Renormalization Group in Different Fields of Theoretical Physics

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization Group in Different Fields of Theoretical Physics KEK—91-13 JP9207322 KEK Report 91-13 February 1992 H Renormalization Group in Different Fields of Theoretical Physics D.V. Shirkov NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS to National Laboratory for High Energy Physics, 1992 KEK Reports are available from: Technical Information & Library National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi [baraki-ken, 305 JAPAN Phone: 0298-64-1171 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEKOHO RENORMALIZATION GROUP IN DIFFERENT FIELDS OF THEORETICAL PHYSICS D.V. SHIRKOV Lab. Thcor. Phys., Joint Inst, for Nucl. Research, Dubna, USSR Lecture presented at KEK theory division 2 - 3 April, 1991 ABSTRACT A very simple and general approach to the symmetry that is widely known as a Rcnormalizalion Group symmetry is presented. It essentially uses a functional formulation of group transformations that can be considered as a generalization of self-similarity transformations well known in mathematical physics since last century. This generalized Functional Self-Similarity symmetry and corresponding group transformations are discussed first for a number of simple physical problems taken from diverse fields of classical physics as well as for QED. Then we formulate the Rcnorm-Gnup Method as a regular procedure that essentially improves the approximate solutions near the singularity. After that we discuss relations between different formulations of Renormal- ization Group as they appear in various parts of a modern theoretical physics. Finally we present several topics of RG.M application in modern QFT. - 1 - CONTESTS I. Renormalization Group as a Functional Self-Similarity Group (4-33) $1-1. Introduction 4 §1-2. Mathematical preliminaries 7 §1-3. Dcfiniton of the Renorm-Group 10 §1-1. Simple illustration 14 §1-5. Functional self-similarity 16 §1-6. Other illustrations from classical physics 18 6a. Weak shock wave (IS) 6b. Transfer theory (20) §1-7. RG in QED 23 7a. Effective electron charge (23) 7b. RG transformation (28) 7c. Dyson transformation (30) §1-8. The Nature of RG=FSS Symmetry 32 II. Renornialization Group Method (34-47) §0-1. Basic idea 34 §11-2. Differential formulation 35 §11-3. General solutions 38 §11-4. Technology of RGM 40 §11-5. Illustrations of RGM from classical physics 42 ... 5«. Transfer problem (\2) 5b. Shock wave ($3) §11-6. RGM usage in QFT II §11-7. Essence of RGM 46 III. Different Faces of Renormalization Group (48-63) pi-1. Critical phenomena 48 §111-2. Polymer theory 51 §111-3. Noncoherent radiation transfer 54 §HI-4. Turbulence 56 §M-5. Paths of RG expansion 57 §111-6. Two faces of RG in QFT 59 §HI-7. Summary 63 IV Some RG Applications in QFT (64-82) §FV-1. General UV analysis 64 ... la. One-cc~up!:ng case (64) lb. Multi-coupling case (68) §IV-2. Perturbative appioach to the UV asymptote 70 ... 2a. Structure of RG results (70) 2b. The ghost-pole trouble (72) §IV-3. Reliability of results in QFT 73 ... 3a. Ghost pole in QED (73) 3b. Scalar quariic model (74) §IV-4. Asymptotic series Borel summation 77 §IV-5. Gauge fantoms in QCD 80 References (83-85) -3 - I. RENORMALIZATION GROUP as FUNCTIONAL SELF-SIMILARITY GROUP § 1-1. Introduction Specific symmetry underlying so called Renormalization Group (RG) was discovered in 1953 by Stiickelberg and Peterman [1] in the course of analysis of a finite arbitrariness arising in Quantum Field Theory (QFT) after subtraction of UltraViolet(UV) divergencies. They have realized the group structure of fi­ nite renormalizations and stressed the importance of differential group equations which they wrote down in a general form. Quite independently Gell-Mann and Low by manipulating with Dyson renor- malization transformations have succeeded [2] in obtaining functional equations for QED propagators and performing on their basis a general analysis of short- distance behavior of electromagnetic interaction. - 4 - 'The next important step was made by Bogoliubov and Shirkov [;i] in 19-"i5. These authors established close relation between approaches of [1] and [2]. de­ rived functional equations in a massive case and first introduced the differential formulation of RG symmetry. Their most important result is the formulation of a Renormalization Group Method (R.GM), a regular method of improving per­ turbation approximations by combinig them with RG differential Lie equations. This technique enabled the summation of leading log terms and have been used to deal with UV and IR behaviours in QED and other models. The most pop­ ular results of RG application in QFT obtained in the mid-fifties were related to short-distance behaviour. During about 15 years afterwards, RG and RGM were considered as very specific for only renormalized QFT with its divergencies and renormalizations. It is widely known that in the beginning of 70-ies just the RG method was used for discovery of a famous asymptotic freedom property in nonabelian quantum fields models. At the very same time K. Wilson (1971) [4] has managed to transfer RG ideology from QFT into statistical mechanics for the analysis of phase transition phenomena in spin lattices. This new version of RG based on a Kaclanoff's trick of spin blocking appeared to be much more transparent physically and apprehensible for a broad physical audience. Due to this, quite rapidly in the course of 70-ies, RG algorithms were successively transferred into other theoretical fields : the theory of polymers, turbulence, transfer and some others. Technically researchers in these diverse fields usually used a bit different formulation and terminology. Such expressions as "real-space R.G", "dynamic RG", "Monte-Carlo RG", 'RG chaos" are in use. - 5 - In such a situation it was quite natural to suppose that there .should exist some simple and general basement underlying RG different, faces in various fields of theoretical physics. An attempt to formulate such an universal picture was undertaken about ten years ago [5j. It turned out to be possible to discuss the RG type of symmetry in general terms of a classical mathematical physics. This symmetry can be defined as a symmetry of solution (not of equation!) for a physical system with respect to the transformation involving boundary condition parameters. In this short set of lectures we present a review of the RG ideas used in modern physics based on a rather simple foundation (we call it junctional self- similarity) which we illustrate by examples from classical physics and discuss the interrelation between RG different formulations. The idea to create a written version of these lectures belongs to Professor Yoshimitsu Shimizu. I use this possibility to thank him and Professor Hirotaka Sugawara, the KEK director, for the hospitality during my stay in Japan. The text of lectures was written with the help of Drs. Chong-Sa Lim, Masato Jirnbo and Professor Nobuya Nakazawa. -6- 'i J 2. Mathematical preliminaries Let us start with MMIO simple statements which can be supposed to be widely known. In QFT the H.(! usually is associated with possibility to present any phys­ ical quantity. F(Q-.g) calculated under definite renonnalization prescription 2 ( in a massless case ) in a form /• '(Q //r, <\;J) with renormalized coupling con­ stant g,, definition attached to some rcriormalization point (or renormalization momentum scale) Q = //. The differential RG equation is usually said to be driven from the condition that F does not depend on the choice of/( , £ = 0. (1-1, d/i. The coupling constant g^ dependence on /:, normalization momenta value, is described by a specific function </(Q"') known as effective coupling (sometimes - effective coupling constant) : g^ = <y(/<"). Equation (1) can be written down in the form of partial linear Differential Equation(DE) [*4--0(9)jr]F(*-9) = O • (1-: ox Og ! where x = Q //r, g stands for gti and beta function is defined as 0to,) = --^r ^ .- = ,<- (1-3) The effective coupling(EC) g also can be considered as a function of two arguments: g~{Q~j;r,g,L) with the boundary condition ~g{\,g) = g. Besides (2) ii satisfies the nonlinear DE x r; = .J .'/('•.'/)) • (1-U ox that is nothing else but characteristic equation for (2). To employ this formalism one has to give the /9(//). Usually for this one uses renormalized perturbation theory. The foregoing' can he considered as a "RG folklore". For brevity we gave it in the simplest massless version that corresponds to the IV case. A less popular result is the Functional Equation (FE) for the 7j which in I'V case has the form a(x,9)=ji{x/t,a(t,g)) . (i-5) This equation which follows from Dyson renormalization transformations repre­ sents a basement of differential RG formulation. Popular DE (!) can be directly obtained from it by differtiating over x and putting / = x. On the other hand by differentiating (5) with respect to / at / = 1 we get partial DE [x^-/3(g)^}g(xl9) = Q . (1-6) analogous to (2). Hence the FE (5) as well as similar FEs for propagators and vertex func­ tions must be considered as the most adequate and general formulation of RG symmetry in QFT. We shall call it the basic RG equation. - S - However in reality, group 1'1's do not contain any physics at all. being just the refleciinn of nothing else but. the group composition law! Namely, ,ve can regard the change of a reference coupling as an operation of group element 1\ defined by I'tfi = Ji(t.'i). If we set .r = -/ , then the l.h.s. of (5) can achieved from !l by 7Vi. while the r.h.s. may be identified as TTTtc/. The content of Y.<\. (•!) now is just the group composition law. 7"r< = 7"r7i . Thus the properly of the basic RG equation (5) is the formal condition for trasformations I!t to form a group.
Recommended publications
  • Renormalization Group Flows from Holography; Supersymmetry and a C-Theorem
    © 1999 International Press Adv. Theor. Math. Phys. 3 (1999) 363-417 Renormalization Group Flows from Holography; Supersymmetry and a c-Theorem D. Z. Freedmana, S. S. Gubser6, K. Pilchc and N. P. Warnerd aDepartment of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 b Department of Physics, Harvard University, Cambridge, MA 02138, USA c Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA d Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We obtain first order equations that determine a super symmetric kink solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- lates between an exterior anti-de Sitter region with maximal supersymme- try and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed cor- respondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new Af = 4 gauged supergravity theory holographically dual to a sector of Af = 2 gauge theories based on quiver diagrams. e-print archive: http.y/xxx.lanl.gov/abs/hep-th/9904017 *On leave from Department of Physics and Astronomy, USC, Los Angeles, CA 90089 364 RENORMALIZATION GROUP FLOWS We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • Renormalization Group Flows and Continual Lie Algebras
    hep–th/0307154 July 2003 Renormalization group flows and continual Lie algebras Ioannis Bakas Department of Physics, University of Patras GR-26500 Patras, Greece [email protected] Abstract We study the renormalization group flows of two-dimensional metrics in sigma models us- ing the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt; 1), with anti-symmetric G Cartan kernel K(t, t′) = δ′(t t′); as such, it coincides with the Cartan matrix of the − superalgebra sl(N N + 1) in the large N limit. The resulting Toda field equation is a | non-linear generalization of the heat equation, which is integrable in target space and arXiv:hep-th/0307154v1 17 Jul 2003 shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via B¨acklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten’s two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormal- ization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region.
    [Show full text]
  • POLCHINSKI* L.Vman L,Ahoratorv ~!/"Phvs,W
    Nuclear Physics B231 (lq84) 269-295 ' Norlh-tlolland Publishing Company RENORMALIZATION AND EFFECTIVE LAGRANGIANS Joseph POLCHINSKI* l.vman l,ahoratorv ~!/"Phvs,w. Ilarcard Unn'er.~itv. ('amhrtdge. .'Was,~adntsett,s 0213b¢. USA Received 27 April 1983 There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study rcnormalizabilit,.: in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional X4,4 theorv with a momentum cutoff. Wc organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A length} but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizabilitv The method extends immediately to an}' system in which a momentum-space cutoff can bc used. but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. I. Introduction The understanding of renormalization has advanced greatly in the past two decades. Originally it was just a means of removing infinities from perturbative calculations. The question of why nature should be described by a renormalizable theory was not addressed. These were simply the only theories in which calculations could be done. A great improvement comes when one takes seriously the idea of a physical cutoff at a very large energy scale A.
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Functional Renormalization Group Approach and Gauge Dependence
    Functional renormalization group approach and gauge dependence in gravity theories V´ıtor F. Barraa1, Peter M. Lavrovb,c2, Eduardo Antonio dos Reisa3, Tib´erio de Paula Nettod4, Ilya L. Shapiroa,b,c5 a Departamento de F´ısica, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil b Department of Theoretical Physics, Tomsk State Pedagogical University, 634061 Tomsk, Russia c National Research Tomsk State University, 634050 Tomsk, Russia d Departament of Physics, Southern University of Science and Technology, 518055 Shenzhen, China Abstract We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the back- ground field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions. Keywords: quantum gravity, background field method, functional renormal- ization group approach, gauge dependence arXiv:1910.06068v3 [hep-th] 5 Mar 2020 1 Introduction The interest to the non-perturbative formulation in quantum gravity has two strong motivations. First, there are a long-standing expectations that even the perturbatively non- renormalizable models such as the simplest quantum gravity based on general relativity 1E-mail address: [email protected] 2E-mail address: [email protected] 3E-mail address: eareis@fisica.ufjf.br 4 E-mail address: [email protected] 5E-mail address: shapiro@fisica.ufjf.br may be quantum mechanically consistent due to the asymptotic safety scenario [1] (see [2, 3] for comprehensive reviews).
    [Show full text]
  • TASI 2008 Lectures: Introduction to Supersymmetry And
    TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics Via the Dyson-Schwinger Equations
    University of Adelaide School of Chemistry and Physics Doctor of Philosophy Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics via the Dyson-Schwinger Equations by Tom Sizer Supervisors: Professor A. G. Williams and Dr A. Kızılers¨u March 2014 Contents 1 Introduction 1 1.1 Introduction................................... 1 1.2 Dyson-SchwingerEquations . .. .. 2 1.3 Renormalization................................. 4 1.4 Dynamical Chiral Symmetry Breaking . 5 1.5 ChapterOutline................................. 5 1.6 Notation..................................... 7 2 Canonical QED 9 2.1 Canonically Quantized QED . 9 2.2 FeynmanRules ................................. 12 2.3 Analysis of Divergences & Weinberg’s Theorem . 14 2.4 ElectronPropagatorandSelf-Energy . 17 2.5 PhotonPropagatorandPolarizationTensor . 18 2.6 ProperVertex.................................. 20 2.7 Ward-TakahashiIdentity . 21 2.8 Skeleton Expansion and Dyson-Schwinger Equations . 22 2.9 Renormalization................................. 25 2.10 RenormalizedPerturbationTheory . 27 2.11 Outline Proof of Renormalizability of QED . 28 3 Functional QED 31 3.1 FullGreen’sFunctions ............................. 31 3.2 GeneratingFunctionals............................. 33 3.3 AbstractDyson-SchwingerEquations . 34 3.4 Connected and One-Particle Irreducible Green’s Functions . 35 3.5 Euclidean Field Theory . 39 3.6 QEDviaFunctionalIntegrals . 40 3.7 Regularization.................................. 42 3.7.1 Cutoff Regularization . 42 3.7.2 Pauli-Villars Regularization . 42 i 3.7.3 Lattice Regularization . 43 3.7.4 Dimensional Regularization . 44 3.8 RenormalizationoftheDSEs ......................... 45 3.9 RenormalizationGroup............................. 49 3.10BrokenScaleInvariance ............................ 53 4 The Choice of Vertex 55 4.1 Unrenormalized Quenched Formalism . 55 4.2 RainbowQED.................................. 57 4.2.1 Self-Energy Derivations . 58 4.2.2 Analytic Approximations . 60 4.2.3 Numerical Solutions . 62 4.3 Rainbow QED with a 4-Fermion Interaction .
    [Show full text]
  • Renormalization Group Constraints in Supersymmetric Theories*
    SLAC-PUB-3693 HUTP-85/A041 May 1985 T/E RENORMALIZATION GROUP CONSTRAINTS IN SUPERSYMMETRIC THEORIES* JONATHAN BAGGER* Lyman Laboratory of Physics Harvard University, Cambridge, Massachusetts, 02158 SAVAS DIMOPOULOS+ Department of Physics Stanford University, Stanford, California, 94305 EDUARD MASSE' Stanford Linear Accelerator Center Stanford University, Stanford, California, 94305 We use the SU(3) x SU(2) x U(1) renormalization group equations to con- strain fermion masses and charged-scalar couplings in supersymmetric grand unified theories. Submitted to Physical Review Letters * This work was supported by the Department of Energy, contract DE-AC03-76SF00515,and by the National Science Foundation, contracts NSF-PHY-83-10654 and NSF-PHY-82-15249. * On leave of absence from Stanford Linear Accelerator Center, Stanford University, Stanford, California, 94305. + Alfred P. Sloan Foundation Fellow. $ Fulbright Fellow. On leave of absence from Departament de Fisica Tebrica, Universitat Autbnoma de Barcelona, Bellaterra, Spain. 1. Introduction Supersymmetric theories provide a promising framework for the solution of the fine tuning and gauge hierarchy problems. [‘I They are the only known theories where elementary scalars are naturally light. The lightness of the Higgs boson can be understood if supersymmetry remains unbroken down to the weak scale Mw. In spite of their enlarged symmetry, supersymmetric theories fail to pro- vide any new information on the quark and lepton masses. The only model- independent predictions are those that follow from the infrared fixed points of the SU(3) x SU(2) x U(1) renormalization group equations. In ordinary unified theories, this fixed point structure implies that the masses and mixings of heavy quarks are independent of the details of the short-distance physics.[2’31 In this letter we extend this analysis to supersymmetric grand unified theories.
    [Show full text]
  • 14 Renormalization 1: Basics
    14 Renormalization 1: Basics 14.1 Introduction Functional integrals over fields have been mentioned briefly in Part I de- voted to path integrals.† In brief, time ordering properties and Gaussian properties generalize immediately from paths to field integrals. The sin- gular nature of Green’s functions in field theory introduces new problems which have no counterpart in path integrals. This problem is addressed by regularization and is briefly presented in the appendix. The fundamental difference between quantum mechanics (systems with a finite number of degrees of freedom) and quantum field theory (systems with an infinite number of degrees of freedom) can be labelled “radiative corrections”: In quantum mechanics “a particle is a particle” character- ized, for instance, by mass, charge, spin. In quantum field theory the concept “particle” is intrinsically associated to the concept “field.” The particle is affected by its field. Its mass and charge are modified by the surrounding fields, its own, and other fields interacting with it. An early example of this situation is Green’s calculation of the motion of a pendulum in fluid media. The mass of the pendulum in its equation of motion is modified by the fluid. Nowadays we say the mass is “renor- malized.” The remarkable fact is that the equation of motion remains valid provided one replaces the “bare” mass by the renormalized mass. Green’s example is presented in section 14.2. Although regularization and renormalization are different concepts, † Namely in section 1.1 “The beginning”, in section 1.3 “The operator formalism”, in section 2.3 “Gaussian in Banach spaces”, in section 2.5 “Scaling and coarse- graining”, and in section 4.3 “The anharmonic oscillator”.
    [Show full text]