SPECTRAL APPROXIMATION and INDEX for CONVOLUTION TYPE OPERATORS on CONES on Lp (R2)

Total Page:16

File Type:pdf, Size:1020Kb

SPECTRAL APPROXIMATION and INDEX for CONVOLUTION TYPE OPERATORS on CONES on Lp (R2) SPECTRAL APPROXIMATION AND INDEX FOR CONVOLUTION TYPE OPERATORS ON CONES ON Lp (R2) H. MASCARENHAS AND B. SILBERMANN Abstract. We consider an algebra of operator sequences containing, among oth- ers, the approximation sequences to convolution type operators on cones acting on p 2 L (R ), with 1 < p < ∞. To each operator sequence (An) we associate a family p 2 of operators Wx(An) ∈ L(L (R )) parametrized by x in some index set. When all Wx(An) are Fredholm, the so-called approximation numbers of An have the α-splitting property with α being the sum of the kernel dimensions of Wx(An). Moreover, the sum of the indices of Wx(An) is zero. We also show that the index of some composed convolution-like operators is zero. Results on the convergence of the -pseudospectrum, norms of inverses and condition numbers are also obtained. 1. Introduction Let u ∈ L1 (R2) and λ ∈ C. We denote by C (a) the convolution operator defined by C(a): Lp(R2) → Lp(R2) R g 7→ λg (t) + 2 u(t − s)g(s)ds. R where a is given by a(x) = λ + (F (u)) (x) , with F being the Fourier transform on R2. The function a, usually called the symbol of the operator C(a), is continuous in R2 and tends to λ at infinity. It is well known that C(a) ∈ L (Lp (R2)), the Banach algebra of all bounded linear operators in Lp (R2), and its invertibility is equivalent to the invertibility of the symbol a. The set of all such symbols 2 1 2 (1) W R := a = λ + F (u): u ∈ L R , λ ∈ C ∞ 2 is a subalgebra of L (R ) closed for the norm kakW = |λ| + kukL1 and is the so- called Wiener algebra. By a cone K with vertex at the origin, we mean an angular sector in R2 , i.e (2) K := {teiθ : t ∈ [0, +∞[ , θ ∈ Γ} where Γ is a closed connected subset of unit circle T containing at least two points. We define the convolution operator on K as the restriction of C(a) to a cone K extended by the unity to the complement of K and we denote it by CK (a) := χK C(a)χK I + (1 − χK ) I, where χK is the characteristic function of K. In 1967, Simonenko proved that CK (a) is Fredholm if and only if a is invertible and if CK (a) is Fredholm then its index is zero [Si1] . It remains an open question to know if every Fredholm operator CK (a), with a in the Wiener algebra, is invertible. 1991 Mathematics Subject Classification. 45E10, 47A53, 47L80, 15A29. Key words and phrases. Convolution operators, pseudospectrum, Fredholm sequences, index. 1 Spectral Approximation of Convolution Type Operators 2 When K is a half-space Gohberg and Goldstein showed that this result is true [GG]. For some special symbols the answer is also true [B1, M, O]. We give a contribution to this problem by presenting an asymptotic formula for the kernel dimension of CK (a) providing it is Fredholm. We consider an algebra E of approximate sequences containing in particular ap- proximate sequences to operators of the type χK AχK + (1 − χK )I with A in the Banach algebra 2 2 (3) A0 := alg{C (a) , fI : f ∈ C(R ), a ∈ W (R )}, where C(R2) is set of the continuous functions in R2 which have finite limit in every direction (see precise definition in section 2). Our main aim is to describe the so called Fredholm sequences in E and their properties. We mean by a Fredholm sequence a sequence which is regularizable by some special ideal D consisting of sequences of compact type. The interest of Fredholm sequences has at least three aspects: It is a generalization of the stability property, they can be used to construct generalized inverses to some sequences of interest [S2], and last but not least Fredholm sequences can be used in some cases to obtain the index and an asymptotic formula for the kernel dimension of some Fredholm operators. Using C∗ algebras techniques, it was proved in [MS], for p = 2, that Fredholm sequences in E possess some splitting property of the singular values (that is, the ∗ 1 points in the spectrum of (AnAn) 2 ) as n → ∞. Here we prove, for 1 < p < ∞, the analogous result by defining approximation numbers in the context of infinite dimensional Banach spaces and using them instead of singular values . We further prove an index formula for the operators associated to each Fredholm sequence. In [RoS] results concerning some theory of Banach algebras consisting of structured matrix sequences (in which the structure is hidden in the sequence, not in the entries separately) are obtained. Here we adapt this model, although the approximations which occur in this paper are not finite matrices. To achieve our aim we start in section 2 by introducing a Banach algebra B containing sequences with special structure and which contains E. We first study the stability problem for sequences in E by help of some localization procedure and limit operators techniques. A correspondence of a sequence (An) ∈ E and a set p 2 of operators Wx(An) ∈ L(L (R )), with x in some index set X is established. We reprove, in particular, earlier stability results of A. Kozak [K1] and add some new features which lead to the convergence of condition numbers and -pseudospectrum. These results are given in section 3. The method we use goes back to S. Roch [R], who used it in a different setting, and to our earlier paper [MS]. Notice that some results of the recent paper of [Ma] are also contained in ours, as will be explained at the end of subsection 3.4.1 We start section 4 by defining Fredholm sequences and approximations numbers. In subsection 4.3 we show that if a sequence (An) is Fredholm then the sum of the indices of Wx(An) is zero and the approximation numbers of (An) have the α-splitting property with α being the sum of the kernel dimensions of Wx(An). A second localization level is applied in subsection 4.4 to describe all Fredholm sequences belonging to E. It is shown that Fredholm sequences are those for which Wx(An) is Fredholm for every x ∈ X. In the last subsection we use the main results Spectral Approximation of Convolution Type Operators 3 to deduce that for some Fredholm convolution type operators its index is zero and an asymptotic formula for the kernel dimension is computed. Notice that we consider the above mentioned operators on Lp (R2) for simplicity. Although, one can extend the results without difficulties to related operators acting on Lp (Rn). Moreover, the system case can also be considered by the methods of this paper. 2. Localization ∞ p 2 Let F be the set of all sequences (An)n=0 of operators in L (L (R )) such that sup kAnk < ∞. Endowed with the usual pointwise operations and the norm k(An)k = sup kAnk, F is a Banach algebra. The set G of the sequences in F tending in norm to zero is a closed ideal of F and plays an important role due to Kozak’s Theorem ([BS], Proposition 2.20). This theorem states that a sequence (An) in F is stable (i.e. An is invertible for n large enough and the norms of their inverses are uniformly bounded) if and only if the G coset (An)+G is invertible in F = F/G. Thus, stability is an invertibility problem. There are no effective tools to study invertibility in F G because of its generality. The way out is to introduce a suitable subalgebra of F G which serves our aim and which is subject to localization via Allan-Douglas local principle. 2 2 x Let D be the open unit disc in R . It is easy to see that ξ : D → R , x 7→ 1−|x| is a homeomorphism. We denote by C(R2) the set of all continuous functions f on R2 for which f ◦ ξ admits a continuous extension onto the closed disc D. Provided with pointwise operations and the supremum norm C(R2) forms a commutative C∗-algebra isomorphic to C(D). Its maximal ideal space R2 can be viewed as the compactification (with the Gelfand topology) of R2 with the circle T of infinitely 2 2 2 −1 distant points; and a sequence hn ∈ R converges to θ∞ ∈ R \R if ξ (hn) converges iθ iθ to some e with θ ∈ [0, 2π[. We write f(θ∞) := f]◦ ξ(e ), where the second function is the extension of f ◦ ξ . 2 For each function ϕ ∈ C(R ), we associate the sequence (ϕnI) given by the ex- t panded functions ϕn (t) = ϕ n . Clearly, this sequence belongs to F and k(ϕnI)k = 2 p 2 p 2 kϕk∞. For x ∈ R , let Vx : L (R ) → L (R ), f(t) 7→ f(t − x) be the usual shift operator in the x-direction. We denote by B the set of all sequences (An) of F for which both limits ∗ s- lim V−nxAnVnx and s- lim V−nxAnVnx exist for every x ∈ R2, and 2 lim kAnϕnI − ϕnAnk = 0, for every ϕ ∈ C( ). n→∞ R It is not hard to check that B is a Banach subalgebra of F. Observe that the 2 commutator (An)(ϕnI) − (ϕnI)(An) belongs to G for every ϕ ∈ C(R ) which shows that we can apply localization to study B/G. In order to characterize the algebra B, let us consider the following map, for x ∈ R2, p 2 Wx : B → L (L (R )) (An) 7→ s- lim V−nxAnVnx.
Recommended publications
  • Criss-Cross Type Algorithms for Computing the Real Pseudospectral Abscissa
    CRISS-CROSS TYPE ALGORITHMS FOR COMPUTING THE REAL PSEUDOSPECTRAL ABSCISSA DING LU∗ AND BART VANDEREYCKEN∗ Abstract. The real "-pseudospectrum of a real matrix A consists of the eigenvalues of all real matrices that are "-close to A. The closeness is commonly measured in spectral or Frobenius norm. The real "-pseudospectral abscissa, which is the largest real part of these eigenvalues for a prescribed value ", measures the structured robust stability of A. In this paper, we introduce a criss-cross type algorithm to compute the real "-pseudospectral abscissa for the spectral norm. Our algorithm is based on a superset characterization of the real pseudospectrum where each criss and cross search involves solving linear eigenvalue problems and singular value optimization problems. The new algorithm is proved to be globally convergent, and observed to be locally linearly convergent. Moreover, we propose a subspace projection framework in which we combine the criss-cross algorithm with subspace projection techniques to solve large-scale problems. The subspace acceleration is proved to be locally superlinearly convergent. The robustness and efficiency of the proposed algorithms are demonstrated on numerical examples. Key words. eigenvalue problem, real pseudospectra, spectral abscissa, subspace methods, criss- cross methods, robust stability AMS subject classifications. 15A18, 93B35, 30E10, 65F15 1. Introduction. The real "-pseudospectrum of a matrix A 2 Rn×n is defined as R n×n (1) Λ" (A) = fλ 2 C : λ 2 Λ(A + E) with E 2 R ; kEk ≤ "g; where Λ(A) denotes the eigenvalues of a matrix A and k · k is the spectral norm. It is also known as the real unstructured spectral value set (see, e.g., [9, 13, 11]) and it can be regarded as a generalization of the more standard complex pseudospectrum (see, e.g., [23, 24]).
    [Show full text]
  • Reproducing Kernel Hilbert Space Compactification of Unitary Evolution
    Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Dasa, Dimitrios Giannakisa,∗, Joanna Slawinskab aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA bFinnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, Finland Abstract A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator Wτ on a reproducing kernel Hilbert space (RKHS). A key element of this approach is that Wτ is skew-adjoint (unlike regularization approaches based on the addition of diffusion), and thus can be characterized by a unique projection- valued measure, discrete by compactness, and an associated orthonormal basis of eigenfunctions. These eigenfunctions can be ordered in terms of a Dirichlet energy on the RKHS, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, the regularized generator has a well-defined Borel functional calculus allowing tWτ the construction of a unitary evolution group fe gt2R on the RKHS, which approximates the unitary Koopman evolution group of the original system. We establish convergence results for the spectrum and Borel functional calculus of the regularized generator to those of the original system in the limit τ ! 0+. Convergence results are also established for a data-driven formulation, where these operators are approximated using finite-rank operators obtained from observed time series. An advantage of working in spaces of observables with an RKHS structure is that one can perform pointwise evaluation and interpolation through bounded linear operators, which is not possible in Lp spaces.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Banach J. Math. Anal. 6 (2012), No. 1, 45–60 LINEAR MAPS
    Banach J. Math. Anal. 6 (2012), no. 1, 45–60 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/ LINEAR MAPS PRESERVING PSEUDOSPECTRUM AND CONDITION SPECTRUM G. KRISHNA KUMAR1 AND S. H. KULKARNI2 Communicated by K. Jarosz Abstract. We discuss properties of pseudospectrum and condition spectrum of an element in a complex unital Banach algebra and its -perturbation. Sev- eral results are proved about linear maps preserving pseudospectrum/ condition spectrum. These include the following: (1) Let A, B be complex unital Banach algebras and > 0. Let Φ : A → B be an -pseudospectrum preserving linear onto map. Then Φ preserves spectrum. If A and B are uniform algebras, then, Φ is an isometric isomorphism. (2) Let A, B be uniform algebras and 0 < < 1. Let Φ : A → B be 0 an -condition spectrum preserving linear map. Then Φ is an -almost 0 multiplicative map, where , tend to zero simultaneously. 1. Introduction Let A be a complex Banach algebra with unit 1. We shall identify λ.1 with λ. We recall that the spectrum of an element a ∈ A is defined as −1 σ(a) = λ ∈ C : λ − a∈ / A , where A−1 is the set of all invertible elements of A. The spectral radius of an element a is defined as r(a) = sup{|λ| : λ ∈ σ(a)}. Date: Received: 20June 2011; Revised: 25 August 2011; Accepted: 8 September 2011. ∗ Corresponding author. 2010 Mathematics Subject Classification. Primary 47B49; Secondary 46H05, 46J05, 47S48. Key words and phrases. Pseudospectrum, condition spectrum, almost multiplicative map, linear preserver, perturbation. 45 46 G.
    [Show full text]
  • Lecture Notes on Spectra and Pseudospectra of Matrices and Operators
    Lecture Notes on Spectra and Pseudospectra of Matrices and Operators Arne Jensen Department of Mathematical Sciences Aalborg University c 2009 Abstract We give a short introduction to the pseudospectra of matrices and operators. We also review a number of results concerning matrices and bounded linear operators on a Hilbert space, and in particular results related to spectra. A few applications of the results are discussed. Contents 1 Introduction 2 2 Results from linear algebra 2 3 Some matrix results. Similarity transforms 7 4 Results from operator theory 10 5 Pseudospectra 16 6 Examples I 20 7 Perturbation Theory 27 8 Applications of pseudospectra I 34 9 Applications of pseudospectra II 41 10 Examples II 43 1 11 Some infinite dimensional examples 54 1 Introduction We give an introduction to the pseudospectra of matrices and operators, and give a few applications. Since these notes are intended for a wide audience, some elementary concepts are reviewed. We also note that one can understand the main points concerning pseudospectra already in the finite dimensional case. So the reader not familiar with operators on a separable Hilbert space can assume that the space is finite dimensional. Let us briefly outline the contents of these lecture notes. In Section 2 we recall some results from linear algebra, mainly to fix notation, and to recall some results that may not be included in standard courses on linear algebra. In Section 4 we state some results from the theory of bounded operators on a Hilbert space. We have decided to limit the exposition to the case of bounded operators.
    [Show full text]
  • Pseudospectrum of an Element of a Banach Algebra
    Tusi Advances in Operator Theory Mathematical Research https://doi.org/10.1007/s43036-019-00016-x Group ORIGINAL PAPER Decomposition of the (n, )-pseudospectrum of an element of a Banach algebra Kousik Dhara1 · S. H. Kulkarni2 Received: 20 June 2019 / Accepted: 9 October 2019 © Tusi Mathematical Research Group (TMRG) 2019 Abstract Let A be a complex Banach algebra with unit. For an integer n ≥ 0 and >0, the (n,)-pseudospectrum of a ∈ A is defined by −2n 1/2n 1 Λ ,(A, a) := λ ∈ C : (λ − a) A (λ − a) ≥ . n is not invertible in or Let p ∈ A be a nontrivial idempotent. Then pAp ={pbp : b ∈ A} is a Banach subalgebra of A with unit p, known as a reduced Banach algebra. Suppose ap = pa. We study the relationship of Λn,(A, a) and Λn,(pAp, pa). We extend this by considering first a finite family, and then an at most countable family of idempotents satisfying some conditions. We establish that under suitable assumptions, the (n,)- pseudospectrum of a can be decomposed into the union of the (n,)-pseudospectra of some elements in reduced Banach algebras. Keywords Banach algebra · Spectrum · Pseudospectrum · (n,)-Pseudospectrum Mathematics Subject Classification 47A10 · 46H05 · 47A12 Communicated by Chi-Keung Ng. B Kousik Dhara [email protected] S. H. Kulkarni [email protected] 1 Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore Centre, 8th Mile, Mysore Road, Bangalore 560059, India 2 Department of Mathematics, Indian Institute of Technology Palakkad, Palakkad, Kerala 678557, India K. Dhara and S. H. Kulkarni 1 Introduction It is known that the spectrum of the direct sum of a finite number of operators on the direct sum of Hilbert spaces is the union of their spectra (Problem 98 of [9]).
    [Show full text]
  • Variable-Coefficient Toeplitz Matrices with Symbols Beyond the Wiener
    Operator Theory: Advances and Applications, Vol. 199, 191–202 c 2009 Birkh¨auser Verlag Basel/Switzerland Variable-coefficient Toeplitz Matrices with Symbols beyond the Wiener Algebra Albrecht B¨ottcher and Sergei Grudsky In Memory of Georg Heinig Abstract. Sequences of so-called variable-coefficient Toeplitz matrices arise in many problems, including the discretization of ordinary differential equations with variable coefficients. Such sequences are known to be bounded if the generating function satisfies a condition of the Wiener type, which is far away from the minimal requirement in the case of constant coefficients. The purpose of this paper is to uncover some phenomena beyond the Wiener condition. We provide counterexamples on the one hand and prove easy-to-check sufficient conditions for boundedness on the other. Mathematics Subject Classification (2000). Primary 47B35; Secondary 15A60, 65F35. Keywords. Toeplitz matrix, variable coefficients, matrix norm. 1. Introduction Let a be a complex-valued continuous function on [0, 1] × [0, 1] × T,whereT is the complex unit circle, a :[0, 1] × [0, 1] × T → C, (x, y, t) → a(x, y, t). For n ∈ Z,we −n puta ˆn(x, y)= T a(x, y, t) t |dt|/(2π) and so have the Fourier series ∞ n a(x, y, t)= aˆn(x, y)t , (1) n=−∞ 2 where equality holds at least in the L sense. Let AN (a)bethematrix N j k AN (a)= aˆj−k , . (2) N N j,k=0 Occasionally we allow us to write a(x, y, t)andAN (a(x, y, t)) for a and AN (a). This work was partially supported by CONACYT project U46936-F, Mexico.
    [Show full text]
  • Harmonic Analysis and Centers of Group Algebras
    TRANSACTIONSOF THE AMERICANMATHEMATICAL SOCIETY Volume 195, 1974 HARMONICANALYSIS AND CENTERS OF GROUPALGEBRAS BY J. LIUKKONENi1) AND R. MOSAK(2) ABSTRACT. The purpose of this paper is to present some results of harmonic analysis on the center of the group algebra Z (L (G)) where G is a locally com- pact group. We prove that Z (L (G)) is a regular, Tauberian, symmetric Banach *-algebra and contains a bounded approximate identity. Wiener's generalized Tauberian theorem is therefore applicable to Z (L (G)). These results complement those of I. E. Segal relating to the group algebra of locally compact abelian and compact groups. We also prove that if G contains a compact normal subgroup K such that G/K is abelian, then Z (L (G)) satisfies the condition of Wiener-Ditkin, so that any closed set in its maximal ideal space whose boundary contains no per- fect subset is a set of spectral synthesis. We give an example of a general locally compact group for which Z {L (G)) does not satisfy the condition of Wiener-Ditkin. Introduction. The purpose of this paper is to present some results of harmonic analysis on the center of the group algebra Z(L (G)) where G is a locally com- pact group. We prove that Z (L (G)) is a regular, Tauberian, symmetric Banach *-algebra containing a bounded approximate identity. Wiener's generalized Tau- berian theorem is therefore applicable to Z(L (G)): If M is a closed proper ideal in Z(L (G)), then M is contained in a regular maximal ideal. These results com- plement those of Segal [17] relating to the group algebra of locally compact abe- lian and compact groups.
    [Show full text]
  • Symmetry and Nonsymmetry for Locally Compact Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 33, 119-134 (1979) Symmetry and Nonsymmetry for Locally Compact Groups HORS-C LEPTIN AND DETLEV POGUNTKE Universitiit Bielefeld, Universitiitstrasse, 4800 Bielefeld I, Federal Republic of Germany Communicated by the Editors Received June 22, 1977; revised April 3, 1978 The class [S] of locally compact groups G is considered, for which the algebra L’(G) is symmetric (=Hermitian). It is shown that [S] is stable under semidirect compact extensions, i.e., HE [S] and K compact implies K x 8 HE [S]. For connected solvable Lie groups inductive conditions for symmetry are given. A construction for nonsymmetric Banach algebras is given which shows that there exists exactly one connected and simply connected solvable Lie group of dimension 94 which is not in [S]. This example shows that G/Z E [S], Z the center of G, in general does not imply G E [S]. It is shown that nevertheless for discrete groups and a (possibly) stronger form of symmetry this implication holds, implying a new and shorter proof of the fact that [S] contains all discrete nilpotent groups. Recall that a Banach algebra LZ~with isometric involution a -+ a* is called symmetric, if the spectrum Sp a*a for every element a E & is always contained in IW+ = [0, co[. The theorem of Ford and Shirali [2] tells us that this is equiva- Ient to .d being Hermitian, i.e., that Sp b C [w for each b E :d with b = h*.
    [Show full text]
  • International Conference on Linear Algebra and Its Applications REPORT
    International Conference on Linear Algebra and its Applications December 11-15, 2017 REPORT The Fourth DAE-BRNS Theme Meeting on Generation and Use of Covariance Matrices in the Applications of Nuclear Data December 09-13, 2017 Department of Statistics, PSPH Level VI, Health Sciences Library Building Manipal Academy of Higher Education Manipal–576104, Karnataka, INDIA Editor Shreemathi S. Mayya Compiler David Raj Micheal January 15, 2018 MAHE honours save nature policy and limited number of this report are printed for internal circulation and for the communications with sponsors. Table of Contents 1 Overview of ICLAA 2017 & Theme Meeting on Covariance Matrix 5 1.1 Invited Delegates: ICLAA 20176 1.2 Delegates Contributing Paper: ICLAA 20178 1.3 Delegates Presenting Poster: ICLAA 2017 10 1.4 Fourth DAE-BRNS Theme Meeting on Covariance Matrix 10 1.5 Speakers in DAE-BRNS Theme Meeting 10 1.6 Acknowledgements 12 1.7 Special Issues 12 2 Committees 15 3 Message 19 4 From the Desk of Chairman (DAE-BRNS Theme Meeting) 21 5 Technical Committee: DAE-BRNS Theme Meeting 23 6 Program: DAE-BRNS Theme Meeting 25 7 Abstracts: DAE-BRNS Theme Meeting 29 8 List of Delegates: Theme Meeting 51 9 Program: ICLAA 2017 55 10 Abstracts: ICLAA 2017 61 10.1 Special Lectures & Plenary Talks 61 10.2 Invited Talks 67 10.3 Contributory Talks 85 10.4 Posters 131 11 List of Delegates: ICLAA 2017 137 3 Overview of ICLAA 2017 & Theme Meeting on Covariance Matrix International conference on Linear Al- gebra and its Applications–ICLAA 2017, third in its sequence, following CMT- GIM 2012 and ICLAA 2014, held in Manipal Academy of Higher Educa- tion, Manipal, India in December 11-15, 2017.
    [Show full text]
  • Spectrum and Pseudospectrum of a Tensor
    Spectrum and Pseudospectrum of a Tensor Lek-Heng Lim University of California, Berkeley July 11, 2008 L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 1 / 27 Matrix eigenvalues and eigenvectors One of the most important ideas ever invented. I R. Coifman et. al.: \Eigenvector magic: eigenvectors as an extension of Newtonian calculus." Normal/Hermitian A I Invariant subspace: Ax = λx. > > I Rayleigh quotient: x Ax=x x. > 2 I Lagrange multipliers: x Ax − λ(kxk − 1). > I Best rank-1 approximation: minkxk=1kA − λxx k. Nonnormal A −1 −1 I Pseudospectrum: σ"(A) = fλ 2 C j k(A − λI ) k > " g. ∗ I Numerical range: W (A) = fx Ax 2 C j kxk = 1g. ∗ I Irreducible representations of C (A) with natural Borel structure. ∗ I Primitive ideals of C (A) with hull-kernel topology. How can one define these for tensors? L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 2 / 27 DARPA mathematical challenge eight One of the twenty three mathematical challenges announced at DARPA Tech 2007. Problem Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way? Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra. Polynomial f 2 R[x1;:::; xn] of degree d can be expressed as > > f (x) = a0 + a1 x + x A2x + A3(x; x; x) + ··· + Ad (x;:::; x): n n×n n×n×n n×···×n a0 2 R; a1 2 R ; A2 2 R ; A3 2 R ;:::; Ad 2 R . Numerical linear algebra: d = 2.
    [Show full text]
  • Mathematical Analysis of Quantum Mechanics with Non-Self-Adjoint Operators Radek Novak
    Mathematical analysis of quantum mechanics with non-self-adjoint operators Radek Novak To cite this version: Radek Novak. Mathematical analysis of quantum mechanics with non-self-adjoint operators. Func- tional Analysis [math.FA]. Université de Nantes; Czech Technical University in Prague, 2018. English. tel-01903520 HAL Id: tel-01903520 https://hal.archives-ouvertes.fr/tel-01903520 Submitted on 24 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE NANTES ET L’UNIVERSITE TECHNIQUE DE PRAGUE COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Mathématiques et leurs Interactions Par Radek NOVÁK Mathematical analysis of quantum mechanics with non-self-adjoint operators Thèse présentée et soutenue à Nantes, le 19 octobre 2018 Unité de recherche : Laboratoire de Mathématiques Jean Leray Rapporteurs avant soutenance : Michael LEVITIN Professeur, Université de Reading Thierry RAMOND Maître de Conférences, Université
    [Show full text]