Equivalence of Deterministic Top-Down Tree-to-String Transducers is Decidable Helmut Seidl Sebastian Maneth Gregor Kemper Fakultat¨ fur¨ Informatik School of Informatics Fakultat¨ fur¨ Mathematik TU Munchen¨ University of Edinburgh TU Munchen¨ Garching, Germany Edinburgh, UK Garching, Germany Email:
[email protected] Email:
[email protected] Email:
[email protected] Abstract We show that equivalence of deterministic top-down tree-to-string transducers is decidable, thus solving a long standing open problem in formal language theory. We also present efficient algorithms for subclasses: polynomial time for total transducers with unary output alphabet (over a given top-down regular domain language), and co- randomized polynomial time for linear transducers; these results are obtained using techniques from multi-linear algebra. For our main result, we prove that equivalence can be certified by means of inductive invariants using polynomial ideals. This allows us to construct two semi-algorithms, one searching for a proof of equivalence, one for a witness of non-equivalence. Furthermore, we extend our result to deterministic top-down tree-to-string transducers which produce output not in a free monoid but in a free group. I. INTRODUCTION Transformations of structured data are at the heart of functional programming [1], [2], [3], [4], [5] and also application areas such as compiling [6], document processing [7], [8], [9], [10], [11], [12], [13], automatic translation of natural languages [14], [15], [16], [17] or even cryptographic protocols [18]. The most fundamental model of such transformations is given by (finite-state tree) transducers [19], [6]. Transducers traverse the input by means of finitely many mutually recursive functions — corresponding to finitely many states.