Reproducing Kernel Hilbert Space Compactification of Unitary Evolution
Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Dasa, Dimitrios Giannakisa,∗, Joanna Slawinskab aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA bFinnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, Finland Abstract A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator Wτ on a reproducing kernel Hilbert space (RKHS). A key element of this approach is that Wτ is skew-adjoint (unlike regularization approaches based on the addition of diffusion), and thus can be characterized by a unique projection- valued measure, discrete by compactness, and an associated orthonormal basis of eigenfunctions. These eigenfunctions can be ordered in terms of a Dirichlet energy on the RKHS, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, the regularized generator has a well-defined Borel functional calculus allowing tWτ the construction of a unitary evolution group fe gt2R on the RKHS, which approximates the unitary Koopman evolution group of the original system. We establish convergence results for the spectrum and Borel functional calculus of the regularized generator to those of the original system in the limit τ ! 0+. Convergence results are also established for a data-driven formulation, where these operators are approximated using finite-rank operators obtained from observed time series. An advantage of working in spaces of observables with an RKHS structure is that one can perform pointwise evaluation and interpolation through bounded linear operators, which is not possible in Lp spaces.
[Show full text]