 3 ik(|~x′−~x|)cos(θ) = 2 d xµ (~x) dk d (cos (θ)) e −4 (2π) θ Z Z0 Z =0 2 ∞ 1 κ 1 ′ ′ d3xµ ~x dk e−ik|~x −~x| eik|~x −~x| = 2 ( ) ′ −4 (2π) 0 ik ~x ~x − Z Z | − | h i 1 κ2 ∞ sin (k ~x′ ~x ) = d3xµ (~x) dk | − | 2 (2π)2 k ~x′ ~x Z Z0 | − | = π 2|~x′−~x| π κ2 | 1 {z } = d3xµ (~x) 4 (2π)2 ~x′ ~x Z | − | π κ2 θ (ε r) = ρ drdθdϕr2 sin (θ) − (E.1) 4 (2π)2 ~x′ ~x Z | − | 58 E PROOF OF THE RELATIONS STATED IN SECTIONS 3.4.3, 3.4.4 AND 3.5.3

We can insert ~x′ ~x = (~x′ ~x′)2 = r′ 2 + r2 2rr′ cos(θ) in the above expression to | − | − − obtain: q p π κ2 ε θ r2 sin (θ) V (x′) = ρ dr dθ (E.2) 4 (2π) 0 0 r′ 2 + r2 2rr′ cos(θ) Z Z − s =:f(θ) | {z } (E.3)

df ′ Noticing that dθ =2rr sin (θ) we can go on with the calculations: π κ2 ε 1 θ df 1 V x′ ρ dr dθr2 ( ) = ′ 1 − 4 (2π) 2rr dθ 2 Z0 Z0 [f (θ)] π κ2 ρ ε = drr √r′ 2 + r2 +2rr′ √r′ 2 + r2 2rr′ − 4 (2π) r′ − − Z0 π κ2 ρ ε h i = drr (r′ + r)2 (r′ r)2 − 4 (2π) r′ − − Z0 q q  π κ2 ρ ε π κ2 ρ ε = drr (r′ + r)2 + drr (r′ r)2 (E.4) − 4 (2π) r′ 4 (2π)2 r′ − Z0 q Z0 q =:I1 =:I2 Let us deal with the two terms| separately:{z } | {z } π κ2 ρ ε I = drr (r′ + r) 1 4 (2π) r′ Z0 π κ2 ρ r′ε2 ε3 = + (E.5) 4 (2π) r′ 2 3   and π κ2 ρ ε I = drr (r′ r)2 2 4 (2π) r′ − Z0 q π κ2 ρ ε ε θ r′ ε drr r′ r θ ε r′ drr r′ r 2 = ′ ( ) ( )+ ( ) ( ) 4 (2π) r − 0 − − 0 −  Z Z ′ q  π κ2 ρ ε2r′ ε3 r ε = θ (r′ ε) + θ (ε r′) drr (r′ r)+ drr (r r′) 4 (2π) r′ − 2 − 3 − − ′ − (   "Z0 Zr #) π κ2 ρ ε2r′ ε3 r′ 3 r′ 3 ε3 ε2r′ r′ 3 r′ 3 = θ (r′ ε) + θ (ε r′) + + 4 (2π) r′ − 2 − 3 − 2 − 3 3 − 2 − 3 2      π κ2 ρ ε2r′ ε3 2r′ 3 ε3 ε2r′ = θ (r′ ε) + θ (ε r′) r′ 3 + (E.6) 4 (2π) r′ − 2 − 3 − − 3 3 − 2     

Rewriting I1 as π κ2 ρ r′ε2 ε3 r′ε2 ε3 I = + θ (ε r′)+ + θ (r′ ε) (E.7) 1 4 (2π) r′ 2 3 − 2 3 −      E.2 Proof of (3.88) and (3.89) 59 we obtain the final result:

V (x′) = I + I − 1 2 π κ2 ρ 2r′ 3 2ε3 = θ (ε r′) r′ε2 + r′ 3 θ (r′ ε) 4 (2π) r′ − − − 3 − − 3     κ2λ 3 r′ 1 r′ 3 1 = θ (ε r′) + θ (r′ ε) 4 (2π) r′ − −4 ε 4 ε3 − 2 −     16πGλ = 4 (2π) r′ 2Gλ 3 r′ 1 r′ 3 1 = θ (ε r′) + θ (r′ ε) r′ − −4 ε 4 ε3 − 2 −     3 1 1 r′ 2 1 = ( Gλ) θ (ε r′) + θ (r′ ε) (E.8) − − 2 ε − 2 ε3 − r′    

3 λ 2 where we used ρ = 4 πε3 and κ = 16πG.

E.2 Proof of (3.88) and (3.89)

(3.88) is the same as

ki kj 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 2 ~ ~ i j κ đ k1đ k2đ k3∆e δ k1 + k2 + k3 µ k2 µ k3 = V ∂ ∂ V (E.9) 16 ~k2~k2~k2 Z 1 2 3       

In order to show this, we note that:

~ ~ ∆eik1·~x = ~k2eik1·~x (E.10) − 1 60 E PROOF OF THE RELATIONS STATED IN SECTIONS 3.4.3, 3.4.4 AND 3.5.3

Indeed:

1 ~ κ4 đ3k đ3k đ3k ∆eik1·~x 16 1 2 3 Z ki kj ki kj 3 ~ ~ ~ 2 2 ~ ~ 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 2 δ k1 + k2 + k3 µ k2 µ k3 = κ đ k1đ k2đ k3e δ k1 + k2 + k3 × ~k2~k2~k2 −16 ~k2~k2   1 2 3     Z   2 3 µ ~k µ ~k × 2 3     ki kj 1 4 3 3 −i~k2·~x −i~k3·x 2 2 ~ ~ = κ đ k2đ k3e e µ k2 µ k3 −16 ~k2~k2 Z 2 3     e−i~k3·~x ki kj 1 2 3 ~ 1 2 3 −i~k2·~x 2 2 ~ = κ đ k3 µ k3 κ đ k2e µ k2 − 4 ~k2 4 ~k2 Z 3   Z 2   =V (x) ki kj | 1 2 {z 3 −i~k2·~x }2 2 ~ = V (x) κ đ k2e µ k2 − 4 ~k2 Z 2   i j 1 2 3 −i~k2·~x 1 ~ = V (x) ∂ ∂ κ đ k2e µ k2 4 ~k2 Z 2   =V (~x) i j = V ∂ ∂ V | {z } (E.11) (3.89) is equivalent to

ki~kj 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 3 ~ ~ i j κ đ k1đ k2đ k3∆~xe δ k1 + k2 + k3 µ k2 µ k3 = ∂ V ∂ V. (E.12) 16 ~k2~k2~k2 Z   1 2 3     Again using (E.10) we have indeed:

ki~kj 1 4 3 3 3 i~k1·~x 3 ~ ~ ~ 2 3 ~ ~ κ đ k1đ k2đ k3∆~xe δ k1 + k2 + k3 µ k2 µ k3 16 ~k2~k2~k2 Z   1 2 3     −i~k2·~x −i~k3·~x 1 4 3 3 e e i ~ j ~ = κ đ k2đ k3 k2µ k2 k3µ k3 −16 ~k2 ~k2 Z 2 3     i −i~k2·~x j −i~k3·~x 1 2 3 ∂ e ~ 1 2 3 ∂ e ~ = κ đ k2 µ k2 κ đ k3 µ k3 4 ~k2 4 ~k2 Z 2   Z 3   =∂iV =∂j V ∂iV ∂j V = | {z } | {z } (E.13)

E.3 Proof of (3.114) The Laplacian in spherical coordinates is given by:

1 ∂ ∂f 1 ∂ ∂f 1 ∂2f ∆f = r2 + sin (θ) + (E.14) r2 ∂r ∂r r2 sin (θ) ∂θ ∂θ r2 sin2 (θ) ∂θ2     E.3 Proof of (3.114) 61

∂V ∂V In our case the computations are made easier by the fact that ∂θ = ∂ϕ =0. The first partial derivative with respect to r is given by:

∂V 1 1 ∂ r 3 1 1 r2 ∂ = Gλ  θ (r ε)+ θ (r ε) θ (ε r)+ θ (ε r) ∂r − −r2 − r ∂r − −ε3 − 2 ε − 2 ε3 ∂r −    =δ(r−ε)   =−δ(ε−r)   1 1 | {z }r 3 1 1 1  = Gλ θ (r ε)+ δ (r ε) θ (ε r) δ (ε | r){z } − −r2 − ε − − ε3 − − 2 ε − 2 ε −     1 r = Gλ θ (r ε) θ (ε r) (E.15) − −r2 − − ε3 −   Then ∂V r3 r2 = Gλ θ (ε r) θ (ε r) (E.16) ∂r − − − − ε3 −   Differentiating this once more with respect to r we obtain: ∂ ∂V ∂ 3r2 r3 ∂ r2 = Gλ θ (r ε)+ θ (ε r)+ θ (ε r) ∂r ∂r ∂r − ε3 − ε3 ∂r −     3r2 r3 = Gλ δ (r ε)+ θ (ε r) δ (ε r) − ε3 − − ε3 −   3r2 = Gλ θ (ε r) (E.17) ε3 − and finally 1 ∂ ∂V 3 ∆V = r2 = Gλ θ (ε r) (E.18) r2 ∂r ∂r ε3 −   Then I can write down: 3 1 3 1 1 r2 V ∆V = G2λ2 θ (ε r) θ (r ε)+ θ (ε r) − ε3 − r − 2 ε − 2 ε3 −      9 3 r2 = G2λ2 θ (ε r) (E.19) − 2ε4 − 2 ε6 −   We can now compute the Laplacian of the right hand side of (3.114). The Laplacian of the first term is: 6 1 ∂ ∂ 6 ∆ θ (r ε) = r2 θ (r ε) 5rε − r2 ∂r ∂r 5rε −     1 ∂ 6 6 = r2 θ (r ε)+ δ (r ε) r2 ∂r −5r2ε − 5rε −   1 ∂ 6 6r = θ (r ε)+ δ (r ε) r2 ∂r −5ε − 5ε −   1 6 6 6r = δ (r ε)+ δ (r ε)+ δ′ (r ε) r2 −5ε − 5ε − 5ε −   6 = δ′ (r ε) (E.20) 5rε − 62 E PROOF OF THE RELATIONS STATED IN SECTIONS 3.4.3, 3.4.4 AND 3.5.3

The Laplacian of the second term is:

15 3r2 3 r4 1 ∂ ∂ 15 3r2 3 r4 ∆ + θ (ε r) = r2 + θ (ε r) 8ε2 − 4ε4 40 ε6 − r2 ∂r ∂r 8ε2 − 4ε4 40 ε6 −       1 ∂ 3r 3 r3 = r2 + θ (ε r) r2 ∂r −2ε4 10 ε6 − −   15 3r2 3r4 + δ (ε r) − 8ε2 − 4ε4 40ε6 −    1 ∂ 3r3 3r5 = + θ (ε r) r2 ∂r −2ε4 10ε6 −   15r2 3r4 3r6 + δ (ε r) − 8ε2 − 4ε4 40ε6 −    1 9r2 15r4 3r3 3r5 = + θ (ε r) + δ (ε r) r2 −2ε4 10ε6 − − −2ε4 10ε6 −     30r 12r3 18r5 + δ (ε r) − 8ε2 − 4ε4 40ε6 −   15r2 3r4 3r6 + δ′ (ε r) (E.21) − 8ε2 − 4ε4 40ε6 −   

Thus the Laplacian of the right hand side of (3.114) is:

6 15 3r4 G2λ2 δ′ (r ε) 3r24ε4 + δ′ (ε r) 5rε − − 8ε2 − 40ε6 −   =−δ′(r−ε)   9 15r2 9 3r2 + + θ|(ε {z r)} = G2λ2 + θ (ε r) −2ε4 10ε6 − −2ε4 2ε6 −     

This proves (3.114). E.4 Proof of (3.115) 63

E.4 Proof of (3.115)

The first term on the right hand side is:

1 6 1 ∂ 1 6 1 6 ∆ θ (r ε) = r2 + θ (r ε)+ δ (r ε) 2r2 − 5rε − r2 ∂r −r3 5r2ε − 2r2 − 5rε −         1 ∂ 1 6 1 6r = + θ (r ε)+ δ (r ε) r2 ∂r −r 5ε − 2 − 5ε −      1 1 1 6 = θ (r ε)+ + δ (r ε) r2 r2 − −r 5ε −    6 1 6r δ (r ε)+ δ′ (r ε) −5ε − 2 − 5ε −    1 1 6 6 = θ (r ε)+ + δ (r ε) δ (r ε) r4 − −r3 5εr2 − − 5εr2 −   1 6 + δ′ (r ε) 2r2 − 5εr −   1 1 1 6 = θ (r ε) δ (r ε)+ δ′ (r ε) (E.22) r4 − − r3 − 2r2 − 5εr −  

The other term is:

3 r4 1 ∂ ∂ 3 r4 ∆ + θ (ε r) = r2 + θ (ε r) −4ε2 20ε6 − r2 ∂r ∂r −4ε2 20ε6 −       1 ∂ r3 3 r4 = r2 θ (ε r) + δ (ε r) r2 ∂r 5ε6 − − −4ε2 20ε6 −     1 ∂ r5 3r2 r6 = θ (ε r) + δ (ε r) r2 ∂r 5ε6 − − −4ε2 20ε6 −     1 r4 6r 6r5 r5 = θ (ε r) + δ (ε r) δ (ε r) r2 ε6 − − −4ε2 20ε6 − − 5ε6 −    3r2 r6 − + δ (ε r) (E.23) − 4ε2 20ε6 −    r2 6 3r3 r3 = θ (ε r) + δ (ε r) δ (ε r) ε6 − − −4ε2r 10ε6 − − 5ε6 −   3 r4 + δ′ (ε r) (E.24) − −4ε2 20ε6 −  

∂r xl ∂V ∂V ∂r Now to compute the left hand side of (3.115) we can use ∂xl = r and ∂xl = ∂r ∂xl . Since

∂V 1 1 r 3 1 1 r2 = Gλ θ (r ε)+ δ (r ε) θ (ε r) δ (ε r) (E.25) ∂r − −r2 − r − − ε3 − − 2 ε − 2 ε3 −     64 E PROOF OF THE RELATIONS STATED IN SECTIONS 3.4.3, 3.4.4 AND 3.5.3 we can write:

G2λ2 1 1 r 3 1 1 1 r2 ∂ V ∂lV = xlx θ (r ε)+ δ (r ε) θ (ε r) δ (ε r) l r2 l −r2 − r − − ε3 − − 2 ε − 2 − 2 ε3 −     1 1 r 3 1 1 1 r2 θ (r ε)+ δ (r ε) θ (ε r) δ (ε r) × −r2 − r − − ε3 − − 2 ε − 2 − 2 ε3 −     1 1 r2 3 1 1 r2 2 = G2λ2 θ (r ε)+ δ (r ε)+ θ (ε r)+ δ (ε r) r4 − r2 − ε6 − 2 ε − 2 ε3 − "   2 2 2 3 1 1 r2 θ (r ε) δ (r ε)+ θ (r ε) θ (ε r) + δ (ε r) θ (r ε) −r3 − − rε3 − − r2 2 ε − 2 ε3 − − =0   2 2 3 1 1 r2 δ (r ε) θ (ε r) | {z δ (r } ε) δ (ε r) −ε3 − − − r 2 ε − 2 ε3 − −   2r 3 r2 + θ (ε r) δ (ε r) (E.26) ε3 2ε − 2ε3 − −   

All that is now left is to compare the two sides:

1 1 θ (r ε)+ δ (r ε) r4 − r2 − r2 9 1 r4 3r2 + θ (ε r)+ + δ (ε r) ε6 − 4ε2 4 ε6 − 2ε4 −   2 3 1 θ (r ε) δ (r ε)+ δ (ε r) θ (r ε) −r3 − − r2ε − ε3 − −   2 3 r δ (r ε) θ (ε r) δ (r ε) δ (ε r) −ε3 − − − rε − ε3 − −   3r r3 1 1 + θ (ε r) δ (ε r) =! θ (r ε) δ (r ε) ε4 − ε6 − − r4 − − r3 −   1 6 r2 + δ′ (r ε)+ θ (ε r) 2r2 − 5εr − ε6 −   6 3r3 r3 + δ (ε r) δ (ε r) − −4ε2r 10ε6 − − 5ε6 −   3 r4 + δ′ (ε r) − −4ε2 20ε6 −   E.5 Proof of (3.116) 65

The two sides are indeed equal as one can see from:

1 9 1 3 δ (r ε)+ + δ (ε r) ε2 − 4ε2 4ε2 − 2ε2 −   2 3 1 δ (r ε) θ (r ε)+ δ (ε r) θ (r ε) −ε3 − − ε3 − ε3 − −   2 1 6 6 δ (r ε) θ (ε r) = + δ (r ε) δ (r ε) −ε3 − − −ε3 5ε3 − − 5ε3 −   1 6 1 + δ′ (ε r) δ (ε r) 2ε2 − 5ε2 − − 5ε3 −   6 3 + δ (ε r) − −4ε3 10ε3 −   3 1 + δ′ (ε r) − −4ε2 20ε2 −  

E.5 Proof of (3.116)

We want to show:

κ4 1 3 r2 3r4 p = ∆ G2λ2θ (r ε)+ + G2λ2θ (ε r) (E.27) 4 −5rε − −8ε2 4ε4 − 40ε6 −    

The left hand side can be rewritten as:

κ2 κ2 1 9 λ2 p = κ2 ε2 r2 θ (ε r) (E.28) 4 4 24 16π2 ε6 − − 3 1 = G2λ2 ε2 r2 θ (ε r) (E.29) 2 ε6 − −  66 E PROOF OF THE RELATIONS STATED IN SECTIONS 3.4.3, 3.4.4 AND 3.5.3

The right hand side requires a bit more computations: 1 ∆ G2λ2θ (r ε) −5rε −   3 r2 3r4 1 ∂ ∂ 1 +∆ + G2λ2θ (ε r) = G2λ2 r2 θ (r ε) −8ε2 4ε4 − 40ε6 − r2 ∂r ∂r −5rε −       1 ∂ 3 r2 3r4 +G2λ2 + θ (ε r) r2 ∂r −8ε2 4ε4 − 40ε6 −    1 ∂ 1 r = G2λ2 θ (r ε) δ (r ε) r2 ∂r 5ε − − 5ε −   1 ∂ r3 3r5 +G2λ2 θ (ε r) r2 ∂r 2ε4 − 10ε6 −   3r2 r4 3r6 + δ (ε r) − −8ε2 4ε4 − 40ε6 −    G2λ2 3 1 = δ′ (r ε)+ G2λ2 ε2 r2 θ (ε r) − 5rε − 2 ε6 − −  1 2 1 1  δ (ε r)+ δ′ (ε r) −ε3 5 − ε2 5 −  3 1 = G2λ2 ε2 r2 θ (ε r) (E.30) 2 ε6 − −  E.6 Proof of (3.119) We now show (3.119). We start with the left hand side of the equation: ∂r 1 3 1 1 1 r2 ∂iV ∂jV = ∂iV ∂ Gλ θ (r ε)+ θ (ε r) ∂x r − r − 2 ε − 2 2 ε3 − j      ∂r ∂r 1 1 r 3 1 1 r2 2 = ( Gλ)2 θ (r ε)+ δ (r ε) θ (ε r) δ (ε r) ∂x ∂x − −r − r − − ε3 − − 2 ε − 2 ε3 − i j     ∂r ∂r 1 G2λ2 = 4 (E.31) ∂xi ∂xj r where we used the fact that we are only interested in r>ε. The derivative of the radius can be rewritten as:

∂r ∂ ab = η xaxb ∂xi ∂xi xi p = (E.32) r Thus the left hand side of (3.119) is:

xixj ∂iV ∂jV = G2λ2 (E.33) r6 67

Now we take care of the right hand side:

1 2 xixj ηij ∂ 1 2 ∆ G2λ2 ηij = G2λ2 + 4r2 − 5rε − 4r4 r2 ∂r −2r 5ε       ηab δi xj + δj xi ηab xixjx G2λ2 ∂ b b ∂ 4 b − 4 a r4 − 4 a r6 " !  # ηij ηij xixj = G2λ2 G2λ2 2r4 − 2r4 − r6   G2λ2xixj = (E.34) r6

F Calculations leading to (4.49) and (4.50)

1 k l 1 In order to determine the exact factors appearing in front of ∆ ∂ V ∂ V and ∆ V ∆V in (4.49) and (4.50) we first need to compute the partial derivative of MG, as one can see from (4.46), and then can implement again the integration rules described in appendix D.

The derivative of MG can be defined as

68 F CALCULATIONS LEADING TO (4.49) AND (4.50)

❯✁✂✄☎✂ ✆✝✞❬ ✁✂✞❞ ❪ ❀

❉✂✄☎✂ ✆✝✞ ❬ ✁✂✞❞ ❬ ❛ ✱ ♠ ✱ ✱ ✞ ✱ ✆ ✱ ✱ ❛✟ ✱ ❜✟ ❪ ✱ ❞ ▼ ❪ ❀

✁✂✞❞ ❬ ✠❴✱ ✡❴✱ ♥❴✱ ❴✱ ❴✱ ☛❴✱ ✠☞❴✱ ✌☞❴❪ ✿ ❂

✟ ✟

♠✂✞✍✎✏❬ ✠☞ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ✠ ✱ ❪

✷ ✷

✭ ♠✂ ✞✍✎✏❬ ✡ ✱ ☛ ❪ ♠✂ ✞✍✎✏❬ ♥ ✱ ❪ ✰ ♠✂ ✞✍✎✏❬ ✡ ✱ ❪ ♠✂ ✞✍✎✏❬ ♥ ✱ ☛ ❪ ✲

♠✂ ✞✍✎✏❬ ✡ ✱ ♥ ❪ ♠✂ ✞✍✎✏❬ ☛ ✱ ❪ ✮ ✰

✲ ✟

♠✂✞✍✎✏❬ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ✠ ✱ ✌☞ ❪ ✰ ✭

♠✂ ✞✍✎✏❬ ✱ ✌☞ ❪ ♠✂ ✞✍✎✏❬ ✠ ✱ ✠☞ ❪ ✮

✭ ♠✂ ✞✍✎✏❬ ✡ ✱ ☛ ❪ ♠✂ ✞✍✎✏❬ ♥ ✱ ❪ ✰ ♠✂ ✞✍✎✏❬ ✡ ✱ ❪ ♠✂ ✞✍✎✏❬ ♥ ✱ ☛ ❪ ✲

♠✂ ✞✍✎✏❬ ✡ ✱ ♥ ❪ ♠✂ ✞✍✎✏❬ ☛ ✱ ❪ ✮ ✰

♠✂ ✞✍✎✏❬ ✠ ✱ ❪

✲ ✟

♠✂✞✍✎✏❬ ✡ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ☛ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ✡ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ☛ ✱ ✠☞ ❪ ✮ ✭

♠✂✞✍✎✏❬ ♥ ✱ ❪ ✲

✭ ♠✂✞✍✎✏❬ ♥ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ♥ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ✱ ✠☞ ❪ ✮

♠✂✞✍✎✏❬ ✡ ✱ ☛ ❪ ✲

✭ ♠✂✞✍✎✏❬ ✡ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ✡ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ✱ ✠☞ ❪ ✮

♠✂✞✍✎✏❬ ♥ ✱ ☛ ❪ ✲

✭ ♠✂✞✍✎✏❬ ♥ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ☛ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ♥ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ☛ ✱ ✠☞ ❪ ✮

♠✂✞✍✎✏❬ ✡ ✱ ❪ ✰

✭ ♠✂✞✍✎✏❬ ✡ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ♥ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ✡ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ♥ ✱ ✠☞ ❪ ✮

♠✂✞✍✎✏❬ ☛ ✱ ❪ ✰

✭ ♠✂✞✍✎✏❬ ☛ ✱ ✠☞ ❪ ♠✂✞✍✎✏❬ ✱ ✌☞ ❪ ✰ ♠✂✞✍✎✏❬ ☛ ✱ ✌☞ ❪ ♠✂✞✍✎✏❬ ✱ ✠☞ ❪ ✮

♠✂✞✍✎✏❬ ✡ ✱ ♥ ❪ ✴✴ ❈✝ ✞❛✎❞✂ ✞✍✎ ✴✴ ❙✍ ♠✑✒✍ ✄✍✎❛✍✝ ✴✴ ❊ ✓ ✑❛✁

Then all we have to do is insert this in (4.46) and reapply the integration rules seen in appendix D to get the desired result. References

[1] M. J. Duff. Quantum tree graphs and the Schwarzschild solution. Phys. Rev. D, 7:2317– 2326, Apr 1973.

[2] Wolfram Research, Inc. Mathematica 10.4.

[3] José M. Martín-García. xact 1.1.2.

[4] J. N. Goldberg. Conservation laws in general relativity. Phys. Rev., 111:315–320, Jul 1958.

[5] Bryce S. DeWitt. Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev., 162:1239–1256, Oct 1967.

[6] Wheeler Misner, Thorne. Gravitation. W. H. Freeman and Company, 1973.

[7] D. M. Capper, G. Leibbrandt, and M. Ramón Medrano. Calculation of the graviton self- energy using dimensional . Phys. Rev. D, 8:4320–4331, Dec 1973.

[8] Bryce S. DeWitt. Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev., 162:1195–1239, Oct 1967.

[9] Karl Schwarzschild. Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichten der Königlich-Preussischen Akademie der Wissenschaften, 1916.

[10] M.E. Peskin and D.V. Schroeder. An Introduction to Quantum Field Theory. Advanced book classics. Addison-Wesley Publishing Company, 1995.

[11] A. Zee. Quantum Field Theory in a Nutshell. Princeton University Press, 2003.

[12] S. Weinberg. Gravitation and cosmology: principles and applications of the general . Wiley, 1972.

69

Acknowledgements I would like to thank my supervisor Prof. Dr. Hofmann for the help in developing this work, as well as Alexis Kassiteridis, Maximilian Kögler and Frederik Lauf for many helpful discussions. I am also immensely grateful to my parents, Rosanna and Gabriele, for their constant uncon- ditional support. Appendix Declaration I declare that I wrote this thesis by myself and listed all used sources. I agree with making this thesis publicly available.

Ottavia Balducci

February, 2017