Volume 76 Nos 9 & 10 October 2017 in This Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Relationship Between X-Ray and Optical Absorbers in Active Galactic
MNRAS 000, 1–11 (2019) Preprint 27 January 2020 Compiled using MNRAS LATEX style file v3.0 The relationship between X-ray and optical absorbers in active galactic nuclei Gunnar W. Jaffarian⋆ and C. Martin Gaskell† Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 ABSTRACT We present a large compilation of reddening estimates from broad-line Balmer decrements for active galactic nuclei (AGNs) with measured X-ray column densities. The median reddening is E(B − V) ≈ 0.77 ± 0.10 for type-1 to type-1.9 AGNs with reported column densities. This is notably higher than the median reddening of AGNs from the SDSS. We attribute this to the selection bias of the SDSS towards blue AGNs. For other AGNs we find evidence of a publication bias against reporting low column densities. We find a significant correlation between NH and E(B − V) but with a large scatter of ±1 dex. On average the X-ray columns are consistent with those predicted from E(B − V) for a solar neighbourhood dust-to-gas ratio. We argue that the large scatter of column densities and reddenings can be explained by X-ray column-density variability. For AGNs with detectable broad-line regions (BLRs) that have undergone significant changes of Seyfert type (“changing-look” AGNs) we do not find any statistically significant differences in NH or E(B − V) compared to standard type-1 to type-1.9 AGNs. There is no evidence for any type-1 AGNs being Compton-thick. We also analyze type-2 AGNs and find no significant correlation between NH and narrow-line region reddening. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Temperature-Induced Effects and Phase Reddening on Near-Earth Asteroids
Planetologie Temperature-induced effects and phase reddening on near-Earth asteroids Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster vorgelegt von Juan A. Sánchez aus Caracas, Venezuela -2013- Dekan: Prof. Dr. Hans Kerp Erster Gutachter: Prof. Dr. Harald Hiesinger Zweiter Gutachter: Dr. Vishnu Reddy Tag der mündlichen Prüfung: 4. Juli 2013 Tag der Promotion: 4. Juli 2013 Contents Summary 5 Preface 7 1 Introduction 11 1.1 Asteroids: origin and evolution . 11 1.2 The asteroid-meteorite connection . 13 1.3 Spectroscopy as a remote sensing technique . 16 1.4 Laboratory spectral calibration . 24 1.5 Taxonomic classification of asteroids . 31 1.6 The NEA population . 36 1.7 Asteroid space weathering . 37 1.8 Motivation and goals of the thesis . 41 2 VNIR spectra of NEAs 43 2.1 The data set . 43 2.2 Data reduction . 45 3 Temperature-induced effects on NEAs 55 3.1 Introduction . 55 3.2 Temperature-induced spectral effects on NEAs . 59 3.2.1 Spectral band analysis of NEAs . 59 3.2.2 NEAs surface temperature . 59 3.2.3 Temperature correction to band parameters . 62 3.3 Results and discussion . 70 4 Phase reddening on NEAs 73 4.1 Introduction . 73 4.2 Phase reddening from ground-based observations of NEAs . 76 4.2.1 Phase reddening effect on the band parameters . 76 4.3 Phase reddening from laboratory measurements of ordinary chondrites . 82 4.3.1 Data and spectral band analysis . 82 4.3.2 Phase reddening effect on the band parameters . -
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
The Messier Catalog
The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier -
Many Binaries Among Neas D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Many binaries among NEAs D. Polishook a,b,* and N. Brosch b a Department of Geophysics and Planetary Sciences, Tel-Aviv University, Israel. b The Wise Observatory and the School of Physics and Astronomy, Tel-Aviv University, Israel. * Corresponding author: David Polishook, [email protected] The number of binary asteroids in the near-Earth region might be significantly higher than expected. While Bottke and Melosh (1996) suggested that about 15% of the NEAs are binaries, as indicated from the frequency of double craters, and Pravec and Harris (2000) suggested that half of the fast-rotating NEAs are binaries, our recent study of Aten NEA lightcurves shows that the fraction of binary NEAs might be even higher than 50%. We found two asteroids with asynchronous binary characteristics such as two additive periods and fast rotation of the primary fragment. We also identified three asteroids with synchronous binary characteristics such as amplitude higher than one magnitude, U-shaped lightcurve maxima and V-shaped lightcurve minima. These five binaries were detected out of a sample of eight asteroids observed, implying a 63% binarity frequency. Confirmation of this high binary population requires the study of a larger representative sample. However, any mitigation program that requires the deflection or demise of a potential impactor will have to factor in the possibility that the target is a binary or multiple asteroid system. Introduction This technique is best used for binaries with NEAs mitigation techniques are asynchronous periods where the different suggested with reference to objects size, frequencies are easily noticed. -
Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups. -
Deep Sky Explorer Atlas
Deep Sky Explorer Atlas Reference manual Star charts for the southern skies Compiled by Auke Slotegraaf and distributed under an Attribution-Noncommercial 3.0 Creative Commons license. Version 0.20, January 2009 Deep Sky Explorer Atlas Introduction Deep Sky Explorer Atlas Reference manual The Deep Sky Explorer’s Atlas consists of 30 wide-field star charts, from the south pole to declination +45°, showing all stars down to 8th magnitude and over 1 000 deep sky objects. The design philosophy of the Atlas was to depict the night sky as it is seen, without the clutter of constellation boundary lines, RA/Dec fiducial markings, or other labels. However, constellations are identified by their standard three-letter abbreviations as a minimal aid to orientation. Those wishing to use charts showing an array of invisible lines, numbers and letters will find elsewhere a wide selection of star charts; these include the Herald-Bobroff Astroatlas, the Cambridge Star Atlas, Uranometria 2000.0, and the Millenium Star Atlas. The Deep Sky Explorer Atlas is very much for the explorer. Special mention should be made of the excellent charts by Toshimi Taki and Andrew L. Johnson. Both are free to download and make ideal complements to this Atlas. Andrew Johnson’s wide-field charts include constellation figures and stellar designations and are highly recommended for learning the constellations. They can be downloaded from http://www.cloudynights.com/item.php?item_id=1052 Toshimi Taki has produced the excellent “Taki’s 8.5 Magnitude Star Atlas” which is a serious competitor for the commercial Uranometria atlas. His atlas has 149 charts and is available from http://www.asahi-net.or.jp/~zs3t-tk/atlas_85/atlas_85.htm Suggestions on how to use the Atlas Because the Atlas is distributed in digital format, its pages can be printed on a standard laser printer as needed. -
The Yarkovsky and YORP Effects
The Yarkovsky and YORP Effects David Vokrouhlicky´ Institute of Astronomy, Charles University, Prague William F. Bottke Department of Space Studies, Southwest Research Institute, Boulder Steven R. Chesley Jet Propulsion Laboratory, California Institute of Technology, Pasadena Daniel J. Scheeres Aerospace Engineering Sciences, University of Colorado, Boulder Thomas S. Statler Astrophysical Institute, Ohio University, Athens and Department of Astronomy, University of Maryland, College Park The Yarkovsky effect describes a small but significant force that affects the orbital motion of meteoroids and asteroids smaller than 30 − 40 kilometers in diameter. It is caused by sunlight; when these bodies heat up in the Sun, they eventually re-radiate the energy away in the thermal waveband, which in turn creates a tiny thrust. This recoil acceleration is much weaker than solar and planetary gravitational forces, but it can produce measurable orbital changes over decades and substantial orbital effects over millions to billions of years. The same physical phenomenon also creates a thermal torque that, complemented by a torque produced by scattered sunlight, can modify the rotation rates and obliquities of small bodies as well. This rotational variant has been coined the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect. During the past decade or so, the Yarkovsky and YORP effects have been used to explore and potentially resolve a number of unsolved mysteries in planetary science dealing with small bodies. Here we review the main results to date, and preview the goals for future work. 1. INTRODUCTION erature through the works of Vladimir V. Radzievskii and his collaborators (Radzievskii, 1952b). While Radzievskii Interesting problems in science usually have a long and was also the first to consider the effects of systematic pho- complex history. -
Hydra the Multi- Headed Serpent by Magda Streicher [email protected]
deep-sky delights Hydra the multi- headed Serpent by Magda Streicher [email protected] Hydra, the female Water kills her off- Snake, is the longest of spring. How- today’s 88 known constel- ever slightly la�ons, stretching from the so�er on the Libra up to the northern tongue is the Image source: Stellarium.org constella�on Cancer – more German name than 3% of the en�re night Wa s s e r s c h - sky (see starmap). It is quite lange. a challenge to deal with this The well-known open expansive constella�on in The northern part of the cluster NGC 2548, per- one ar�cle, especially as it constella�on is character- haps be�er known by contains excep�onally mag- ised by the magnitude 3 the name Messier 48, is nificent objects that make to 4 stars eta, sigma, delta, situated due west of al- a visit to the constella�on epsilon and zeta Hydrae, pha Hydrae right on the decidedly worthwhile. which could be seen as constella�on Monoceros making up the head shape boundary. Caroline Her- Of course, what makes with a sharp-pointed nose. schel and Charles Messier the constella�on all the independently discov- more interes�ng is the fact The star Alphard, also ered this large, bright and that it raises the ques�on, known as alpha Hydrae, loosely expanded cluster why the name – why a could easily seen as a yellow- of around 50 stars dis- female snake? According white diamond hanging on playing circles, pairs and to legend Hydra was the her slender neck (remem- triplets (see picture). -
Charles Messier (1730-1817) Was an Observational Astronomer Working
Charles Messier (1730-1817) was an observational Catalogue (NGC) which was being compiled at the same astronomer working from Paris in the eighteenth century. time as Messier's observations but using much larger tele He discovered between 15 and 21 comets and observed scopes, probably explains its modern popularity. It is a many more. During his observations he encountered neb challenging but achievable task for most amateur astron ulous objects that were not comets. Some of these objects omers to observe all the Messier objects. At «star parties" were his own discoveries, while others had been known and within astronomy clubs, going for the maximum before. In 1774 he published a list of 45 of these nebulous number of Messier objects observed is a popular competi objects. His purpose in publishing the list was so that tion. Indeed at some times of the year it is just about poss other comet-hunters should not confuse the nebulae with ible to observe most of them in a single night. comets. Over the following decades he published supple Messier observed from Paris and therefore the most ments which increased the number of objects in his cata southerly object in his list is M7 in Scorpius with a decli logue to 103 though objects M101 and M102 were in fact nation of -35°. He also missed several objects from his list the same. Later other astronomers added a replacement such as h and X Per and the Hyades which most observers for M102 and objects 104 to 110. It is now thought proba would feel should have been included.