Alpha-2 Adrenergic Receptors and Signal Transduction

Total Page:16

File Type:pdf, Size:1020Kb

Alpha-2 Adrenergic Receptors and Signal Transduction Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1105 _____________________________ _____________________________ Alpha-2 Adrenergic Receptors and Signal Transduction Effector Output in Relation to G-Protein Coupling and Signalling Cross-Talk BY JOHNNY NÄSMAN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy (Faculty of Medicine) in Physiology presented at Uppsala University in 2002 ABSTRACT Näsman, J. 2001. Alpha-2 Adrenergic Receptors and Signal Transduction. Effector Output in Relation to G-Protein Coupling and Signalling Cross-Talk. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1105. 64 pp. Uppsala. ISBN 91-554-5195-0. The alpha-2 adrenergic receptor (α2-AR) subfamily includes three different subtypes, α2A-, α2B- and α2C-AR, all believed to exert their function through heterotrimeric Gi/o-proteins. The present study was undertaken in order to investigate subtype differences in terms of cellular response and to explore other potential signalling pathways of α2-ARs. Evidence is provided for a strong Gs-protein coupling capability of the α2B-AR, leading to stimulation of adenylyl cyclase (AC). The difference between the α2A- and α2B-AR subtypes, in this respect, was shown to be due to differences in the second intracellular loops of the receptor proteins. Substitution of the second loop in α2A-AR with the corresponding domain of α2B-AR enrolled the chimeric α2A/α2B receptor with functional α2B-AR properties. Dual Gi and Gs coupling can have different consequences for AC output. Using coexpression of receptors and G-proteins, it was shown that the ultimate cellular response of α2B-AR activation is largely dependent on the ratio of Gi- to Gs-protein amounts in the cell. Also Gi- and Go-proteins appear to have different regulatory influences on AC. Heterologous expression of AC2 together with Gi or Go and the α2A-AR resulted in receptor-mediated inhibition of protein kinase C-stimulated AC2 activity through Go, whereas activation of Gi potentiated the activity. 2+ α2-ARs mobilize Ca in response to agonists in some cell types. This response was shown to depend on tonic purinergic receptor activity in transfected CHO cells. Elimination 2+ of the tonic receptor activity almost completely inhibited the Ca response of α2-ARs. In conclusion, α2-ARs can couple to multiple G-proteins, including Gi, Go and Gs. The cellular response to α2-AR activation depends on which receptor subtype is expressed, which cellular signalling constituents are engaged (G-proteins and effectors), and the signalling status of the effectors (dormant or primed). Key words: Adrenergic, receptor, G-protein, adenylyl cyclase, cAMP, calcium, cross-talk. Johnny Näsman, Department of Physiology, Uppsala University, Biomedical Center, P.O. Box 572, SE-751 23 Uppsala, Sweden Johnny Näsman 2001 ISSN 0282-7476 ISBN 91-554-5195-0 Printed in Sweden by Uppsala University, Tryck & Medier, Uppsala 2001 The thesis is based on the following papers, which are referred to in the text by their Roman numerals: I Dual signalling by different octopamine receptors converges on adenylate cyclase in Sf9 cells. Näsman J., Kukkonen J.P., Åkerman K.E.O. Insect Biochem. Mol. Biol., In press 2001. II The second intracellular loop of the α2-adrenergic receptors determines subtype-specific coupling to cAMP production. Näsman J., Jansson C., Åkerman K.E.O. J. Biol. Chem., 272, 9703-9708, 1997. III Role of G-protein availability in differential signaling by alpha 2- adrenoceptors. Näsman J., Kukkonen J.P., Ammoun S., Åkerman K.E.O. Biochem. Pharmacol., 62, 913-922, 2001. IV Endogenous extracellular purine nucleotides redirect α2-adrenoceptor signaling. Åkerman K.E.O., Näsman J., Lund P.-E., Shariatmadari R., Kukkonen J.P. FEBS Lett., 430, 209-212, 1998. V Modulation of adenylyl cyclase type 2 activity by Gi/o-protein coupled receptors. Opposite regulation by Gi and Go. Näsman J., Kukkonen J.P., Holmqvist T., Åkerman K.E.O. Manuscript 2001. Reprints were made with permission from the publishers. CONTENTS Abbreviations............................................................................................................ 3 1 Introduction ........................................................................................................... 4 1.1 General background............................................................................................ 4 1.2 G-protein coupled receptors and signal transduction......................................... 5 1.2.1 Receptors .............................................................................................. 6 1.2.2 Transducers .......................................................................................... 7 1.2.3 Effectors .............................................................................................10 1.2.3.1 Adenylyl cyclase, cAMP, and PKA.....................................10 1.2.3.2 Phospholipase C, Ca2+, and PKC .........................................13 1.3 α2-adrenergic receptors ....................................................................................15 1.3.1 A subfamily of adrenergic receptors ..................................................15 1.3.2 Physiological functions ......................................................................17 1.3.3 Cellular signalling ..............................................................................19 1.4 Other receptors utilized in the study.................................................................21 1.4.1 Octopamine receptors.........................................................................21 1.4.2 Purinergic receptors............................................................................22 1.4.3 Muscarinic receptors ..........................................................................23 1.5 Why study heterologously expressed receptors? .............................................23 2 Aims of the study.................................................................................................25 3 Materials and methods.........................................................................................26 3.1 Cell cultures...........................................................................................26 3.2 BEVS and infection procedures ............................................................26 3.3 Receptor quantification .........................................................................27 3.4 Receptor−G-protein interactions ...........................................................27 3.5 Measurement of cAMP .........................................................................28 3.6 Measurement of Ca2+.............................................................................29 3.7 Mathematical modelling........................................................................29 4 Results .................................................................................................................30 4.1 Receptor signalling in Sf9 cells.............................................................30 4.2 Propensity of α2-ARs for Gs coupling...................................................32 4.3 Signalling cross-talk..............................................................................34 5 Discussion............................................................................................................36 5.1 Suitability of Sf9 cells for receptor characterization.............................36 5.2 Promiscuous G-protein coupling...........................................................39 5.3 Adenylyl cyclase regulation by the Ca2+ signalling pathway ...............42 2+ 5.4 The α2-AR−Ca link ............................................................................43 6 Summary and conclusions...................................................................................46 7 Acknowledgements .............................................................................................48 8 References ...........................................................................................................50 ABBREVIATIONS AC adenylyl cyclase AR adrenergic receptor (as in α-AR and β-AR) BEVS Baculovirus Expression Vector System 2+ 2+ [Ca ]i intracellular concentration of free Ca CaM calmodulin CaMK calmodulin kinase CHO Chinese hamster ovary (a cell line) Ctx cholera toxin DAG diacylglycerol GPCR G-protein coupled receptor Gx-protein heterotrimeric GTP-binding protein with x identity of α subunit Gαx α subunit of heterotrimeric G-protein with x identity Gβγ βγ subunit complex of heterotrimeric G-protein i2/i3-loop second/third intracellular loop of receptors IBMX 3-isobutyl-1-methylxanthine IP3 inositol 1,4,5-trisphosphate PDE phosphodiesterase PH pleckstrin homology PI phosphtidylinositol PIP2 phosphtidylinositol 4,5-bisphosphate PK protein kinase (as in PKA and PKC) PL phospholipase (as in PLC, PLA2, PLD) Ptx pertussis toxin Sf9 Spodoptera frugiperda (a cell line) TM transmembrane domain of receptors TPA 12-O-tetradecanoyl phorbol-13-acetate 3 1 INTRODUCTION 1.1 General background All cells, whether single cell organisms or entities within multicellular organisms, need to sense the exterior to be able to adapt to changes. In the course of evolution, a multitude of such sensing molecules has evolved. A glimpse of this multitude comes from the realization that cells of our own bodies are regulated by a diversity of signals
Recommended publications
  • G Protein Alpha 13 (GNA13) (NM 006572) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207762L3V G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle Symbol: GNA13 Synonyms: G13 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_006572 ORF Size: 1131 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207762). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_006572.3 RefSeq Size: 4744 bp RefSeq ORF: 1134 bp Locus ID: 10672 UniProt ID: Q14344, A0A024R8M0 Domains: G-alpha Protein Families: Druggable Genome Protein Pathways: Long-term depression, Regulation of actin cytoskeleton, Vascular smooth muscle contraction MW: 44 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle – RC207762L3V Gene Summary: Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems (PubMed:15240885, PubMed:16787920, PubMed:16705036, PubMed:27084452).
    [Show full text]
  • Predicting Coupling Probabilities of G-Protein Coupled Receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J
    Published online 30 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W395–W401 doi: 10.1093/nar/gkz392 PRECOG: PREdicting COupling probabilities of G-protein coupled receptors Gurdeep Singh1,2,†, Asuka Inoue3,*,†, J. Silvio Gutkind4, Robert B. Russell1,2,* and Francesco Raimondi1,2,* 1CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany, 2Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany, 3Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan and 4Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA Received February 10, 2019; Revised April 13, 2019; Editorial Decision April 24, 2019; Accepted May 01, 2019 ABSTRACT great use in tinkering with signalling pathways in living sys- tems (5). G-protein coupled receptors (GPCRs) control multi- Ligand binding to GPCRs induces conformational ple physiological states by transducing a multitude changes that lead to binding and activation of G-proteins of extracellular stimuli into the cell via coupling to situated on the inner cell membrane. Most of mammalian intra-cellular heterotrimeric G-proteins. Deciphering GPCRs couple with more than one G-protein giving each which G-proteins couple to each of the hundreds receptor a distinct coupling profile (6) and thus specific of GPCRs present in a typical eukaryotic organism downstream cellular responses. Determining these coupling is therefore critical to understand signalling. Here, profiles is critical to understand GPCR biology and phar- we present PRECOG (precog.russelllab.org): a web- macology. Despite decades of research and hundreds of ob- server for predicting GPCR coupling, which allows served interactions, coupling information is still missing for users to: (i) predict coupling probabilities for GPCRs many receptors and sequence determinants of coupling- specificity are still largely unknown.
    [Show full text]
  • G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision
    The Journal of Neuroscience, June 1, 2011 • 31(22):8067–8077 • 8067 Cellular/Molecular G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision Alexander V. Kolesnikov,1 Loryn Rikimaru,2 Anne K. Hennig,1 Peter D. Lukasiewicz,1 Steven J. Fliesler,4,5,6,7 Victor I. Govardovskii,8 Vladimir J. Kefalov,1 and Oleg G. Kisselev2,3 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Ophthalmology and 3Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, 4Research Service, Veterans Administration Western New York Healthcare System, and Departments of 5Ophthalmology (Ross Eye Institute) and 6Biochemistry, University at Buffalo/The State University of New York (SUNY), and 7SUNY Eye Institute, Buffalo, New York 14215, and 8Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the ␣-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary ␤␥-complex in this process remains a mystery. Here, we show that elimination of the transducin ␥-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin ␤␥-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
    [Show full text]
  • Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors
    New Research Sensory and Motor Systems Transducin ␤-Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors Paige M. Dexter,1 Ekaterina S. Lobanova,2 Stella Finkelstein,2 William J. Spencer,1 Nikolai P. Skiba,2 and Vadim Y. Arshavsky1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0144-18.2018 1Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710 and 2Albert Eye Research Institute, Duke University, Durham, North Carolina 27710 Visual Overview The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is ␥ ␥ the knockout of its rod-specific -subunit (G 1). Two stud- ies using independently generated mice documented that this knockout results in a considerable Ͼ60-fold reduction in the light sensitivity of affected rods, but provided dif- ␣ ␣ ferent interpretations of how the remaining -subunit (G t) ␤ ␥ mediates phototransduction without its cognate G 1 1- subunit partner. One study found that the light sensitivity ␣ reduction matched a corresponding reduction in G t con- tent in the light-sensing rod outer segments and proposed ␣ ␤ that G t activation is supported by remaining G 1 asso- ciating with other G␥ subunits naturally expressed in pho- toreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approx- ␣ imately sixfold, reduction of G t and proposed that the light responses of these rods do not require G␤␥ at all. To resolve this controversy and elucidate the mechanism ␥ driving visual signaling in G 1 knock-out rods, we analyzed both mouse lines side by side.
    [Show full text]
  • GNAI3 Gene G Protein Subunit Alpha I3
    GNAI3 gene G protein subunit alpha i3 Normal Function The GNAI3 gene provides instructions for making one component, the inhibitory alpha subunit, of a protein complex called a guanine nucleotide-binding protein (G protein). G proteins are composed of three protein subunits: alpha, beta, and gamma. Each of these subunits is produced from a different gene. Through a process called signal transduction, G proteins trigger a complex network of signaling pathways within cells. These pathways help transmit information from outside the cell to inside the cell. Specifically, G proteins made with the GNAI3 inhibitory alpha subunit reduce (inhibit) the activity of an enzyme called adenylyl cyclase, which is an important chemical messenger within cells. G protein signaling ultimately influences many cell activities, instructing the cell to grow, divide, or take on specialized functions. Studies suggest that G protein signaling involving the GNAI3 inhibitory alpha subunit contributes to the development of the first and second pharyngeal arches. These embryonic structures ultimately develop into the jawbones, facial muscles, middle ear bones, ear canals, outer ears, and related tissues. Health Conditions Related to Genetic Changes Auriculo-condylar syndrome At least two mutations in the GNAI3 gene have been found to cause auriculo-condylar syndrome, a disorder that primarily affects the development of the ears and lower jaw ( mandible). The identified mutations change single protein building blocks (amino acids) in the inhibitory alpha subunit. These mutations likely alter the structure of the inhibitory alpha subunit and impair G protein signaling. Abnormal signaling alters the formation of the lower jaw: instead of developing normally, the lower jaw becomes shaped more like the smaller upper jaw (maxilla).
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.410,182 B2 W (45) Date of Patent: Aug
    USOO941 0182B2 (12) United States Patent (10) Patent No.: US 9.410,182 B2 W (45) Date of Patent: Aug. 9, 2016 (54) PHOSPHATASE COUPLED OTHER PUBLICATIONS GLYCOSYLTRANSFERASE ASSAY Wu et al., R&D Systems Poster, “Universal Phosphatase-Coupled (75) Inventor: Zhengliang L. Wu, Edina, MN (US) Glycosyltransferase Assay”, Apr. 2010, 3 pages.* “Malachite Green Phosphate Detection Kit'. Research and Diagnos (73) Assignee: Bio-Techne Corporation, Minneapolis, tic Systems, Inc. Catalog No. DY996, Feb. 4, 2010, 6 pages.* MN (US) Zhu et al., Analytica Chimica Acta 636:105-110, 2009.* Motomizu et al., Analytica Chimica Acta 211:119-127, 1988.* *) NotOt1Ce: Subjubject to anyy d1Sclaimer,disclai theh term off thisthi Schachter et al., Methods Enzymol. 98.98-134, 1983.* patent is extended or adjusted under 35 Unverzagt et al., J. Am. Chem. Soc. 112:9308-9309, 1990.* U.S.C. 154(b) by 0 days. IUBMB Enzyme Nomenclature for EC 3.1.3.1, obtained from www. chem.cmul.ac.uk/iubmb? enzyme/EC3/1/3/5.html, last viewed on (21) Appl. No.: 13/699,175 Apr. 13, 2015, 1 page.* IUBMB Enzyme Nomenclature for EC 3.1.3.5, obtained from www. (22) PCT Filed: May 24, 2010 chem.cmul.ac.uk/iubmb? enzyme/EC3/1/3/5.html, last viewed on Apr. 13, 2015, 1 page.* (86). PCT No.: PCT/US2010/035938 Compain et al., Bio. Med. Chem. 9:3077-3092, 2001.* Lee et al., J. Biol. Chem. 277:49341-49351, 2002.* S371 (c)(1), Donovan R S et al., “A Solid-phase glycosyltransferase assay for (2), (4) Date: Nov.
    [Show full text]
  • The Potential Druggability of Chemosensory G Protein-Coupled Receptors
    International Journal of Molecular Sciences Review Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors Antonella Di Pizio * , Maik Behrens and Dietmar Krautwurst Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; [email protected] (M.B.); [email protected] (D.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2904; Fax: +49-8161-71-2970 Received: 13 February 2019; Accepted: 12 March 2019; Published: 20 March 2019 Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules. Keywords: smell; taste; flavour molecules; drugs; chemosensory receptors; ecnomotopic expression 1. Introduction Thirty-five percent of approved drugs act by modulating G protein-coupled receptors (GPCRs) [1,2]. GPCRs, also named 7-transmembrane (7TM) receptors, based on their canonical structure, are the largest family of membrane receptors in the human genome.
    [Show full text]
  • Structural Basis of Membrane Trafficking by Rab Family Small G Protein
    Int. J. Mol. Sci. 2013, 14, 8912-8923; doi:10.3390/ijms14058912 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Structural Basis of Membrane Trafficking by Rab Family Small G Protein Hyun Ho Park School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan 712-749, Korea; E-Mail: [email protected]; Tel.: +82-53-810-3045; Fax: +82-53-810-4769 Received: 1 March 2013; in revised form: 1 April 2013 / Accepted: 10 April 2013 / Published: 25 April 2013 Abstract: The Ras-superfamily of small G proteins is a family of GTP hydrolases that is regulated by GTP/GDP binding states. One member of the Ras-superfamily, Rab, is involved in the regulation of vesicle trafficking, which is critical to endocytosis, biosynthesis, secretion, cell differentiation and cell growth. The active form of the Rab proteins, which contains GTP, can recruit specific binding partners, such as sorting adaptors, tethering factors, kinases, phosphatases and motor proteins, thereby influencing vesicle formation, transport, and tethering. Many Rab proteins share the same interacting partners and perform unique roles in specific locations. Because functional loss of the Rab pathways has been implicated in a variety of diseases, the Rab GTPase family has been extensively investigated. In this review, we summarize Rab GTPase- mediated membrane trafficking while focusing on the structures of Rab protein and Rab-effector complexes. This review provides detailed information that helps explain how the Rab GTPase family is involved in membrane trafficking. Keywords: membrane trafficking; ras-superfamily; small G protein; rab GTPase; protein structure 1.
    [Show full text]
  • Interaction of a G Protein with an Activated Receptor Opens the Interdomain Interface in the Alpha Subunit
    Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit Ned Van Epsa,1, Anita M. Preiningerb,1, Nathan Alexanderc,1, Ali I. Kayab, Scott Meierb, Jens Meilerc,2, Heidi E. Hammb,2, and Wayne L. Hubbella,2 aJules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-7008; bDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and cDepartment of Chemistry, Vanderbilt University, Nashville, TN 37232-6600 Contributed by Wayne L. Hubbell, April 14, 2011 (sent for review March 12, 2011) In G-protein signaling, an activated receptor catalyzes GDP/GTP exchange on the Gα subunit of a heterotrimeric G protein. In an initial step, receptor interaction with Gα acts to allosterically trigger GDP release from a binding site located between the nucleotide binding domain and a helical domain, but the molecular mechan- ism is unknown. In this study, site-directed spin labeling and double electron–electron resonance spectroscopy are employed to reveal a large-scale separation of the domains that provides a direct pathway for nucleotide escape. Cross-linking studies show that the domain separation is required for receptor enhancement of nucleotide exchange rates. The interdomain opening is coupled to receptor binding via the C-terminal helix of Gα, the extension of which is a high-affinity receptor binding element. signal transduction ∣ structural polymorphism he α-subunit (Gα) of heterotrimeric G proteins (Gαβγ) med- Tiates signal transduction in a variety of cell signaling pathways Fig. 1. Receptor activation of G proteins leads to a separation between (1).
    [Show full text]
  • How Activated Receptors Couple to G Proteins
    Commentary How activated receptors couple to G proteins Heidi E. Hamm* Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600 protein-coupled receptors (GPCRs) vide several new approaches to these ques- Gare involved in the control of every tions and important new information aspect of our behavior and physiology. about the active conformation of rhodop- This is the largest class of receptors, with sin and how it contacts the G protein several hundred GPCRs identified thus (13–15, 35). far. Examples are receptors for hormones Rhodopsin signal transduction in rods such as calcitonin and luteinizing hor- and cones underlies our ability to see both mone or neurotransmitters such as sero- in dim light (rod vision) and in color (cone tonin and dopamine. G protein-coupled vision). Different rhodopsins absorb light receptors can be involved in pathological maximally at different light wavelengths, processes as well and are linked to numer- and on activation they activate rod or cone ous diseases, including cardiovascular and transducins. Transducins activate rod and mental disorders, retinal degeneration, cone cGMP phosphodiesterases, causing cancer, and AIDS. More than half of all rapid light-activated cGMP breakdown, drugs target GPCRs and either activate or resultant closure of cGMP-sensitive chan- inactivate them. Binding of specific li- nels, and photoreceptor cell hyperpolar- gands, such as hormones, neurotransmit- ization and inhibition of photoreceptor ters, chemokines, lipids, and glycopro- neurotransmitter release. The study of teins, activates GPCRs by inducing or visual signal transduction has provided stabilizing a new conformation in the recep- many firsts. The major breakthroughs in tor (1, 2).
    [Show full text]
  • Dominant Negative G Proteins Enhance Formation and Purification
    This article is made available for a limited time sponsored by ACS under the ACS Free to Read License, which permits copying and redistribution of the article for non-commercial scholarly purposes. Letter Cite This: ACS Pharmacol. Transl. Sci. 2018, 1, 12−20 pubs.acs.org/ptsci Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR‑G Protein Complexes for Structure Determination † # † # † # † † Yi-Lynn Liang, , Peishen Zhao, , Christopher Draper-Joyce, , Jo-Anne Baltos, Alisa Glukhova, † † † † ‡ † ‡ Tin T. Truong, Lauren T. May, Arthur Christopoulos, Denise Wootten,*, , Patrick M. Sexton,*, , † and Sebastian G. B. Furness*, † Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Australia ‡ School of Pharmacy, Fudan University, Shanghai 201203, China ABSTRACT: Advances in structural biology have yielded exponential growth in G protein-coupled receptor (GPCR) structure solution. Nonetheless, the instability of fully active GPCR complexes with cognate heterotrimeric G proteins has made them elusive. Existing structures have been limited to nanobody-stabilized GPCR:Gs complexes. Here we present methods for enhanced GPCR:G protein complex stabilization via engineering G proteins with reduced nucleotide affinity, limiting Gα:Gβγ dissociation. We illustrate the application of dominant negative G proteins of Gαs and Gαi2 to the purification of stable complexes where this was not possible with wild-type G protein. Active state complexes of adenosine:A1 receptor:Gαi2βγ and calcitonin gene-related peptide (CGRP):CLR:RAMP1:Gαsβγ:Nb35 were purified to homogeneity and were stable in negative stain electron microscopy. These were suitable for structure determination by cryo-electron microscopy at 3.6 and 3.3 Å resolution, respectively.
    [Show full text]