Pamphlet PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Pamphlet PDF File Geologic and Geophysical Maps of the Las Vegas 30′ × 60′ Quadrangle, Clark and Nye Counties, Nevada, and Inyo County, California By William R. Page,1 Scott C. Lundstrom,1 Anita G. Harris,1 Victoria E. Langenheim,2 Jeremiah B. Workman,1 Shannon A. Mahan,1 James B. Paces,1 Gary L. Dixon,3 Peter D. Rowley,4 B.C. Burchfiel,5 John W. Bell,6 and Eugene I. Smith7 Prepared in cooperation with the Southern Nevada Water Authority Pamphlet to accompany Scientific Investigations Map 2814 1U.S. Geological Survey, Denver, CO 2U.S. Geological Survey, Menlo Park, CA 3Southwest Geology, Inc., Blackfoot, ID 4Geologic Mapping, Inc., New Harmony, UT 5Massachussetts Institute of Technology, Cambridge, MA 6Nevada Bureau of Mines and Geology, Reno, NV 7University of Nevada, Las Vegas, NV U.S. Department of the Interior U.S. Geological Survey Contents CHAPTER A GEOLOGY OF THE LAS VEGAS 30′ × 60′ QUADRANGLE Introduction ................................................................................................................................................... 1 Methods ......................................................................................................................................................... 2 Description of Map Units............................................................................................................................. 2 Quaternary and Tertiary Rocks.......................................................................................................... 2 Gravelly Alluvium, Predominantly of Alluvial Fans ................................................................ 2 Footslope Colluvium and Alluvium ........................................................................................... 7 Fine-grained Deposits ................................................................................................................ 7 Basin-fill Deposits..................................................................................................................... 10 Volcanic Rocks .......................................................................................................................... 11 Mesozoic, Paleozoic, and Proterozoic Rocks ............................................................................... 12 Stratigraphy of the Las Vegas 30′ × 60′ Quadrangle............................................................................. 21 Proterozoic Rocks.............................................................................................................................. 21 Paleozoic Rocks ................................................................................................................................. 21 Mesozoic Rocks ................................................................................................................................. 25 Tertiary Rocks..................................................................................................................................... 26 Quaternary .......................................................................................................................................... 26 Structure of the Las Vegas 30′ × 60′ Quadrangle .................................................................................. 27 Introduction ........................................................................................................................................ 27 Mesozoic Thrust Faults..................................................................................................................... 27 Spring Mountains ..................................................................................................................... 27 Wheeler Pass Thrust....................................................................................................... 27 Lee Canyon and Macks Canyon Thrusts ..................................................................... 28 Deer Creek Thrust............................................................................................................ 28 Keystone and Red Spring Thrusts................................................................................. 28 Bird Spring Thrust............................................................................................................ 30 Sheep Range and Las Vegas Range...................................................................................... 30 Gass Peak and Valley Thrusts ....................................................................................... 30 Correlation of Thrusts .............................................................................................................. 31 Age of Thrusts ........................................................................................................................... 31 High-angle Normal and Strike-Slip Faults ..................................................................................... 32 Spring Mountains ..................................................................................................................... 32 Trough Spring Fault.......................................................................................................... 32 La Madre Fault ................................................................................................................. 32 Griffith Fault ...................................................................................................................... 32 Wheeler Graben............................................................................................................... 32 Sheep and Las Vegas Ranges ................................................................................................ 33 Las Vegas Valley Shear Zone.................................................................................................. 33 State Line and West Spring Mountains Fault Zones........................................................... 34 Cenozoic Landslide Deposits ........................................................................................................... 34 Quaternary Faults .............................................................................................................................. 35 iii Introduction ............................................................................................................................... 35 Las Vegas Valley ....................................................................................................................... 36 Pahrump Valley ......................................................................................................................... 37 References Cited ........................................................................................................................................ 37 CHAPTER B GEOPHYSICAL FRAMEWORK OF THE LAS VEGAS 30′ × 60′ QUADRANGLE Introduction ................................................................................................................................................. 45 Aeromagnetic Data .................................................................................................................................... 45 Isostatic Gravity Data................................................................................................................................. 45 Basins .......................................................................................................................................................... 47 Las Vegas Valley ................................................................................................................................ 47 Corn Creek Springs............................................................................................................................ 48 Pahrump Valley .................................................................................................................................. 48 Pre-Cenozoic Basement ............................................................................................................................ 49 Spring Mountains .............................................................................................................................. 49 Frenchman Mountain ........................................................................................................................ 49 Las Vegas Range................................................................................................................................ 49 Conclusions ................................................................................................................................................. 54 References Cited ........................................................................................................................................ 54 Figures 1. Map Sheet 1 (Index of Geologic Mapping) 2. Map Sheet 1 (Paleozoic Correlations in major thrust sheets) 3A. Map Sheet 1 (Major structures) 3B. Map Sheet 1 (Eastern Spring Mountains Structural Model 1) 3C. Map Sheet 1 (Eastern Spring Mountains Structural Model 2) 4. Pamphlet page 46, Chapter B (Index Map) 5. Map Sheet 2 (Residual Aeromagnetics) 6A. Map Sheet 2 (Basin Thickness of Las Vegas Valley) 6B. Map Sheet 2 (Basin Thickness of Pahrump Valley) 7. Map Sheet 2 (Basement Gravity with Aeromagnetic Contours) 8. Pamphlet Page 50, Chapter B (Magnetic Model) 9A. Pamphlet Page 51, Chapter B (Cross Section D–D’) 9B. Pamphlet
Recommended publications
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Cultural Background of the Spring Mountains National Recreation Area
    American Indian Groups Recent studies of the Great Basin region, which includes the Las Vegas and Pahrump Valleys, have begun to show that people may have lived in this area as far back as 12,000 to 13,000 years ago. When people first began to arrive here, the environment was far more wet and lush than the world we know today. Lakes, playas, and marshes all existed in the area and this abundance of water led to a much greater variety of plants and animals that the people who lived here used. As the environment of the Spring Mountains changed over time, a unique physical history developed that helped it evolve into the fascinating place it is today. As the water began to dry up around 10,000 years ago, the Spring Mountains became isolated from the Great Basin mountain ecosystems and slowly the mountains were surrounded by the drier Mojave Desert. As it became warmer and drier, the mountain range also became isolated biologically. The valley floors surrounding the range act as a barrier to most plant and animal migrations, and thus many of the plants and animals found here today are either relic species or are new or evolved species found only to exist in this area. As the physical environment changed, so did the ways that people lived and used the land. American Indian groups have had a continuous presence in Southern Nevada for thousands of years and believe that the Spring Mountains are where their people were created. Because of this, the mountains are considered to be sacred and very special to them.
    [Show full text]
  • Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
    5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River.
    [Show full text]
  • Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist
    STATE OF NEVADA Steve Sisolak, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Bighorn Sheep and Mountain Goat Staff Specialist Pat Jackson, Predator Management Staff Specialist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Sarah Hale Ed Partee Kari Huebner Jason Salisbury Matt Jeffress Kody Menghini Tyler Nall Scott Roberts This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2018-2019 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • Assembly Committee on Government Affairs-April 4
    MINUTES OF THE MEETING OF THE ASSEMBLY COMMITTEE ON GOVERNMENT AFFAIRS Seventy-Ninth Session April 4, 2017 The Committee on Government Affairs was called to order by Chairman Edgar Flores at 8:13 a.m. on Tuesday, April 4, 2017, in Room 3143 of the Legislative Building, 401 South Carson Street, Carson City, Nevada. The meeting was videoconferenced to Room 4404B of the Grant Sawyer State Office Building, 555 East Washington Avenue, Las Vegas, Nevada. Copies of the minutes, including the Agenda (Exhibit A), the Attendance Roster (Exhibit B), and other substantive exhibits, are available and on file in the Research Library of the Legislative Counsel Bureau and on the Nevada Legislature's website at www.leg.state.nv.us/App/NELIS/REL/79th2017. COMMITTEE MEMBERS PRESENT: Assemblyman Edgar Flores, Chairman Assemblywoman Dina Neal, Vice Chairwoman Assemblywoman Shannon Bilbray-Axelrod Assemblyman Chris Brooks Assemblyman Richard Carrillo Assemblyman Skip Daly Assemblyman John Ellison Assemblywoman Amber Joiner Assemblyman Al Kramer Assemblyman Jim Marchant Assemblyman Richard McArthur Assemblyman William McCurdy II Assemblywoman Daniele Monroe-Moreno Assemblywoman Melissa Woodbury COMMITTEE MEMBERS ABSENT: None GUEST LEGISLATORS PRESENT: Assemblywoman Lesley E. Cohen, Assembly District No. 29 Assemblyman Elliot T. Anderson, Assembly District No. 15 Assemblyman James Ohrenschall, Assembly District No. 12 Minutes ID: 655 *CM655* Assembly Committee on Government Affairs April 4, 2017 Page 2 STAFF MEMBERS PRESENT: Jered McDonald, Committee Policy
    [Show full text]
  • U.S. Department of the Interior Bureau of Land Management
    U.S. Department of the Interior Bureau of Land Management Final Environmental Assessment DOI-BLM-NV0S010-2009-1014-EA May 2016 Eastern Nevada Transmission Project APPLICANT Silver State Energy Association GENERAL LOCATION Clark County, Nevada BLM CASE FILE SERIAL NUMBER N-086357 PREPARING OFFICE U.S. Department of the Interior Bureau of Land Management Las Vegas Field Office 4701 N. Torrey Pines Drive Las Vegas, NV 89130 Phone: (702) 515-5172 Fax: (702) 515-5010 This page intentionally left blank. Table of Contents Chapter 1 - Purpose and Need ...................................................................................................1 1.1 Introduction ....................................................................................................................1 1.2 Project Background ........................................................................................................1 1.3 Purpose and Need for Action .........................................................................................2 1.4 Decisions to be Made .....................................................................................................7 1.5 BLM Policies, Plans, Authorizing Actions, and Permit Requirements .........................7 Chapter 2 - Proposed Action and Alternatives ........................................................................9 2.1 Introduction ....................................................................................................................9 2.1.1 Regulatory Framework for Alternatives
    [Show full text]
  • Sunrise Mountain Landfill 1999 Administrative Record
    SFUND RECORDS CTR 2095573 - FINAL - REGULATORY COMPLIANCE AUDIT REPORT Sunrise Mountain Landfill Las Vegas, Nevada ASI Project Manager C_)JamesD. ShsMer 002541 PREFACE Regulatory Compliance Audits A regulatory compliance audit of a solid waste landfill consists of an examination based on the requirements of Federal regulations 40 CFR Parts 241 and 257, proposed Federal regulations 40 CFR Part 258. and existing State regulations. Conduct of a regulatory compliance audit includes a review of landfill case file records, supporting documents, and landfill operating practices; interviews with individuals familiar with the operation of the landfill; identification of site conditions; a visual inspection of the facility; and a determination of whether or not hazardous wastes have been or are being disposed of in excess of amounts normally found in household wastes. 0025*2 TABLE OF CONTENTS Section Page PREFACE II TABLE OF CONTENTS Ill LIST OF TABLES v LIST OF FIGURES v EXECUTIVE SUMMARY vl 1.0 INTRODUCTION 1 1.1 Program Purpose, Scope, and Objectives 1 1.2 Pre-lnspection Activities 3 1.3 On-Site Audit Activities 4 1.4 Post-Inspection Activities 5 2.0 FACILITY ENVIRONMENTAL PROFILE 6 2.1 Facility Description 6 2.1.1 Facility Location 6 2.1.2 Environmental Information 7 2.1.2.1 Topography 7 2.1.2.2 Land Use 7 2.1.2.3 Climate 9 2.1.2.4 Biological Features 9 2.1.2.5 Surface Water 10 2.1.2.6 Geology 10 2.2 Facility History 16 2.2.1 History of Owners, Lessees, and Operators 16 2.2.2 History of Site Operations 17 2.2.3 Regulatory History 19 in 002543
    [Show full text]
  • Utah Geological Association Publication 30.Pub
    Utah Geological Association Publication 30 - Pacific Section American Association of Petroleum Geologists Publication GB78 239 CENOZOIC EVOLUTION OF THE NORTHERN COLORADO RIVER EXTEN- SIONAL CORRIDOR, SOUTHERN NEVADA AND NORTHWEST ARIZONA JAMES E. FAULDS1, DANIEL L. FEUERBACH2*, CALVIN F. MILLER3, 4 AND EUGENE I. SMITH 1Nevada Bureau of Mines and Geology, University of Nevada, Mail Stop 178, Reno, NV 89557 2Department of Geology, University of Iowa, Iowa City, IA 52242 *Now at Exxon Mobil Development Company, 16825 Northchase Drive, Houston, TX 77060 3Department of Geology, Vanderbilt University, Nashville, TN 37235 4Department of Geoscience, University of Nevada, Las Vegas, NV 89154 ABSTRACT The northern Colorado River extensional corridor is a 70- to 100-km-wide region of moderately to highly extended crust along the eastern margin of the Basin and Range province in southern Nevada and northwestern Arizona. It has occupied a criti- cal structural position in the western Cordillera since Mesozoic time. In the Cretaceous through early Tertiary, it stood just east and north of major fold and thrust belts and also marked the northern end of a broad, gently (~15o) north-plunging uplift (Kingman arch) that extended southeastward through much of central Arizona. Mesozoic and Paleozoic strata were stripped from the arch by northeast-flowing streams. Peraluminous 65 to 73 Ma granites were emplaced at depths of at least 10 km and exposed in the core of the arch by earliest Miocene time. Calc-alkaline magmatism swept northward through the northern Colorado River extensional corridor during early to middle Miocene time, beginning at ~22 Ma in the south and ~12 Ma in the north.
    [Show full text]
  • Permian Stratigraphy of the Defiance Plateau, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/18 Permian stratigraphy of the Defiance Plateau, Arizona H. Wesley Peirce, 1967, pp. 57-62 in: Defiance, Zuni, Mt. Taylor Region (Arizona and New Mexico), Trauger, F. D.; [ed.], New Mexico Geological Society 18th Annual Fall Field Conference Guidebook, 228 p. This is one of many related papers that were included in the 1967 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Characterization of Hydraulic Properties Of
    Final Report for Award No. DE-FG03-94ER14462 1 Structural Heterogeneities and Paleo Fluid Flow in an Analog Sandstone Reservoir 2001-2004 By David Pollard and Atilla Aydin Department of Geological and Environmental Sciences Stanford University Stanford, California DOE, BES, and Chemical Sciences, Geosciences, and Biosciences Division Final Report for Award No. DE-FG03-94ER14462 2 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................................2 EXECUTIVE SUMMARY.........................................................................................................................................3 INTRODUCTION AND BACKGROUND ...............................................................................................................4 GEOLOGIC AND STRUCTURAL SETTING .....................................................................................................................4 Regional Geology.................................................................................................................................................4 Principal Structural Elements of the Aztec Sandstone.........................................................................................5 SUMMARY RESULTS FROM THE GRANT PERIOD ........................................................................................6 1. CHEMICAL CHARACTERIZATION OF COLORED ALTERATION BANDS AND PALEO FLUID FLOW .................................6 2. CHARACTERIZING
    [Show full text]
  • Preliminary Geologic Map of the Little Piute Mountains, San Bernardino County, California
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Geologic Map of the Little Piute Mountains, San Bernardino County, California by Keith A. Howard1, Michael L. Dennis2, Karl E. Karlstrom3, and Geoffrey A. Phelps1 Open-File Report 95-598 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American stratigraphic code. Any use of trade, product, or firm names is for descriptive purpose only and does not imply endorsement by the U.S. Government. 1 Menlo Park, California 94025 2 Northern Arizona University, Flagstaff, Arizona 86002 3 University of New Mexico, Albuquerque, New Mexico 87131 Mapped 1978-1993 by K. Howard, P. Stone, K. Karlstrom, G. Phelps, M. Dennis, and students from Northern Arizona University. GEOLOGIC SUMMARY Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983).
    [Show full text]