微生物学通报 专论与综述 the Taxonomy of the Genus Clostridium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Bloat in Young Calves
CALF REARING < FOCUS I ECG OF THE MONTH Bloat in young calves Cases of bloat in calves, including a condition found in both dairy and beef herds, have increased in recent years in both the UK and Ireland and around the world. Dr Jessica Cooke BSc PhD, Volac, Hertfordshire, UK, discusses how bloat can affect the abomasum WHAT IS ABOMASAL BLOAT? considerable time. The osmolality of whole milk has been Abomasal bloat is caused primarily by the excess shown to increase from 265-533mOsm/L, with increasing fermentation of high-energy, gastrointestinal contents in total solids from 13.5-20.4%, respectively; but this increase the abomasum (from milk, milk replacer, or high-energy up to 500mOsm/L, did not affect the passage rate, nutrient oral electrolyte solution), along with the presence of digestibility or faecal score (Azevedo et al, 2016). Reference fermentative enzymes (produced by bacteria), resulting in values for osmolality are not well established, but it has the production of an excess quantity of gas, which cannot been recommended that fluids with an osmolality of more be evacuated from the abomasum (Burgstaller et al, than 600mOsm/L should be offered with caution, and 2017). This process is exacerbated by anything that slows they should never be provided when water is not available down the rate of abomasal emptying, since it will give the (McGuirk 2003). The osmolality of some milk replacers bacteria already present in the stomach additional time mixed at 13% (150g powder plus 1L of water) has recently for fermentation of carbohydrates. The exact aetiology been estimated at around 310-330mOsm/L (Wittek et al, is unknown but it involves both bacteria that produce a 2016). -
Effects of Obesity, Energy Restriction and Neutering on the Faecal Microbiota of Cats
Downloaded from British Journal of Nutrition (2017), 118, 513–524 doi:10.1017/S0007114517002379 © The Authors 2017 https://www.cambridge.org/core Effects of obesity, energy restriction and neutering on the faecal microbiota of cats Manuela M. Fischer1*, Alexandre M. Kessler2, Dorothy A. Kieffer3, Trina A. Knotts3, Kyoungmi Kim4, . IP address: Alfreda Wei3, Jon J. Ramsey3 and Andrea J. Fascetti3 1Department of Veterinary Medicine, Centro Universitário Ritter dos Reis – UniRitter, Porto Alegre, RS 91240-261, Brazil 170.106.202.126 2Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil 3Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA 4Department of Public Health Sciences, School of Medicine, Division of Biostatistics, University of California, Davis, CA 95616, USA (Submitted 16 September 2016 – Final revision received 17 July 2017 – Accepted 9 August 2017 – First published online 29 September 2017) , on 02 Oct 2021 at 04:20:02 Abstract Surveys report that 25–57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction , subject to the Cambridge Core terms of use, available at and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. -
Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV. -
Supplemental Table 1: Taxa by Symptom Taxonomy Browser Https
Supplemental table 1: Taxa by Symptom Taxonomy Browser https://www.ncbi.nlm.nih.gov/taxonomy ↑= Enriched (X) = study number ↓= Decreased Taxa reference Phylum Class Order Family Genus Species Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium Bifidobacterium infantis Actinomyces Coriobacteriia Coriobacteriales Coriobacteriaceae Eggerthella Eggerthella lenta Bacteriodetes Bacteriodia Bacteriodales Bacteroidaceae Bacteroides Bacteroides fragilis Muribaculaceae Prevotellaceae Prevotella Rikenellaceae Acetobacteroides Alistipes Rikenella Tannerellaceae Parabacteroides Porphyromonadaceae Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Enterococcaceae Enterococcus Dehalobacterium Streptococcaceae Streptococcus Streptococcus anginosus Lactococcus Clostridia Clostridiales Clostridiaceae Clostridium Clostridium histolyticum Hungatella Peptostreptococcaceae Intestinibacter Terrisporobacter Lachnospiraceae Anaerostipes Coprococcus Dorea Lachnospira Roseburia Lachnoclostridium Taxa reference Phylum Class Order Family Genus Species Tyzzerella Oscillospiraceae Oscillibacter Ruminococcaceae Faecalibacterium Ruminococcus Caproiciproducens Oscillospira Anaerotruncus Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemania Coprobacillus Negativicutes Acidaminococcales Acidaminococcaceae Vellionellales Vellonellaceae Veillonella Dialister Tissierellia Tissierellales Peptoniphilaceae Anaerococcus Proteobacteria Betaproteobacteria Betaproteobacteriales Burkholderiales Burkholderiaceae Sutterellaceae -
The Gastrointestinal Tract Microbiota of Northern White-Cheeked Gibbons
www.nature.com/scientificreports OPEN The gastrointestinal tract microbiota of northern white- cheeked gibbons (Nomascus Received: 28 November 2016 Accepted: 30 January 2018 leucogenys) varies with age and Published: xx xx xxxx captive condition Ting Jia1, Sufen Zhao1, Katrina Knott2, Xiaoguang Li1, Yan Liu1, Ying Li1, Yuefei Chen3, Minghai Yang1, Yanping Lu1, Junyi Wu3 & Chenglin Zhang1 Nutrition and health of northern white-cheeked gibbons (Nomascus leucogenys) are considered to be primarily infuenced by the diversity of their gastrointestinal tract (GIT) microbiota. However, the precise composition, structure, and role of the gibbon GIT microbiota remain unclear. Microbial communities from the GITs of gibbons from Nanning (NN, n = 36) and Beijing (BJ, n = 20) Zoos were examined through 16S rRNA sequencing. Gibbon’s GITs microbiomes contained bacteria from 30 phyla, dominated by human-associated microbial signatures: Firmicutes, Bacteroidetes, and Proteobacteria. Microbial species richness was markedly diferent between adult gibbons (>8 years) under distinct captive conditions. The relative abundance of 14 phyla varied signifcantly in samples of adults in BJ versus NN. Among the age groups examined in NN, microbiota of adult gibbons had greater species variation and richer community diversity than microbiota of nursing young (<6 months) and juveniles (2–5 years). Age-dependent increases in the relative abundances of Firmicutes and Fibrobacteres were detected, along with simultaneous increases in dietary fber intake. A few diferences were detected between sex cohorts in NN, suggesting a very weak correlation between sex and GIT microbiota. This study is the frst to taxonomically identify gibbon’s GITs microbiota confrming that microbiota composition varies with age and captive condition. -
Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults
molecules Article Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults Natalia González-Zancada, Noemí Redondo-Useros, Ligia E. Díaz, Sonia Gómez-Martínez , Ascensión Marcos and Esther Nova * Immunonutrition Group, Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais, 28040 Madrid, Spain; [email protected] (N.G.-Z.); [email protected] (N.R.-U.); [email protected] (L.E.D.); [email protected] (S.G.-M.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +34-915492300 Received: 30 September 2020; Accepted: 15 October 2020; Published: 17 October 2020 Abstract: Fermented alcoholic drinks’ contribution to the gut microbiota composition is mostly unknown. However, intestinal microorganisms can use compounds present in beer. This work explored the associations between moderate consumption of beer, microbiota composition, and short chain fatty acid (SCFA) profile. Seventy eight subjects were selected from a 261 healthy adult cohort on the basis of their alcohol consumption pattern. Two groups were compared: (1) abstainers or occasional consumption (ABS) (n = 44; <1.5 alcohol g/day), and (2) beer consumption 70% of total ≥ alcohol (BEER) (n = 34; 200 to 600 mL 5% vol. beer/day; <15 mL 13% vol. wine/day; <15 mL 40% vol. spirits/day). Gut microbiota composition (16S rRNA gene sequencing) and SCFA concentration were analyzed in fecal samples. No differences were found in α and β diversity between groups. The relative abundance of gut bacteria showed that Clostridiaceae was lower (p = 0.009), while Blautia and Pseudobutyrivibrio were higher (p = 0.044 and p = 0.037, respectively) in BEER versus ABS. -
Inhibition of Zinc-Dependent Peptidases by Maillard Reaction Products
Inhibition of zinc-dependent peptidases by Maillard reaction products DISSERTATION zur Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Leticia Missagia de Marco geboren am 23. März 1978 in Belo Horizonte, Brasilien Eingereicht am: 09.10.2014 Verteidigt am: 09.03.2015 Die Dissertation wurde in der Zeit von April 2005 bis Dezember 2011 an der Professur für Lebensmittelchemie angefertigt. List of Contents List of Contents LIST OF CONTENTS .............................................................................................................. I LIST OF TABLES ................................................................................................................. IV LIST OF FIGURES ................................................................................................................. V LIST OF ABBREVIATIONS .............................................................................................. VII 1 INTRODUCTION ............................................................................................................ 1 2 BACKGROUND ............................................................................................................... 3 2.1 Maillard reaction in food ................................................................................................. 3 2.1.1 Melanoidins ................................................................................................................... -
Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park
Microb Ecol DOI 10.1007/s00248-014-0500-8 ENVIRONMENTAL MICROBIOLOGY Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park Tatiana A. Vishnivetskaya & Scott D. Hamilton-Brehm & Mircea Podar & Jennifer J. Mosher & Anthony V. Palumbo & Tommy J. Phelps & Martin Keller & James G. Elkins Received: 12 May 2014 /Accepted: 16 September 2014 # Springer Science+Business Media New York (outside the USA) 2014 Abstract The conversion of lignocellulosic biomass into (OBP), was examined for potential biomass-active microorgan- biofuels can potentially be improved by employing robust mi- isms using cultivation-independent and enrichment techniques. croorganisms and enzymes that efficiently deconstruct plant Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered polysaccharides at elevated temperatures. Many of the geother- 16S rRNA gene pyrosequences revealed that archaeal diversity mal features of Yellowstone National Park (YNP) are surrounded in the main pool was higher than bacterial; however, in the by vegetation providing a source of allochthonic material to vegetated area, overall bacterial diversity was significantly support heterotrophic microbial communities adapted to utilize higher. Of notable interest was a flooded depression adjacent to plant biomass as a primary carbon and energy source. In this OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush study, a well-known hot spring environment, Obsidian Pool commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the The submitted manuscript has been authored by a contractor of the U.S. plants was enriched in members of the Firmicutes including Government under contract DE-AC05-00OR22725. Accordingly, the potentially (hemi)cellulolytic bacteria from the genera U.S. -
Clostridium Sordelli As a Cause of Gas Gangrene in a Trauma Patient Vijeta Bajpai, Aishwarya Govindaswamy, Sonu Kumari Agrawal1, Rajesh Malhotra2, Purva Mathur
Published online: 2020-04-06 Case Report Access this article online Quick Response Code: Clostridium sordelli as a cause of gas gangrene in a trauma patient Vijeta Bajpai, Aishwarya Govindaswamy, Sonu Kumari Agrawal1, Rajesh Malhotra2, Purva Mathur Website: www.jlponline.org Abstract: DOI: Gas gangrene is a necrotic infection of the skin and soft tissue that is associated with high mortality 10.4103/JLP.JLP_108_18 and often necessitating amputation to control the infection. Clostridial myonecrosis is most often cause of gas gangrene and usually present in settings of trauma, surgery, malignancy, and other underlying immunocompromised conditions. The most common causative organism of clostridial myonecrosis is Clostridium perfringens followed by Clostridium septicum. Here, we are reporting an unusual case report of posttraumatic gas gangrene caused by Clostridium sordelli. Key words: Clostridium sordelli, matrix‑assisted laser desorption/Ionization‑time‑of‑flight, myonecrosis, trauma Introduction Case Report lostridium sordellii is an anaerobic A 32‑year‑old male patient presented to the CGram‑positive bacillus with subterminal emergency department of trauma center spores and peritrichous flagella. It is with a fracture of the right sacroiliac joint commonly not only found in the soil and along with open wound of right tibial sewage but also as part of the normal fracture. Elective surgery was performed flora of the gastrointestinal tract and for sacroiliac disruption and pubic vagina of a small percentage of healthy diastasis. Three days after surgery, the individuals.[1] Although most strains patient developed toxic symptoms such of C. sordellii are nonpathogenic, some as high‑grade fever (102°F), tachycardia, virulent, toxin‑producing strains cause and hypotension. -
Microbiology of Lonar Lake and Other Soda Lakes
The ISME Journal (2013) 7, 468–476 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej MINI REVIEW Microbiology of Lonar Lake and other soda lakes Chakkiath Paul Antony1, Deepak Kumaresan2, Sindy Hunger3, Harold L Drake3, J Colin Murrell4 and Yogesh S Shouche1 1Microbial Culture Collection, National Centre for Cell Science, Pune, India; 2CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia; 3Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany and 4School of Environmental Sciences, University of East Anglia, Norwich, UK Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalk- aliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. -
Temporal Dynamics of the Very Premature Infant Gut Dominant
Aujoulat et al. BMC Microbiology (2014) 14:325 DOI 10.1186/s12866-014-0325-0 RESEARCH ARTICLE Open Access Temporal dynamics of the very premature infant gut dominant microbiota Fabien Aujoulat1†, Laurent Roudière2†, Jean-Charles Picaud3, Aurélien Jacquot5, Anne Filleron1,4, Dorine Neveu6, Thierry-Pascal Baum6, Hélène Marchandin1,7 and Estelle Jumas-Bilak1,8* Abstract Background: The very-preterm infant gut microbiota is increasingly explored due to its probable role in the development of life threatening diseases. Results of high-throughput studies validate and renew the interest in approaches with lower resolution such as PCR-Temporal Temperature Gel Electrophoresis (TTGE) for the follow-up of dominant microbiota dynamics. We report here an extensive longitudinal study of gut colonization in very preterm infants. We explored by 16S rDNA-based PCR-TTGE a total of 354 stool specimens sampled during routine monitoring from the 1st to the 8th week of life in 30 very pre-term infants born before 30 weeks of gestational age. Results: Combining comparison with a diversity ladder and sequencing allowed affiliation of 50 Species-Level Operational Taxonomic Units (SLOTUs) as well as semi-quantitative estimation of Operational Taxonomic Units (OTUs). Coagulase-negative staphylococci, mainly the Staphylococcus epidermidis, was found in all the infants during the study period and was the most represented (75.7% of the SLOTUs) from the first days of life. Enterococci, present in 60% of the infants were early, highly represented and persistent colonizers of the premature gut. Later Enterobacteriaceae and the genus Clostridium appeared and were found in 10 (33%) and 21 infants (70%), respectively.