DETERMINATION OF CHANNEL CAPACITY OF THE

DOWNSTREAM FROM SAN JOAQUIN AND SACRAMENTO COUNTIES

Prepared in cooperation with The Reclamation Board State of California

OPEN-FILE REPORT

-----UNITED STATES DEPARTMENT OF THE INTER t·O-R·----­ GEOLOGICAL SURVEY "------WATER RESOURCES DIVISION ______.

MENLO PARK, CAll FOHN I A 1972 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY W.ater Resources Division

DETERMINATION OF CHANNEL CAPACITY OF THE MOKELUMNE RIVER

DOWNSTREAM FROM CAMANCHE DAM, SAN JOAQUIN AND

SACRAMENTO COUNTIES, CALIFORNIA

By

R. G. Simpson

Prepared in cooperation with The Reclamation Board State of California

OPEN-FILE REPORT

1.1") 0 I 00 N ..;:t \.0 Menlo Park, California August 9, 1972 CONTENTS

Page Summary and conclusions------1 Introduction------2 Purpose and scope------­ 2 Description of the study reach------­ 4 Characteristics of floodflow in the study reach------5 Computation of water-surface profiles------8 Theory------8 Collection of field data------­ 10 Field surveys------­ 10 Roughness coefficients------­ 10 Stage-discharge relations------10 Results of the study------­ 11 Selected references------14

ILLUSTRATIONS

Page Figure 1. Index map of study area------3

TABLES

Page Table 1. Maximum annual peak stages and discharges of the Mokelumne River below Camanche Dam, California----- 6 2. Maximum annual peak stages and discharges of the Mokelumne River at Woodbridge, California------7 3. Comparison of measured and computed stage-discharge r elations------12 4 . Lateral boundaries for cross sections 1-122 on the Mokelumne River------13

III IV CONTENTS

APPENDIXES

Page A. Strip maps and profiles showing location of cross sections and areas of inundation------17 B. Elevation of water surface at cross sections 1-122 for minimum measured backwater conditions------38 C. Elevation of water surface at cross sections 1-35, for maximum measured backwater conditions measured at cross section 1------40 D. Elevations of ground and top of levees------41 E. Mean velocity at cross sections 1-122 for minimum measured backwater conditions------43 F. Mean velocity at cross sections 1-35, for maximum measured backwater conditions measured at cross section 1------44 G. Cross sections l-122------45 DETERMINATION OF CHANNEL CAPACITY OF THE MOKELUMNE RIVER DOWNSTREAM FROM

CAMANCHE DAM, SAN JOAQUIN AND SACRAMENTO COUNTIES, CALIFORNIA

By R. G. Simpson

SUMMARY AND CONCLUSIONS

This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam.

Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates.

The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970.

1. High tides in San Francisco Bav and, to a ~reater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foo t at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1 . 5 miles downstream from the Peltier Road bridge.

1 2 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19.

3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67.5. An increase in flow from 5,000 to 6,000 cfs will cause flooding between cross sections 43 and 47, 52 and 56, and 73 and 85.

4. A discharge of 5,000 cfs will pass through all bridge openings in the study reach except that of the Western Pacific Railroad Co. bridge at cross section 4. If large amounts of debris lodge on the railroad bridge when backwater from the Cosumnes River occurs, the debris could cause higher stages and flooding along the right bank between cross sections 5 and 12 .

INTRODUCTION

Purpose and Scope

At the request of The Reclamation Board, State of California, the U.S. Geological Survey made a study in 1970-71 of the channel capacity of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, Calif . (fig . 1).

The study was made to determine the water-surface profiles that would result from flood releases between 2,000 and 6,000 cfs from Camanche Reservoir (completed in 1963). Accuracy of the computations was determined by comparing the surveyed high-water profile for the floods of January 1969 and January 1970--about 5,000 cfs--with the computed profile for 5,000 cfs, and by comparing computed stages with measured stages at the gaging stations in the study reach .

The study included the survey of cross sections at selected locations, determination of longitudinal profiles, and identification of areas subject to inundation.

Suggestions and recommendations concerning the structural adequacy of levees or the advisability of channel improvements are beyond the scope of this study . INTRODUCTION 3

Ba e fr om U . S . G e olo~ i c a l Su rvey t o p o ~:: r a p h i c map o f R lif o r ni<~ , . o rt h hA lf, 1968, 1 : 500 ,000 10 15 1I LE.S

Contour 1nte r va l 5 00 f e t IJ tt ed l1 n e r e pr est>n ts t he 1 00- foo t on t o u r t um is rn c- ;Jn . 1' ;.1 l e v 1

f iG RE 1 . ··Stud y area 4 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

This report was prepared by the U.S. Geological Survey, Water Resources Division, in cooperation with The Reclamation Board, State of California. The work was done under the general supervision of R. Stanley Lord and Lee R. Peterson, successive district chiefs in charge of water-resources investiga­ tions in California, and under the immediate supervision of Willard W. Dean, chief of the Sacramento subdistrict office. Most of the illustrations were prepared by F. A. Shelton. The cooperation of the California Department of Water Resources, and the East Bay Municipal Utilities District in furnishing supplementary streamflow data is acknowledged.

Description of the Study Reach

The Mokelumne River originates in the at elevations between 8,000 and 9,000 feet and flows westward into the Central Valley to its con­ fluence with the . The average channel slope in the study reach is 2.7 feet per mile between Camanche Dam and cross section 100, and 1.7 feet per mile from cross section 100 downstream to Thornton.

The Cosumnes River enters the Mokelumne River on the right (north) bank between cross sections 1 and 2. Here, flood stages are largely dependent on flows in the Cosumnes River which is not regulated.

Upstream from the mouth of the Cosumnes River, the Mokelumne River is confined by an extensive levee system to a channel that is generally less th·an 300 feet wide. The left-bank levee between cross sections 5 and 24 is about 6 feet higher than the right-bank levee. The levees are composed of material that will permit seepage and are subject to scour. Upstream from cross section 24, the river is leveed on both banks to cross section 30 near Tracy Lake. Above Tracy Lake, the left-bank levee is generally continuous past Woodbridge to section 100 northeast of Lockeford. The right-bank levee is not continuous; most of the overflow areas are limited by the elevation of the natural ground surface.

During low flows Dry Creek enters the Mokelumne River from the north, downstream from cross section 15, through two culverts under the right-bank levee. Floodflows are diverted to the Cosumnes River via Grizzley Slough, and for this study, Dry Creek is considered to be a tributary of the Cosumnes River. Dry Creek floodflows inundate the flood plain on the right bank of the Mokelumne River between cross sections 15 and 18 (shown in app. A as subject to flooding by Dry Creek). The Mokelumne River contributes to this i nundation only during periods of maximum backwater effect at the mouth of the Cosumnes River. INTRODUCTION 5

Woodbridge Reservoir, which includes Lodi Lake Municipal Park, occupies the channel between Woodbridge and Lodi. This reservoir has no significant effect on floodflows. Upstream from Lodi, some waste treat­ ment ponds are in the flood plain between cross sections 56 and 67.5. Several gravel plants are on the flood plain between cross sections 102 and 120; gravel mining has left pits that serve as holding ponds in this reach.

Characteristics of Floodflow in the Study Reach

Flows in the Mokelumne River have not exceeded the design release of 5,000 cfs since the completion of Camanche Dam in December 1963. During the floods of January 1969 and January 1970, the peak flow decreased from about 5,000 cfs at the gaging station below Camanche Dam to 4,700 cfs at the station at Woodbridge.

Peak discharges in excess of 3,000 cfs have not been measured down­ stream from the Woodbridge gage (cross section 51), and therefore varia­ tions in floodflow in the downstream part of the study reach are of unknown magnitude.

Annual peak elevations and discharges at the gaging stations on the Mokelumne River below Camanche Dam and at Woodbridge are given in tables 1 and 2 for water years 1905-70. 0"

Table 1.--Maximum annual peak stages and discharges of the Mokelumne River below Camanche Dam ~ California

Water Stage, in feet, Discharge Water Stage, in feet, Discharge year above mean sea level (cfs) year above mean sea level (cfs) a1905-25 3-19-07 90.8 25 , 500 c1959 2-18-59 71.52 1 , 160 b1926 4-30-26 76.14 3,740 c1960 6- 6-60 72.37 1,550 b1927 5-17-27 81.08 7,870 c1961 6-28-61 70.32 641 b1928 3-25-28 89.25 25 , 600 d1962 6-12-62 90.73 3 , 100 t'%:1~ b1929 6-16-29 78.49 6,220 6-13-62 ~ b1930 5-21-30 76.15 4,060 d1963 2- 2-63 93.58 5.920 (") c1931-40 3-31-40 79.93 6,760 d1964 1-31-64 88.18 822 ~ 77.71 > c1941 5-15-41 5 , 140 d1965 12-31-64 90.56 2,900 (") c1942 1-27-42 80.35 7 , 440 d1966 10- 7-65 89.62 2 , 120 H c1943 3-10-43 82.03 9,360 d1967 5-24-6t c1944 2-29-44 73.23 1 , 990 5-25-67 90.53 3 , 140 ~ c1945 2- 2-45 79.44 5,930 5-26-67 ~ c1946-50 6-12-43 77.28 4,240 d1968 10-10-67 0 6- 1-50 78.38 4 , 500 10-11-67 ~ c1951 11-21-50 90.21 28 , 800 10-12-67 ~ c1952 6- 8-52 78.76 4,770 10-13-67 89.01 1 , 580 c1953 6-22-53 75.94 3 , 630 10-14-67 ~ c 1954 5-22-54 73.48 2 , 000 10-16-67 t'%:1 10-17-67 ::0 c1955 12- 9-54 72.86 1,810 10-19-67 H c 1956 12-24-55 90.66 27,300 <: c1957 6- 3-57 78.56 5 , 120 d1969 1-28-69 92.72 4 , 940 t'%:1 c1958 4- 3-58 81.69 8,220 d1970 1-24-70 92.67 5,130 ,.::0

(") a. 1905-25, nonrecording gage s 3.6 miles downstream at Old Clements bridge (cross s ection 108). b. 1926-30, recording gage 75 feet upstream from Old Clements bridge. ~ H c. 1931-61, recording gage 1,100 f e et upstre am from Old Clements bridge (cross section 109). l"%j d. 1962-70, recording gage 1 mile below Cam a nche Dam (cross section 122). 0 ~ H > Table 2.--Maximum annual peak stages and discharges of the Mokelumne River at Woodbridge _, California

Water Stage, in feet, Discharge Water Stage, in feet , Discharge year above mean sea level (cfs) --year above mean sea level (cfs) al926 5- 1-26 33.62 3,200 c1955 11-16-54 27.92 1' 940 a1927 5-18-27 39.8 5,470 c1956 12-24-55 43.29 23,000 al928 3-26-28 44.87 24 '000 c1957 6- 4-57 33.88 4 ,350 b1929 6-18-29 34.13 3,290 c 1958 4- 3-58 3 7.19 4,960 b1930 5-22-30 31 . 92 2 ) 710 c 1959 12-31-58 26.43 1 ,580 H ~ c 1931-40 4- 4-40 36.61 5,100 c1960 1- 4-60 26.66 1' 640 c 1941 5-22-41 35.21 4,470 ~ c1961 11-10-60 26 .75 1 ,670 t=' c 1942 1-28-42 36.75 4,950 c 1962 6-13-62 30.95 2,340 c::::: c 1943 3-11-43 37.37 5,190 c1963 2- 4-63 36 . 85 5,340 () c1944 11-22-43 27.21 1,650 c1964 t-3 11-16-63 27.63 1,710 H c1945 2- 6-45 36.64 5 , 140 c 1965 6-25-65 32 . 49 3,300 0 z c 1946-50 6-12-4 8 33.86 4 ,030 cl966 11-12-65 30.45 2,510 6- 3-50 33 . 57 3,780 c1967 5- 3-67 32 . 01 2,970 c1951 11-22-50 43.87 27,000 c1968 10-31-67 29.34 2,170 c1952 6- 6-52 35.70 4,590 d1969 1-31-69 37.01 4,660 c1953 6-23-53 29.73 2 ,440 d1970 1-29-70 36.97 4,720 c1954 5-18-54 26.97 1,460 1-30-70

a. 1926 to July 1928, recording gage about 100 feet downstream from highway bridge . b. July 1928 to March 1931} recording gage 400 feet downstream from highway bridge. c . March 1931 to July 25 , 1968, recording gage on l eft bank about 2,200 feet downstream from highway bridg d. July 25, 1968 to present , recording gage on right bank about 2 , 000 feet downstream from highway bridge (cross section 51).

...... , 8 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

COMPUTATION OF WATER-SURFACE PROFILES

The step-backwater method is used to determine water-surface profiles for given discharges in natural channels. Data necessary for the comput­ ations include the geometry of the stream channel, channel-roughness coefficients, and a measured or theoretical stage-discharge relation at the downstream end of the reach. The water-surface profile corresponding to any discharge may be computed from this information.

Theory

The basic theory for the computation of water-surface elevations, as discussed by Bailey and Ray (1966), is the principle of the conservation of energy between two cross sections of a stream. The equation is expressed as follows:

h + h + h + h = h + h d e u v vd f u where subscripts d and u refer to the downstream and upstream cross sections, respectively; h is elevation of the water surface, in feet, above a datum plane; ~ is velocity head, in feet, at a cross section; hf is the friction loss, in feet, between cross sections; and he is the energy loss , in feet , resulting from deceleration of flow in an expanding subreach between cross sections.

The step-backwater analysis consists of solving the basic equation by trial-and-error computations within specified tolerances. This method is one of several used in the computation of gradually varied flow profiles (Chow, 1959, chap. 10). It is applicable to subcritical or supercritical flow provided that subcritical flow computations progress in the upstream direction and supercritical flow computations progress downstream. All flows in this study were subcritical. The theory underlying the basic equations assumes that uniform-flow formulas are applicable to gradually varied flow conditions. The following condi tions are assumed to be in effect:

1. Flow is steady between cross sections.

2. Slope is small so that depths perpendicular to the water surface can be considered equal to vertical depths .

3. Water-surface elevation is level across a cross section.

4. Effects of sediment and air entrainment are negligible.

5. All energy losses are included in the hf and he terms. COMPUTATION OF WATER-SURFACE PROFILES 9

The individual terms in the basic equation are computed as follows: 21 h = av 2g (1) v where V is average velocity, in feet per second, a is the velocity distribution factor, and g is the acceleration of gravity (32.2 ft/sec2).

(2) where L is the distance, in feet, between cross sections; Q is discharge, in cubic feet per second; and K is the conveyance, at a cross section. The equation to compute K is 213 K 1.486AR n (3) where A is the area, in square feet, of a cross section; R is the hydraulic radius, in feet, of a cross section; and n is the Manning roughness coefficient.

(4) where k = 0 for a contracting subreach between cross sections and k = 0.5 for an expanding subreach and ~h h h v vu vd

This method has two advantages: (1) The maximum possible use of channel geometry is permitted, and (2) knowledge of the water-surface elevation anywhere within the study reach is not a prerequisite. Elevation of the water surface is not required because several water-surface profiles of the -same discharge, starting with different water-surface elevations at the initial section, will tend to converge to a single profile if the reach is of adequate lengt h. Where these profiles converge, the computed elevation will be theoretically correct. Consequently, an approximate stage-discharge relation can be used for the computations at the initial cross section provided that the initial cross section is far enough downstream from the study reach to insure convergence prior t o entering the lower end of the study reach.

The approximate stage-discharge relation at the initial cross section may be developed by the slope-conveyance method for which the Manning equation is written in the form: Q = KS ~ The energy slope, S, is assumed to be parallel to the channel slope and can be measured in the field or interpolated from topographic maps. From the approximate stage-discharge relation thus developed, starting water-surface elevations are selected for the discharges to be routed upstream by the step­ backwater technique. 10 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

Collection of Field Data

Field Surveys

The pertinent geometry of the stream channel was determined by transit­ stadia survey. Vertical control was established at several locations throughout the study reach from U.S. Coast and Geodetic Survey bench marks. All elevations given in this report are referenced to mean sea-level datum (1929 datum, 1960 adjustment). Locations of cross sections were selected and horizontal control established using U.S. Geological Survey topographic maps (7.5-minute series) and aerial photographs of the study reach. In places, cross sections were extended across wide flood plains using data from the topographic maps.

Channel cross sections were surveyed at selected intervals throughout the study reach and related to the longitudinal water-surface profiles. For leveed areas, ground elevations were obtained near the shoreward toe of each levee.

Roughness Coefficients

The channel-roughness coefficient, n, as used in the Manning discharge equation and in backwater computations, is affected primarily b.y the following factors: Bed roughness (bed material compos\tion), channel irregularities and alinement, size and shape of channel, vegetation, obstructions, stage, and suspended material. Roughness coefficients for the flood plain may be different from those for the main channel for natural reasons or because farm­ ing practices have altered vegetation density and ground-surface irregularity in the flood plain. Roughness coefficients for the flood plain and main channel are evaluated independently.

The basic roughness coefficients used in this study were determined in the field. Adjustments were made when necessary, using roughness coefficients determined at selected locations on the basis of the high-water profile and discharge measurements obtained during and after the floods of January 1969 and January 1970 and a water-surface profile surveyed in December 1970.

Stage-Discharge Relations

The starting point for step-backwater computation is a downstream site where water-surface elevations corresponding to selected discharges are known or can be derived. This stage-discharge relation was developed for cross section 1 at Bensons Ferry Bridge by using the stage data for the gaging station on the Mokelumne River at Thornton (operated by California Department of Water Resources) with the discharge record for the Woodbridge gage. Relations were developed for maximum and minimum measured backwater conditions. Maximum water-surface elevations were based on a surveyed high-water mark at RESULTS OF THE STUDY 11 elevation 16.7 ft for the flood of November 1950, and the recorded maximum stage of 15.5 ft for the flood of December 1964.

During the flood of December 1964, releases were not made from Camanche Reservoir until after flood peaks on the Cosumnes River and Dry Creek had receded. With a flow of only 350 cfs at the Woodbridge gage on December 24, the peak stage at t he Thornton gage was 15.5 feet. This peak stage is more than 10 feet above the minimum measured stage for 350 cfs.

The rating for the recording gage on the Mokelumne River at Victor (cross section 80) operated by East Bay Municipal Utility District, was extended from 3,000 cfs to 5,000 cfs using surveyed high-water marks and corresponding discharges determined at the Woodbridge gage (cross section 52). This rating was used as the starting point to compute water-surface elevations upstream to the gage below Camanche Dam (cross section 122).

RESULTS OF THE STUDY

Reduction in channel size causes flood stages to be higher for a particular discharge. The analyses that follow, therefore, are applicable for conditions surveyed in 1970 and are. contingent on there being (1) no levee failures, (2) no additional encroachment in the channel by land reclamation and levee construction, and (3) no additional encroachment by trees and brush.

Water-surface elevations at cross sections 1-122 in the study reach were determined by the step-backwater technique for discharges between 3,000 and 6,000 cfs. Water-surface elevations tabulated in appendix B for cross sections 1-35 are based on minimum observed backwater conditions at cross section 1. Water-surface elevations for maximum observed backwater conditions measured at cross section 1 for flows of 2,000 to 5,000 cfs are tabulated for cross sections 1-35 in appendix C.

For a gi ven discharge, the profile for maximum backwater conditions tends to converge with the profile for minimum backwater conditions in an upstream direction. At cross section 35, the maximum backwater effect is l ess than 0.5 f eet at a discharge of 5,000 cfs.

Left and right-bank profiles that denote effective stages befor e over­ bank flow will occur are shown on profiles (app. A) as bankfull stage. The bankfull stage is the elevation where flow will overtop the levee or natural ground, at each cross section. Levee or natural ground elevations at all of the cross sections in the study reach are listed in appendix D.

Surveyed water-surface elevations for the floods of January 1969 and January 1970 were within ±0.5 feet of the elevations computed using the step-backwater analysis. In addition, computed elevations were compared with measured stage at gaging stations at cross section 24.8 (for minimum backwater conditions), 51, 80, and 122 (table 3). 12 CHANNEL CAPACITY , MOKELUMNE RIVER, CALIFORNIA

Table 3.--Comparison of measured and computed stage- discharge relations

Gaging stat ion

Mokelumne River at Frandy 2 000 13.6 a14.2 (cross section 24. ) 4 000 19. a20 . 2 5,000 22 .0 a22 .2 6 ,000 23.1 a23.9

Moke lumne River at 2,000 29.1 29.4 Wood b ridge (cro 4 ,000 35 . 5 35.3 section 51) 5 000 37 . 5 37. 6 000 3 . 4 39 . 9

Mokelumne River at Vi ctor 2 000 53. 54 .1 (eros ection 80) 4 000 59 . 3 59 .6 5 000 61.2 61.4 6 , 000 62.1 62 .

Mokelumne Riv r below 2 , 000 89 .4 9.4 Camanche Dam (eros 4,000 91 . 4 91.6 section 122) 5,000 92.5 92 .6 6 ,000 93.6 93.4

a . For minimum mea ured ba kwat r onditi n

Computed elevations for discharges greater than 5,000 cfs are for bounded conditions where all flow is assumed to be confined to the main channel. The assumed lateral boundaries for each cross section are given in table 4.

Mean velocities with minimum backwater conditions at cross sections 1-122 for discharges of 1,500, 3,000, and 5,000 cfs are given in appendix E. Mean velocities at cross sections 1-35 for flows with maximum measured backwater conditions are given in appendix F.

Areas subject to inundation by a release of 5,000 cfs are indicated on the maps in appendix A. With channel conditions as determined in 1970, most of the study reach will carry 5,000 cfs within the natural or leveed banks. Overbank flow will occur between cross sections 12 and 19 during periods of maximum backwater. Flooding of industrial waste ponds at cross sections 48-51 and 62-67 will also occur whenever flows reach 5,000 cfs. During the flood of January 1970, levee breaks caused overbank flooding between cross sections 74 and 84. RESULTS OF THE STUDY 13 Table 4.--Lateral boundaries for cross sections 1-122 on the Mokelumne River

Di tance, in feet from initial Cross point on left bank flood plain section number Right boundary

1 0 584 61 416 742 2 123 306 61.1 397 742 3 152 356 62 0 240 4 0 264 63 0 353 5 95 316 64 510 715

6 107 244 65 1 , 146 1 ,326 7 118 259 66 0 450 8 93 286 67 0 451 9 29 169 67.5 479 708 10 62 303 68 97 398

11 48 223 69 0 254 12 0 220 70 0 314 13 46 202 71 0 464 14 78 259 72 753 944 15 63 280 73 429 600

16 103 242 74 750 972 17 43 203 75 262 472 18 44 210 76 145 316 19 66 282 77 1,125 1 ,336 20 369 507 78 1,086 1,274

21 395 567 79 0 401 22 612 824 80 0 279 23 65 224 81 248 379 24 60 200 82 265 444 24 . 5 245 406 83 1 , 271 1,436

24 . 8 73 380 84 55 273 25 104 297 85 44 256 26 36 250 86 91 344 27 490 710 87 46 239 28 77 305 88 45 440 29 527 712 89 76 274 30 392 588 90 57 296 31 71 211 91 0 400 32 54 270 92 0 349 33 84 240 93 70 306

34 400 607 94 424 75 35 71 298 95 61 289 36 51 260 96 113 397 37 101 354 97 98 384 38 494 837 98 151 372

39 183 435 99 55 358 40 98 777 100 84 450 41 68 603 101 53 325 42 0 1 , 079 102 57 385 43 86 278 103 48 22

44 52 261 104 68 307 44.5 342 771 105 60 414 45 52 248 106 130 470 46 50 290 107 0 652 47 91 232 108 0 4 32

4 . 5 220 366 109 0 490 48.7 228 348 110 1 , 261 1,521 49 610 774 111 0 1,734 50 540 740 112 0 474 51 412 572 113 0 499

52 750 962 114 0 403 52.4 673 904 115 748 1 ,086 53 160 461 116 0 466 54 0 217 117 0 541 55 640 808 118 0 478

56 383 614 119 214 532 57 0 500 120 0 342 5 0 408 121 0 873 59 337 602 122 0 714 60 0 303 14 CHA~EL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

SELECTED REFERENCES

Bailey, J. F., and Ray, H. A., 1966, Definition of stage-discharge relation in natural channels by step-backwater analysis : U.S. Geol. Survey Water-Supply Paper 1869-A, 24 p. California Department of Water Resources, published annually, Volume II: Northeastern California: California Dept. Water Resources Bull. 130 (publications of 1964 through 1968). . _____ , published annually, Surface water flow: California Dept. Water Resources Bull. 23 (publications of 1959 through 1965 Chow, V. T., 1959, Open-channel hydraulics: New York, McGraw-Hill Book Co., 680 p. U.S. Army Corps of Engineers , 1964, Camanche Dam and Reservoir, Mokelumne River, California: Reservoir regulation manual for flood control, app. VIII to Master Manual of Reservoir Regulation San Joaquin River Basin, California, 14 p. Young, L. E., and Cruff, R. W., 1967, Magnitude and frequency of floods in the United States: U.S. Geol. Survey Water-Supply Paper 1686, pt. 2, v. 2, 303 p. CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA 15

APPENDIXES 16 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

Composites of the page-size maps and profiles in appendix A are availabl e on three plates on request, at the requester's expense, from the district chief, U.S. Geological Survey, Water Resources Divisi on, 855 Oak Grove Ave., Menlo Park, Calif. 94025.

Each composite is 22~ by 35 inches; plate 1 contains the map and the profile showing the location of cross sections 1 through 43, plate 2 contains the map and the profile showing the location of cross sections 44 through 85, and plate 3 contains the map and the profile showing the location of cross sections 86 through 122.

Bas e fr om . S. G e o l o~; i c a l Su r vE- y topographic map of CAlifor ni a , North half, 1968, 1:500,000

0 1 0 1~ MILES

Contou r i n tE-rval 5 00 feE't Dotted line represent~ t h e 1 00 - foot c o n t o ur Datum is mean s ea l e vE'l APPENDIX A

Strip maps and profiles showing location of cross sections and area of inundation

EXPLANATION OF EXPLANATION OF PROF! LE SYMBOLS MAP SYM BOLS

Dank f ul l stage, r1 Kh t ban k -----<0 Cross section nu mb er and loca tio n

Bankfull stage, l e ft bank ·:·:::~: ~-:::: ·~·~ ;·:: :;~~: :~ ~\ :::.: ...... Loca tio n of river ch an ne l ComputeJ wate r-su r face profile fo r discha r ge of 5,000 cfs wit h max i mum measu r e d backwa ter ,,------) ______., at cross section 1 A~ ca of inundatio11 r; a t 5,000 cfs t-el C o mputed wa ter - su r face profile for d ischarge of 5,000 cfs wi t h min i mum measu r ed bac k water ~ ~ l:%j En~ points of prof i le on strip maps C/)

Thalwe

2 MI L ES 5,000 10,000 FEET

Contour Interval 5 f eet Datum 1s mea n sea revel

Das(· fro m U.S . Gt>ological ~urv1·y topographic quildrongle Ne11. Hop e and prel1minary copies of Lodi :":ort h, Lockeford, Cle ments , and Brucevil l e

1-' ...... s ~ (X)

g H -0 ·-R E § 1 trl ] 8°/5' 1 I ~ ~ ~\ - ( I 1 ~ ·\ . ~ ...... , d'~ I " ·~ ~ () ~ ()> H ~ "' - - · T _:_ \ I _., I ~ • .. ,~ "x ~ ~ ~ . ~- 0 .J \ ~ \- - -+ --. .. ' 1- - tr.l .i\~0 ~ L ·- _1 _ ·~ '- ______J BM 19 ~, :_c

trl~

~ I H _j"I- ·- · ~ ~ \_ I I ~ T. 5 N. ~ trl Ll- -- ~ -d I i\ () ~ H l-%j 0 ~ H > '·. BENSONS FERRY NEW HOPE . BRIDGE WP ROAD I I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30

~- / -· r-~ ~- "-..._ f..',.., / ~--- -- 1.4.1 --- --~ ---- \------20 --- ~ 7 _.... -.... If \ .. ... __.. L..---' ...... ····· - z ...... --...... ····· ~··· ········ ······· .---.---- ~ ----- ~- t-el [7 ~------t%j ---·---· ~--- z 10 J ------t::l z --- H ~ v- t%j 0 (/)

~ S E A l E V E l 0 1.4.1 -

W-1 ..... ~- ~-..Jv ~~ _...... "--._. -10 0 5 ' 1 0 DI STANCE UPSTREA W FROM CROSS SECT I ON I , I N TH OUSAND S OF FEE T

...... \0 20 CHANNEL CAPACITY , MOKELUMNE RIVER, CALIFORNIA

c.c a::

a::

r -

r- ·­ (_ - L- )~

~

:z: 1.0 I- 25 28 27 40 ~------~----~~-

16 17 1B 19 20 21 22 23 24 .,_

t-+ ~--- -t---+---

:z: 20fr-r-i-~~~F*4~±=t ?; .,; sl::rj H :z: 1o I I I I I I I I I I I I I I I I I I ::< l::rj = (/) .,_ l E IV E l ~I/ ~ ~

-10 -:-;------7o------+.------_j______I 5 20 25 30

DISTANCE UPSTREAM FROM CROSS SECTION 1 , IN THOUSANDS OF FEET

N ~ N N

:·J·l:' b u . ..

(') ~ ~ ~

(') ~ (')> H 1--3 ..~ ::s:: 0 i": t%j T.4 N. r--t ~ t%j 'IT :::0 H o/f I o[JT <:: t%j :::0 18. 15 o4/T (') ~ H 1-rj 0 ~ H >

oc2

22

R. 6 E. PELTIER ROAD I 39 40 41 42 :»U

28 29 30 31 32 33 34 35 36 37 38 40 I

~-~~- - ~-- --- ~-- ...... :~ - ~ r:::..,--- ~------I'-, r---/ 30 - - --- !>< ~ ~ v ~ L---'"_ ~----' :.:..• :.:.•.&.& Ll ~ ------~loU:.:.:~ ~-- ---~ !..!.~·:.. -~ ~ .:.~ ~~~·~·..: ·······------i!d t-el :z: t:r::lz 20 t::; H ~ t:r::l C/)

:z:

10 ..... j_ ~ .c ~~ ...... I ...... - v - - ~ , S E A l E V E l 0 " ;~ ~ '\V

-1 0 I 35 40 45 50 55 DISTANCE UPSTREAM FROM CROSS SECTION 1 , IN THOUSANDS OF FEET

N lJ,) N +:-- R. 6 E.

CJ ;J:: z~ ~ Taddei CJ I ~ I > I CJ I H I ~ I 01 :X 0 ~ t%j ) t"-4 T.4 N. 32 ~t%j ::;d H <: t%j ..::;d CJ ~ H t'7j 0 ~ H 5---- >

. ~ . v ,-:... 43 44 44.5 45 46 47 48 48 .5 48.7 49 50 I T I I ------n-1 -r-+-~~- =----<-- ____,_- __ ~ ______'___ ~-' ____ ~ ______l ..... 40 ---~~---~-~------~~ ~ I I " - ~---'" ·- -- - ·-·------~ ------::z: - 30 ______, ~ ~

::z: ~H >< ---1 trl 20 - Cl.l

- J I I 10 - j~ I 7 0 7

I SEA LEVEL 0 - - _j 60 65 DISTANCE UPSTREAI FROI CROSS SECTION 1 , IN THOUSANDS OF FEET

N V1 N R. 6 E. R. 7 E. 0\

"\ .r o-'1/ ~----- \ 260 -- 30 . 30

g

. Road : ~ t%j r-' 9 0 ~ :> 0 WeJ l H .. ~ 6 i": t%j ~"' r-' ~ ~ t%j

T.4 N. :;d H <: t%j T.3 N. :;d '0 .I . - ~ co 0 0 ·~ Well . ~ w H .4 1-rj .4J 0 1-< ~ £ H :> ·:5£

: I ~ ·~..... - •f(.- 1 "f . . ;ampus ~ ...... ,,.. ~ ~· Lodi C 1h Sch Wi ~ : 'b ~ Cern ·- (.) • STATE HIGHWAY 99 SP U.S. HIGHWAY SO I ~ 55 56 57 58 59 60 61 61.1 62 /U LOWER DAM SACRAMENTO ROAD 1 I 50 52.4 53 60 I I ~

U-1 50 - :z: - 40 ~ ~ ~ WOODBRIDGE ~ z RESERVOIR ~ 0 12,350 FEET (/) - 30 -~

_, 20 105

10 ~~ - ·-- 75 95 100

DISTANCE UPSTREAM FROM CROSS SECTION I, IN THOUSANDS OF FEET

N ...... N CX>

R. 6 E.

o'i.:r cj9 Road

.. ···~ c.,.:..'! V"V

. Road· l • !' -

9 0 ::X:: ~ z l:%j Well ~ . ., 0 Clarksdale R.d ~ "t...... ' • ;l> <' ii 0 H ~

::s.:: 0 T.4 N. ~

•. I "0 "1 C1l ·.· ~ 0 ::0 ·0::: H Well . ~ <: l:%j Q) ::0 :> ­ <- 0. 0 ~ H 1-:r:j 0 ~ H ;l>

!" 70 71 72 80

-~~ 70 - I // ---- ~ \ r-. ~/ \ I- ...... l// -- I' /, u..J 60 / -- \ -- ~ ,..,...,...... /, \ (!' -\ \ '-...... IL:./ - 1 ~--~ ~ -- ~-- .. :z:: ~ ·-~ - ---- 1------\\ ~~ - - 50 / ~ ------t::: ;;;:;::--= -- ?ti t-d - .. ---- tx:l :z:: 8 H = :X: tx:l - 40 C/) I-

~ ...... -...... , - ~~ ~----~ _. 30 J --...... - - 120 125

20 110 115 DISTANCE UPSTREAM FROM CROSS SECTION 1, IN THOUS AND S OF FEET

N \0 w 0

R. 7 E. -, I 27 I 26· '11 • 0 ' Ill • a /b' I . (= -- ~ I 0 0 co· • Clt.7t< "'7 11. T : . ,.!>G (.) ::l . ,.---' lXI c ..... 611 Well 9/, d !-7 ._,.. . I ,. .~

\ ~ I ~ Road -:, 8 9" ,· .· ('- c.;L);/£ II'' ~ ~ - () '- 78 ., :;-; r I l.J!o f ·/ 72<: !~, ~ o7¢f hm '-' ! I {,":;'\ ,41 . :~ I :x> J ~~ ~/(@ () H 1-3 .t-<: ~ 0 ~ ~

~trl ::0 H • --'rtt - (!~~ ·rfEM ~; T.4 N. ~ ~fl. ' \1 ) ~ '-'B ( R? l ' irh>.. "' ' · - 0 I <: " trl ::0 " I I./ ' I .. , () ~: l/J[·· ~ \ .R: -· / L _._ ' . , J~ ~ H l-%j 4-.J 0 (.) ::l ~ -o H ~ :x> ~ 7.? ~ ~ 1:::::] ._, 7 - . .• * '! . " ""?J<''f'-:\, . z ------:;lJ::: I • J7• 7''·:- l , \ "i ~d -· ~ r=\l-, ;-: ~- , • • "7--o> -o . I tJI~ I ~ ·o (;'17, Well co . ?J - 1~ ~ ~- I 714),·/ , Well '1 ___ ~ _I __A_gu~d~c_! ------<-. .:..~ - 78 79 80 81 82 83 84 85 90

80 .....

~

70 u...

:z::

60 :z:: ~ '"'d ~ st'%j ..... H ~ t'%j 50 (/) -,...

~ .....

~ 40

30 t 30 135 140 145 OISTANCE UPSTREAM FROM CROSS SECTION 1, IN THOUSANDS OF FEET

w 1-' w N

R. 8 E. I ')

.,..,

(') "U ~~~~- =- ~ (1), 0 ~ i t:r:l ~

(') ~ ::x> (') H .~ ~ 0 ~ \ ~ ~ 29 ~t:r:l - :;d H < t:r:l :;d Well 'JI . \ (') ~ '\ H RQad . 8 l-1j 0 " ~ H ::x>

r-

(" / P)IO ' 30 F.L LI OTT ROAD I 86 87 BB 89 90 91 92 93 94 95 96 97 90------~--~~------~~------~--~~~~------~~----~------~----~~------~--

80~----~--~-+----~~~~~--~~~~--~~~----~~-----+------+----~~------+---

I'-

LL 70 :k::: I I / ...... < I "dif I I I "t" I I I I I .... z ~ '"d tzj 2'.: - 60------~--~~------+------~----4----+~------~~----4------~-----++------+-- t:! z H ~ = en

I'-

- 50------~---+-+------4------4~--~----~------~~----~------r----~~--~------.....,

40 155 160 165 DISTANCE UPSTREAM FROM CROSS SECTION 1, IN THOUSANDS OF FEET

30 150

w w w ..&::--

·' 1.3 \ ,~ {J-;?ri I ~ I ~!'--- ~ • / "'-- E 955 122 @

tl:l~ ~ 0 ~ ~ 0 H H .to< 6 I"! tl:l ~

tl:l~ :::0 H

0

81T 1.../ \ y/ l.l ...,:""\ ,-\ "/ r ~ ,--' / f ~ -(" ~ "'3 T "' '$ -1 H 1-zj 0 ~ H ;:t>

~ I WACXVILU ROAD I 105 1 06 107 108 109 110 ~------~--~------~--~~----~110

I I I I I I I / I '\l< 100 .....

90

:z: -

~ :z: '1j 1:%:1z = t:::1 H ~ CJ) 70 =--

a...J

~

a...J 60

------~------~------~~------~------50 1 7 5 18 0 18 5 DISTANCE UPSTREAM FROM CROSS SECTION 1, IN THOUSANDS OF FEET

40 1 7 0 w l11 36 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA APP END I XES 37

l 3 3 ~ M I N 0 I l Y A ] 1 3

c c c c c en eo ,_ ~------~r------~~------~r------,------~------~~ ~

...... ~ ~ ...... -N ..... 0

~ ct C) N -~ -::t 0 c:a u:...... c::t - c::t en -

-c::t ...... eo Co» ~

,_ -~ ~ c::t

u CD - -c::t ., -.....

Ll")

~ ;.... \ - < ....,...... 1- $ ao --- -~ < 1- :; ao tL :r. ("') =- \ :a ~ Co» -...... ('.1 -~

ct 38 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

APPENDIX B

Elevation of water surface at cross sections 1-122 for minimum measured backwater conditions (Loc · tion o cross secti0ns shown in appendix A)

Discharge Elevation o f water s urface (in feet above mean s a level) at c ross section ( c ubic feet ~ per second) 1 2 3 4 ! 5 6 7 8 9 10 11 12 13 14 -- I I I I I I I I I I I I -- 3,000 6.9 7.1 7. 3 7.6 8 . 0 8 . 3 8.6 9 . 1 9.4 9 .8 10 . 2 10 . 4 10.9 11.) 4,000 8 . 8 9 . 0 9. 2 9.5 9.9 10.3 10.6 u .o 11.3 11.7 12.2 12 . 4 13.0 13.7 4 ,500 9.2 9.4 9.7 10.0 10.4 10 . 8 11.2 11.5 11.8 12.4 12.8 13 . 1 13.8 14.) 5,000 9 . 5 9. 7 10 . 0 10 . 3 10.9 11.3 11.7 12 . 0 12 . 4 13.0 13.5 13 . 8 14.5 15. ) 6 ,000 10 . 0 10 . 2 10 . 6 11.0 11 . 8 12.2 12.6 13 .0 13.4 14.1 14.6 15 .0 15.8 16.7 ii I I Discharge Elevation of water surface (in feet above mean sea level) at cross section (cubic fee t per s cond) 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 24.5 I 24.8 I 25 I 26 3,000 12 . 1 12.5 12 . 8 13.3 14 .o 14.6 15 . 0 15 . 4 16.0 16 . 7 17.3 17 .6 18.2 18.6 4,000 14 . 4 14 .8 15.2 15 . 7 16 . 4 16.9 17.5 17.9 18.7 19.3 20.0 20 . 2 20.8 21.3 4,500 15.2 15 .6 16 . 0 16 . 6 17.3 17.8 18.4 18 .8 19 .6 20.3 21.0 21.2 21.9 22 .4 5,000 16 . 0 16.5 16 .9 17.5 18 . 2 18.8 19.4 19 . 8 20.5 21.2 21.9 22.2 22 .9 2 3. s 6,000 17.4 17 .9 18 . 4 19 . 0 19 . 8 20 . 4 21.0 21.4 22.1 22.9 23 . 6 23.9 24 .8 25.3

Discharge Elevation of water surface (in feet above mean sea level) at cross section ( c ubic feet per second) 27 28 29 30 31 32 :n 34 35 36 37 38 39 40 I I I 1 I I I I I I I 1 J 3,000 19.0 19.4 19 .9 20.3 20.6 21.1 21.3 21.6 22.2 22 . 2 22.4 22. 8 23 . 2 23 .6 4 ,000 21.6 22.0 22 .5 22. 9 23.2 23.7 23.8 24 2 24 .8 24 .9 25 .2 25 . 4 25. 8 26 . 1 4 , 500 22 .8 23.2 23 .6 24.0 24 . 3 24 . 8 25 .0 25.3 25 .9 26.0 26 .3 26.6 26.9 27.2 5,000 24.0 24.3 24 . 8 25.1 25 . 4 25.9 26 .0 26 .4 27 .0 27.0 27 .3 27.6 27 . 8 28 . 1 6,000 25 .7 26.1 26.5 26.8 27. 2 27 . 6 27 .8 28.2 28 . 8 28 . 9 29.2 29.4 29.7 29,9

Discharge Elevation o f water surface (in feet above me a n sea level) at cross section (cubic feet per second) 41 51

3,000 24 .7 24.8 25.9 26.5 27 .1 28 . 1 28.7 29.2 30 . 0 30.2 30.5 31.1 31.8 32.7 4,000 27 .0 2 7.1 28.3 29.0 29.6 30.6 31.2 31.7 32 . 6 32 . 8 33 . 1 33.7 34 . 4 35.3 4 , 500 28.0 28 . 0 29.5 30 . 4 31.1 32 . 0 32 . 7 33.2 34 . 0 34.2 34.5 35.1 35 . 8 36.6 5 , 000 28.8 28.9 30 . 4 31.4 32 . 0 33 . 0 33.8 34.4 35 . 2 35.4 35 . 7 36. 3 37 . 0 37.8 6 ,000 30.4 30.4 31.9 32.9 33.5 34.6 35.5 36.1 37 . 0 37.3 37.6 38 . 2 39.0 39.8

Discharge Elevation of water surface (in feet above mean sea level) at c ross s e ction (cubic feet per second) 52 63

3,000 33 . 6 34.2 38.0 38.6 39.9 40.7 41.2 41.2 41.7 41.9 42.5 42.5 42. 8 43.4 4,000 36 . 2 36.6 40 . 3 40.9 42.1 42 . 8 43 . 3 43.3 43.7 4.) 9 44.5 44 .5 44.7 45 .4 4,500 37.5 37.9 41.4 42.0 43 . 2 43 . 8 44.3 44.3 44 . 7 44.9 45.4 45.5 45 .7 46 . 3 5 ,000 38. 7 39.1 42 . 5 43.1 44 . 3 44.9 45.3 45.3 45 . 7 45 .9 46.4 46.5 46.7 47.3 6 ,000 40.8 41.1 44 . 2 44.8 46. 0 46 . 5 4 7 .o 47. 0 47.4 47.5 48.0 48 . 0 48 . 2 48 . 8 APPENDIXES 39

f PENDIX B-- Continue d

Discharge Elevation of water surface (in feet above mean sea level) at cross section (cubic feet per second ) 64 1 65 1 66 1 67 1 67 . 5 1 68 1 69 1 70 1 71 1 72 1 73 1 74 1 75 1 76 r .... 3, 000 44 . 4 45.2 47 . 0 4 7. 2 47 . 7 48.3 48 . 9 49.5 50 . 0 50.5 51.6 53.4 54.5 54.6 I! 4 , 000 46.3 47 . 1 49. 0 49.2 49 . 7 50 . 3 50.9 51.5 52.0 52 . 4 53.6 55.5 56 . 7 56 . 8 ... 4 , 500 4 7. 2 48 . 0 49 . 9 50 . 1 so. 7 51.3 51.8 52 . 4 52.9 53.5 54 . 9 56 . 6 57.7 57. 8 5,000 48.1 48.8 50 . 7 51.0 51.6 52 . 1 52 . 7 53.4 53 . 9 54.4 55.7 57.4 58 . 5 58.6 6,000 49 .5 50.2 52 . 2 52 . 5 53.0 1: 53. 5 54.0 54 . 7 55 . 1 55 . 6 57 .o 58 . 6 59.8 59.9 .:II

~ Discharge Elevation of water surface (in feet above m an sea level) at cross section (cubic feet p r second) 78 79 80 81 82 83 84 85 86 87 88 89 90 ~ 77 j I I I I I 1 I I I I I I 3, 000 55.7 56 . 2 57 . 2 57 . 3 57 . 4 57.9 58 . 3 58.8 59 . 5 60.1 60.6 61.3 61 . 8 62 .3 I 4,000 57.9 58 . 4 59.5 59 . 6 59.7 60 . 3 60.6 61.1 61.8 62 . 4 62.9 63 . 6 64.3 64.7 4,500 58 . 9 59.4 60 . 5 60.6 60 . 7 61.4 61.7 62.2 62 . 9 63 . 5 64 . 0 64.7 65.3 65.8 5,000 59 . 7 60 . 2 61.3 61.4 61.6 62 . 3 62 . 7 64.5 65.0 65 . 8 66 . 3 66.7 ,! 63.1 63.9 6 , 000 61.0 61.5 62 . 6 62.6 62 . 6 63 . 4 63.8 64 . 4 65 . 2 65 .8 66.3 6 7. 1 6 7.6 68.0 ! I l )

Discharge Elevation of water surface (in feet abov mean sea l evel) at c ross section (cubic feet per second) 91 1 92 93 94 95 96 97 98 99 100 101 102 103 104 I I I 1 I I I I I I I I j: 3,000 62 . 8 62.9 63 . 2 63.7 64 . 4 65.0 65 . 7 66.5 6 7. 3 68.4 69 . 0 70.1 71.4 72 .5 4,000 65 . 1 65.3 65 . 6 66.1 66 . 7 67.3 67.9 68 . 7 69.5 70.4 70.9 72 . 0 73.2 74 . 3 4,500 66 . 2 I.! 66 . 3 66 . 6 67 . 1 6 7. 7 68.3 68.9 69 . 7 70 . 4 71.2 71.7 72 . 8 74 . 0 75 . 1 ) ,000 6 7. 1 6 7. 2 6 7. 6 68 . 1 68.7 69.2 69 . 8 70 . 6 71.3 72 . 1 72.5 73 . 5 74.7 75 . 8 6,000 68 . 4 68 . 5 68 . 9 69 . 4 70.0 70 . 6 71 . 2 72 . 0 72 .7 73.4 73 . 9 74.8 76.1 77 . 2

Di scharge Elevation o f water s urface (in feet abo ve m an sea leve l) a t cross s e c tion (cubic feet f--- per second) 105 1 106 I 107 I 108 109 Tuo 111 11 2 113 114 115 116 117 I 118 3,000 73 . 4 74 . 3 75 . 0 75.7 76.3 77.3 78.6 80 . 5 82.0 82 . 7 83.4 84.0 84.4 84.7 ,. 4 ,000 75 . 1 75 . 8 76 .s 77.3 ' 77.9 79 . 0 80.3 82 . 0 83.2 83.9 84 . 6 85 . 4 85 .8 86. 2 ,500 75.8 76.5 77.2 78.0 78 . 6 79.8 81. 0 82 . 5 83.7 84.4 85 . 2 85 . 9 86. 4 86 . 8 5 , 000 76 . 5 77 . 2 77 . 9 78 . 7 79 . 3 80 . 5 81.7 83.1 84.3 85 . 0 85 . 7 86 . 5 86.9 87 . 4 6 ,000 77.9 78.7 79 . 4 80 . 2 80 .8 82 . 0 83 . 1 84.3 85.3 86.1 86 . 8 87.6 88 . 0 88 . 5 ,.

Discharge Elevat i on of wa t r s ur f a ce (in fee t abo v m an s e a level) at cross section (cubic fee t pe r second ) 120 121 122 11 9 1 I I I

3 ,000 85 . 6 ~7 . 8 88.8 90 .4 '•,000 87. 2 89.1 90.2 91.6 4,500 87 . 8 89 . 6 90.7 92 . 1 5 ,000 88.4 90 . 2 91. 2 92.6 6,000 89.5 91.1 92 . 1 93. 4 ...... I""'

40 CHANNEL CAPACITY, MOKELUMNE RIVER , CALIFORNIA

APPENDIX c

Elevation of water surface at cross sections 1-35 , for maximum '•i measured backwater conditions measured at cross section 1

(Lo cation of c ~os s sec tions s hown in app endix A)

Discha~ge Elevation o f wate~ su~fa e (in feet above mean sea level) at c~oss section (cubic feet p e ~ second) 1 2 3 4 5 6 7 8 9 10 11 12 I i I l I I J J I I I I 13 1 1 2 , 000 15.6 15 . 6 15 . 6 15 . 6 15.6 15 . 6 15.7 15.8 15.8 15 . 8 15.8 15.8 15 .8 15.9 3, 000 15.6 15 .6 15 . 6 15.7 15.8 15 . 8 15 . 8 15.9 15.9 16.0 16.1 16 . 2 16.3 16 .5 4,000 15 . 6 15 . 7 15.8 15 . 8 15 .9 16 . 0 16 . 1 16 . 2 16 . 3 16 . 4 16 .6 16 . 7 17 .o 17.) 5,000 15.7 15 . 8 15.8 15.9 16.1 16 . 2 16.3 16.5 16 . 6 16.9 17.1 17.2 17 . 6 18.1 -

I Discha~ge Elevation of wate~ su~fa c (in feet above m an s a level) at c~oss section - (cubic feet t pe~ second) 15 16 17 18 19 20 21 22 23 24 - I I I I I I I I I I 24 . 5 1 24 . 8 1 25 r 26 16 . 2 16 . 4 16 . 6 16 . 8 16 .9 17 . 1 2,000 16.0 16 . 1 16.3 1 7 . 3 17.6 17.8 18.0 18. 2 3,000 16.7 16 . 8 17 .o J 7. 2 17 . 5 17 . 8 18 . 0 18 . 2 18. 6 19.0 19 . 4 19 .6 20.0 20 .2 4,000 17.6 17 . 8 18 . 0 18.3 18.8 19 . 1 19 ·'~ 19.7 20.2 20.7 21.2 21.4 21.9 22.3 5 ,000 18 .5 18 . 8 19 . 1 19 . 5 20.0 20 . 4 '20. 8 21.1 21.7 22.2 22.8 23 . 1 23.8 24 .)

D ischa~ge Elevation of wate~ su~fa ce (in feet above m an sea level) at c~oss section (cubic feet pe~ second) 27 I 28 I 29 I 30 I 31 I 32 I 33 I 34 I 35 I 2,000 18 . 4 18.6 18 . 9 19.1 19 . 3 19 . 6 19.8 20.0 20 . 3 ' 3,000 20 . 5 20.8 21. 2 21.5 21.8 22 . 1 22 . 2 22 . 6 23.0 4 ,000 22 .6 22 .9 23 . 3 23. 7 23.9 24 . 3 24.5 24 . 8 25 .3 5,000 24.7 25 .0 25 .4 25 .7 26 .0 26.4 26.5 26.9 27 . 3 APPENDIX D

Elevations of ground and top of levees

[In leveed areas, the ground elevation listed is the elevation of natural ground on the sho reward side of the levee. In unleveed areas, the ground elevation listed i ndicates the elevation of the land surface adjacent to the main channel]

(Location of cross sections shown in appendix A)

Elevation, in feet, above mean sea level Elevation, in feet, above mean sea level Distance upstream Cross Oistance upstream Cross from cross Left bank Right bank Left bank Right bank section from c ross section section 1 numbe r number sec t ion 1 (feet) Top of I Gro und Top of I Gr ound (feet) Top of I Ground Top of I Ground levee elevation levee elevation levee elevation levee elevation

1 0 24.8 - - 8.5 29 37 , 27 5 31.1 24.8 a24.2 21.2 2 650 21.7 9 .0 - 11.8 30 38,535 31.0 25.0 a3l.l 3 1 ,640 2 3. 3 9.0 - 16.1 31 39,840 32.0 25 . 0 a27. 2 25 . 0 2 ,540 22 .3 - 22 . 2 - 32 41,445 32 . 4 26.4 a26.4 3,4 75 23 . 5 7 .o 17 . 0 - 33 42 , 055 30.9 26 . 8 a29.0 ~ 6 4 , 500 22.1 8.0 17 . 3 - 34 43,410 31.8 28.0 a28 . 0 - 1-d 7 5 , 435 24.1 8.6 18.7 - 35 45,130 - 28 .9 32.4 30 . 3 t%j 8 6 , 825 22.7 10 . 3 17.2 - 36 46 , 260 33.4 29 . 4 30.7 25 . 3 9 7, 915 2 3. 3 15.0 18.8 - 37 47,440 34.7 27 . 3 28.5 26 . 7 s H 10 9,155 23 .6 u.s 20 . 4 - 38 49,010 35 . 4 30 . 0 a27 .0 - :>< t%j 11 10,530 24 . 0 10 . 7 18 . 6 11.8 39 50,390 35.9 31.6 a28.2 en 12 11 ,125 25.3 - 25.4 - 40 51 ,570 36 .o 31.8 a30. 2 13 12 ,115 24.1 11.1 18.2 11.9 41 53 ,490 37 . 1 34.3 a33 . 2 14 13,205 25 . 0 11.9 18.3 12 . 0 42 53,590 37.9 - 38.3 15 14, 310 25 .0 13.0 18.1 14 . 1 43 57,040 39 .4 35 . 2 a30 . 5 29.2

16 15,400 24.7 13. 2 17.8 12 . 0 44 58 , 690 40 .0 33.2 38 . 2 17 16, 2 35 24.5 16 . 7 18.5 13.2 44.5 60,640 39 . 9 - 38.5 30 . 0 18 17,405 25 .8 13.8 18 . 6 14.0 45 64 ,360 41.5 36 . 8 a35.2 32.0 19 18,885 25.4 14.1 22 . 9 14 . 9 46 66,040 42 . 3 36.8 a34 .0 31.7 20 20,255 25.4 14 . 2 20 . 6 16.6 47 6 7, 2 35 42 . 8 37 . 0 a34 . 8 33.8

21 21 ,525 26 . 0 16.0 21.6 15.5 48 69,670 43 . 4 34 . 0 a37.0 32.0 22 22,605 26.4 16 . 4 22.1 17 . 9 48.5 70,100 a36. 3 - a36. 8 32.2 23 24 ,4 75 2 7. 2 16.6 21.7 17 . 3 48.7 71,100 a35.5 - a38 . 1 29.5 24 26 ,305 26 . 5 18.0 25. 7 18.6 49 72,780 44 . 2 35.0 38 .8 35 . 0 24.5 27,985 25 . 7 19.0 24. 7 21.1 so 75,130 a38 . 2 34.3 44 . 3 36 . 6

24 .8 28 ,835 26 .9 19 . 0 24.7 17 . 8 51 76,950 a4l. 2 36 . 2 42 . 0 36 . 8 25 30,635 28. 1 19.7 27.4 24.7 52 78 ,990 51.6 - 51.4 26 32 , 355 29 . 0 21.7 28 . 1 21.2 52 . 4 79,415 46 . 5 - 48 . 0 27 33,960 29 . 5 21.0 30 . 0 21.8 53 91,775 53.4 49 . 1 a43 . 5 40.0 28 35,535 32.1 23 . 1 31.3 27 .o 54 93,625 a52 .0 - a44.6 41.2

See footnote at end of appendix. ~ 1--' APPENDIX D--Continued ~ N

Elevation, in feet, above mean sea level Elevation , in feet, above mean sea leve Distance upstream Cross Distance upstream Cross Left bank Right bank section from cross section from c ross Left bank Right bank number section 1 number section 1 (feet) Top of I Ground Top of l Ground (feet) Top of I Ground Top of 1Gro und levee elevation levee elevation levee elevation levee elevatio n

55 96,865 a44 . 8 43.2 a48.0 - 88 152 , 975 72 . 5 63.3 a90.0

56 98,000 a45. 7 45.0 46.1 41.2 89 154,920 72.0 63.5 a69.4 65 0 0 57 99,160 69.5 - 69.8 - 90 156,340 71.8 64 . 8 a89.0

58 99,230 a60.6 - 62.1 - 91 157,450 81.4 - 89 0 8 19 100,710 41.8 41.5 a54. 7 - 92 15 7, 750 81.2 - a81.6 79 0 3 ~z t%j 60 101, 710 a55.0 - a45.5 43 .o 93 159,430 74 . 8 65 . 8 a70.0 67.7 ~ 61 103,110 61.4 - 61.3 - 94 161 , 540 76.0 68.2 a80.0 (J 61.1 103,180 60.9 - 61.3 - 95 163,530 76 .6 6 7.6 a74 .0 70.0 48.0 45.2 62 104,115 - 0 a56. 7 96 165 , 290 76 0 9 6 7 2 a78 . 6 70.5 ~

63 106,210 a59 . 6 59.4 48.0 42.0 97 0 :x> 167 , i30 79 3 71.0 a75.l. 73.8 (J H 64 44 . 0 50.0 44 . 2 107,850 48 .6 98 16 8,950 80.7 71.8 79 0 3 72.1 65 109,075 a49 . 2 47.2 so.o 43.3 99 170,900 82.1 73.4 76.6 71.5 ~ 66 112,100 64 .7 65 . 0 - - 100 172,850 83.7 74.1 79 0 8 75 . 7 - 67 112,340 53.1 a63. 5 - 0 0 - 101 173,720 a77 . 5 77 2 79 0 8 76 8 ~ 67 0 5 114 ,245 a49 . 5 46 . 7 54.7 46.2 102 175,400 a79 . 0 79 .o 80 .9 78.2 0 68 117,020 55 . 2 46.8 55 . 2 46.8 ~ 103 177 ,390 a81.6 80 0 3 a8l.S ~ 69 119,420 a61.5 - 57 . 5 45.0 104 179 , 110 a83.0 82.0 a78.8 78.4 70 121,885 a71.6 - 58.3 49.7 lOS 180 ,420 86 . 1 83.0 a86.1 71 123,685 a69.6 59.0 50.0 ~ - 106 181 ,970 a85 . 3 84.5 a78 . 5 72.0 t%j 72 125,265 53.2 48 . 5 60.6 52.7 107 183,290 a87.b 84 0 7 a81.9 75. ': ~ H 73 127,795 56.7 52.3 a53.5 52.3 108 185,120 97 . 3 - 102.1 <:: 74 130,235 57.3 48.3 a58.0 53.5 109 186, 250 al03. 0 - a110.0 t%j 75 132,175 75.0 - 73.3 - 110 187 , 870 al00.4 - a98.8 ~ 76 132,415 60.0 52 . 5 a74.0 - 111 189,980 a91.4 - a87.3 81.7 - 77 134,865 61.1 53.5 a78.6 - 112 191,900 a95.1 - a88.8 77 0 3 (J 78 136,255 62.6 55.8 a61. 5 50.0 ~ 113 193,360 al06.0 - a97. 2 H 79 138,525 a76.2 - a60.9 56.8 114 193,9 30 100 . 1 - 99.2 1-lj 80 138,800 a80.5 80.5 a61. 2 53.0 115 194 , 610 a90.0 81.5 a98. 3 97.6 0 81 139,975 a7S.l - a6l. 3 58.0 116 196,030 a93 . 4 - a97 .0 82 142,040 63.5 53 . 0 a62. 8 58 . 0 ~ 117 196,900 a96.4 - al02.0 H :x> 83 143,310 66.4 54.3 a62. 8 62.8 118 197,820 a95. 7 - al07 .6 84 144,550 68.2 59.0 a65.2 60.0 119 199,580 a97 . 1 - a97.7 85 146,775 a6S.l - a8S . O - 120 201,370 a95.9 - a110 .0 e6 148,655 69.6 60.0 a70 . 0 - 121 202 ,660 al08 . 9 - al00.8 87 150,4 30 68.4 59.1 a65.1 62.9 122 204,290 a12 7. 1 - a106.7

a. Indicates no levee. APPENDIXES 43 APPENDIX E Mean velocity at cross sections 1-122 for minimum measured backwater conditions (Location of cross sections shown in appendix A) Di scharge Mean velocity (in feet per second) at cross section (cubi c feet per second) 14

1 , 500 1.7 1.9 2. 7 2. 7 2.1 2.2 1.9 2.2 2.3 2.5 1.7 1.7 2.1 2.4 3,000 2 . 0 2.3 3.0 3.4 2.4 2.9 2.6 2.9 2.9 2. 7 2. 3 2 .1 2.8 2 .8 5 , 000 2.0 3. 0 3.8 4.4 3. 0 3.7 3. 4 3. 7 3.8 3.2 3.0 2. 7 3.5 3. 3

Discharge (cubi c feet per second) 15 26

1 , 500 2 . 2 2.1 1.9 2.2 2.0 2.3 1.9 2. 1 2.2 2 . 8 2.2 2. 2.8 2. 3 3,000 2 .4 2.6 2.3 2 . 5 2.1 2. 4 2.2 2.4 2.5 3.0 2.3 2 . 7 2.9 2 .6 5,000 2 .8 3.2 2. 8 3.0 2 . 4 2.9 2.5 2.5 2.9 3.5 2.7 3.1 3.4 2. 8

Discharge (cubic feet per second) 27 40

1,500 1.7 2.7 3,000 2. 0 2.4 2.4 3.0 5,000 2. 1 2. 5 2. 7 2 .1

Discharge (c ubic feet 51 per second) 41

1.8 2. 1 1 , 500 1.9 1.6 2. 5 2.0 1.8 2 . 1 2.1 2.4 1.2 1.6 2.1 1.5 2.2 2.4 3 , 000 2.1 1.8 3 .0 2.5 2.1 2. 5 2 .5 2.9 1. 3 1.9 2.6 1.9 2 .0 2.4 2 .8 5,000 2 . 3 2 .0 3 . 5 2. 7 1.9 2.9 2. 9 3 . 3 1.4 2 . 2 2.9

Discharge feet (cubic 63 per second) 52

2.0 1.8 2.1 2. 4 1,500 1.9 2.3 1.9 2. l 2.5 0.8 1.8 1.1 2. 1 2. 3 2.2 2 .7 2 .8 3,000 2.1 5 . 1 2.9 2.7 2 . 5 2.4 1.1 2.0 1.4 2.4 2. 2 2.0 3.1 2. 8 5,000 2 .4 3.9 3.0 3. 1 2 .7 2 . 5 1.3 2 . 2 1.6 2 .6

Discharge (cubic feet 76 per second) 64

2 . 1 2.1 2. 1 2 . 2 2 . 5 1,500 2.5 2 . 4 2.6 2. 2 2.3 2 . 3 2 .6 2 .0 2 . 1 2.9 2. 7 2. 3 2 . 7 2.9 3 ,000 2. 7 2. 7 3.0 2. 3 2.5 2.6 2.4 2 .6 2. 7 3 . 3 2 . 9 2. 5 3.0 3.2 5 ,000 2.9 3.1 3.6 2.3 2 .6 2. 6 2 .6 '1..'1 2. 6

Discharge Mean velocity (in feet per second) at cross section (cubic feet 90 per second) 77

2. 1 1.9 2.5 1 , 500 1.8 1.9 1.9 2. 2 2 . 2 1.8 2 .1 2 . 2 2. 0 1.9 2. 1 2. 2 2.5 2. 7 3,000 2. 2 2. 3 2.2 2 .6 2.4 2 . 5 2. 6 2.2 2.3 2.3 2. 4 2.8 2 .1 2 . 8 5 ,000 2 . 3 2. 6 2. 7 3 . 1 3.1 2 . 8 2. 8 3.1 2.4 2 .6 2. 4 44 CHANN EL CAPAC I TY, MOKELUMNE RIVER, CALIFORNIA APPENDIX F

Mean veloci t y at cross sections 1-35, for maximum measured b a ckwater conditions at cross section 1 (Location of c ross sections shown in a ppendix A)

Discharg Mean velocity (in feet (cubic feet per second) l 6

1,500 0.3 0 . 5 0 . 7 0.8 0.6 0.8 0 . 8 0 . 8 0.9 0 .8 0.8 0.7 1. 0 1. 0 3,000 .6 1.1 1.4 1. 5 1.2 1.6 1.5 1.5 1.8 1.5 1.5 1.4 l.9 l.S 5 ,000 1.0 1.8 2.3 2.4 1.9 2.6 2. 5 2. 3 2.8 2. 4 2. 3 2.2 2. 9 2. 7

Discharge Mean velocity (in feet per second) a t cross sections (cubi c feet per second) 15 16 17 18 19 20 21 22 23 24 24 . 5 j 24 .8 25 I I I I I 26 = l , 500 0.8 1.0 0 . 9 1.0 0.9 1.1 1.0 l.l 1.2 1.5 1.2 1.4 1.6 1.4 3,000 1.5 1.9 1.7 1.8 1. 5 1.9 1.7 1.8 2.0 2.5 2.0 2.3 2. 6 2. 2 5,000 2. 2 2. 8 2.4 2. 5 2 .0 2. 6 2. 3 2. 2 2. 7 3.2 2.5 2. 7 3.2 2.7

Discharge Mean veloci ty (in feet per second) at cross sections (c ubi c feet per second) 27 I 28 I 29 I 30 I 31 I 32 I 33 I 34 I 35 I 1,500 1.1 1.3 1.4 1.4 1.7 1.6 L7 1.6 2.1 3,000 1. 7 2 . 0 1.9 1.9 2.4 2.1 2. 5 2.2 2 .5 5 ,000 2. 0 2 . 2 2 . 2 2. 2 2.9 2.4 3.0 2. 6 2. 8 APPENDIX G.--Cross sections 1-222

(") ::t1 Left bonk RiQht bonk 0 VI VI

VI 0 1'1 (") 4 0 0 z VI 0 s [ . I (] n -l-CROSS SECTION 3

Le f I bonk · ··~ .. --·· 30<

20

!Oj ..... w w lL. ~ -JOCROSS SECT;ON 5 1-d z s1:%:1 H z :>< 0 1:%:1 en ..... < > w ..J w

, , 10 I - CROSS SECT I ON 10

30 Left bonk .,. .. --··"' Left bonk RiQh 1 bonk BRIDGE

2 o ~------:----1--\·

+:-­ V1 -I 04--...0.-. -- CROSS SECT I ON I ~ 0\ _ ... ~ ~ " " Rooht bonk_

10 '• I I I

-:o-JCROSS SECT I ON 16

~z M 30 ~ I CJ 20 - i!d > 10 tot---!- I I I i '= CJ H f- w ::a w . LL. 6 -z ~ ~ z 0 Rioht bonk - ~t:rj f- H w <: _J ti:l w I I I I .~ 0LU •.....LL.!.l..!L _L CROSS SECTION 22 CJ EXPLANAT ION ~ H L and- sur face prof II e l"%j 0 Water-surface elevation of 1,420 c f s ~ surveyed December 14, 15, 1970 H --x-- (') > HI9h water, November, 1950 ::0 0 (J) --.- (J) HIQh water, December. 1964 (J) --o- fTI Hioh water, J anuary. 1969 (') -! --o-- 0 Hioh water . J anuary. 1970 z (J) 0 50 100 150 200 FEET a; HORIZONTAL SCALE I N Uo• (') BEND IN SECT ION ::0 301 Koonr Dank 0 I ' -o- 11 I I I "' 20 ~ -0,- ~ "' I""" ,.,"' r-- / (') I -4 !0: ~~ l L=:J I I !'--- 0 1 z ~~E · tE I'(L_ ~ __I_I I I (II N °CROSS SECTION 24 8 (D• I N ID

Left bonk Lefl bonk Riohr bonk

CROSS SECT I ON 26 r; 1-d ~ ~ H >< en~

3~0 FEET or Left bonk --··- ... ---. , _, ____._...... •.. -- --

30o--

20 t-

~ ...... Lei! Don• Rl hi Dan• L eft ban• 0 HIQhl r n• ~ ~ 0 , 00 ,...... 0 30, I L I I I I I

f-----w ;--- I \1---o- I 0 20; \-- 0 -1 10 1"---1 O SE A LEVEL I S( . LEY! L CROSS SECT I ON 3 1 CROSS SECTION 32 g

t%:1~ Ri9h1 bonk ~ ef I b11:.Cn'-k ---,--~ Let 1 bonk t"-1 I

I 30 " f------1 " ....,. --<)-- s 1- r+ > 20 I \ r- n w I H w I -- ~ ~ 10 \ -! \._rj . z SE A L EYE L ~ 0 cROSS SECTION 34 0 ~ z 0 ~

1- Ri9hl bonk ~ Le ft bonk EXPLANATION > ~ w Land-surface profile ~ ...J H w Woler- surtoce elevation of 1,420 cfs surveyed December 14, 10, 1970 tJ ~ ~ Hi gh wa ter, Jonuory, 1969 --o- Htgh water, January, 1970 ~ 1-4 CROSS SECTION 3& "-:t 0 50 100 100 200 FEET 0 HORIZONTAL SCALE ~ 1-4 () Righi bonk ::0 Let 1 bonk 0 > 40 (/) (/)

30 (/) 1"1 () --t 20 0 z (/)

10 (}I 0 I .....,(}I O CROSS SECTION 37 () 150 FEET ~ __ _. ., Left bank r-'---1 0 qo VI VI I I ! /) I I I I ! I I I VI 30 1"1 \. I () I I i ...... I ~ : I 1\F 0 20 '-----'- z I \ ~ - rv VI I I I I I I , I I 10 ~ I I,-~ ~ Q) I : I I I 1 I I I I I I I . S [ l , __ ___ L ---- I I I ~l[ Yl l;~ ~ ---~--_l__ 1\) O CROSS SECTION 38 •

Left bank RIQht bank ~0 I I ' ; I 30 I ,c:=; 1--LA I l ! I I I r i I :: -o-- / ..J 20 --+-\ '------~ .-J ~ ·- ~ 7 w , I I j w 10 i i ! ! \: I :;; 10 LL I v 1 $ E & l E Y (_ ~ S El l E Yl L I l ~ ----- ___ ..... --.. - z CROSS SECT ION 39 "0 - ~ z H 0 - EXP L ANAT I ON ~ ~ en <( Land - surface profi l e > w 30 Wa ter - surface elevation of 1,420 eft ...J w surveyed December 14, 15, 1970 20 --<>-- Hi gh wa ter, J anuary, 1969

10

0 50 100 150 200 F EET

HORI ZONTA L SCALE

1 1 1 30 1 i I f' ' ' ' I 'I I l=*=t' I ll I I II I ' I 1 II I i -..J ~I Ill ::c::o==: !1 / £ ! I

20 r-~r--i---t---r--~--+---t-~~-~---+---r--~--+---~~---t~~~-r~~------~~~---1--~

~ \0 50 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

CROSS SECTIONS 43-4~

c: 0 D I

I l

·- - --

:....

0 D· it ,---

- - -

I----- r- { r- ...... : \ I""' D ._.-/ r_.-1 _\

- - - - \ )

,_ !_ - -- --lI- -

:~ r-~ --- - r----- ,_ -- f-- --·- - -·- - - -I I I - - ·- r----- 1---- ·-·· ·-·f-

I +~ L - '~- - - - ,--.. l - - !--- z I 0 ~ - ~ I (/) I I !: 0 z ! w ll a) 1-rj~r ~ - I

~- ~1 - ~ 0 ~J ~ D I ~ 8 .. J' g -' . - ~ .. 0 - "'u 0 0 0 "' "" "' 133.:1 N l 'N011VA3l3 (") ::0 ...... 0 ~··. 50 50 so r- ·r:·" I (/) (/)

(/) .:o f---!- ---P-x -t- _._ ---t--i 40 ' ~ - ~ 0 1"'1 (") ~

30 -:--r-----+\ _.._.- --..( ~ .._ --j 30 -\- 3o 1 0 j z I I I (/) I 20 r- t-----,-1 l·l ·I 2 0 1------t- 20 ~' I I I I I ! ! l I ! .llo Let (jl I _;,__._L (}I 0 ~ --'-- 1 10 L ---'-- _L _L_~I- CROSS SEC T ION H O CROSS SECT I ON H CROSS SECT I ON " Q 0

Left bonk ~0 40 ,.--- I -.-- ~-T---~--~--~

30 30

1- zo 20 ' w w IJ... tO 10 L_ ~ Cross ucloon 48 (con t i nued) CROSS '"d z t%j - s H z ~ t%j 0 50 ~· ·. uu ... - (/) 1-

< ~ 0 •0 > w ...J 30 w

20 20 I •!--·

10 IO CROSS SECTIO'I ~9 • ___L_ ----1-~·

\.11 ...... 50 ,.--- L eft bonk Ln I I I I ~-- I I I I I I N

•0 ~--

30 ,___-___

20 ~------~ __,____..._

!0 '-- - -'- CROSS SECT!O~-< 51

Left bonk Ri9ht bo.nk &0 T EXPLANATION

50 Lond- surloce profile

Water-surface elevollon of 1, 420 cIs >iO ~ surveyed December 14, 1~. 1970 ~ -o-- HIQh water, January . 1969 ("') -o--- ?; HIQh water. January . 1970 ("')> 1- H w 1 w ° CROSS SECTIO'I ~ lL. . 0 ~0 100 1~0 200 FEET z HORIZONTAL SCALE 5 l ~ z t"-4 0 J 1- ~ <( &0 r- ~ > w ~ _l H w <: ~ ~

Reservoir, 30 ("') I ~ H t-%j j 0 I 1 ° CROSS ,SECTION 53 ~ H Left bonk Rr9ht _\lank () 60 ::0 > 0 en Lei t bonk en 50 50 .-­ en f'TI () ~0 I ~ 0 z en 30 3o ~--+-- -:--+ =,--- I 1 -

()I zo 2 T ° CROSS -SEC ()I I (]I

1o cRossL ~ SECT ION--- 54 (") BRIDGE - · :::0 70 - - · __ ,.. • v• v• " "'~ 0 VI VI

VI 60 ~, 'i I i 1111 I I I 1111 I I I-HI r'1 (") -1 50 left bonk 0 z VI I 0 ---T---+·---.---L--~- 'I 0 t-----1-----1 Ul C7l 1 I 30 +-! ...... ~

2 ° CROSS ' SECT ION 56

10 ~ CROSS SECTI ON 57

left bonk Ri Qht bonk 601 ---,--- ..... so w w LL. 40 40 r---+---~---4----~--4----+--~~--+-~~ z ~ 30 30 ~--t---t---~---4---~--~---+---~---4--~- ~ ~ z t:j 59 0 H - ..... f;; <( en > w ...J 50 w

'1 0

30

20 .._ ~ . -- CROSS SECTION 60

Left bonk ROAD LEVEL-STATE 9 9 G 0 Rooht bonk 70 I ...... '...... --· -·-· ...... ··~· -- I I -SOUTH BOUND LANE I I 6 0 1 1 I \ -- ~ b iTJ,.. OFI S~R I, NG,ER 'S - v I I I I so \I I. .1. I II I I I I I I Ul'll1 _lJ!.--1_ I, I l I II I 1 ! I rLV 1"- '-"r- ~ 4Y I 'i. I I \: ~- rry ' I 30 I I 20 I I I I ! I I ------_ ,...,...... -. V1 w 50 BRIDGE 70 V1 ~ I I N OR ~ H BOUND ~ ANE - 1- I I EXP L ANATION 60 . ~~~~~9F~~F=~~~~~#r~~~ 1 1 1 111 ! UJ ' "-- B~ T~o ~ ~F s~ R I ~G~RJ --t I L and- sur lace profil e ! I I I ld I I I i 50 \ 1 }~ 1 \. .... _ -o- 1 __LI 1 1 1 1 1 1-- r-o-- 1 _v \L.LJI Water- surface elevation of 1,4 20 c is 1 surveyed Dec ember 14, 15, 1970 'tO I I ! i I I I "c rr:; -:J, I --o- Hioh water. January. 1969 30 -o-- ~ I II I I I Hioh water. January. 19 70 20

0 50 100 150 200 FEET CJ HORIZONTAL SCALE ~ t%1 Ri 9ht bonk Left bank t-4 GO CJ 50 ~ 1- > w CJ w ~0 H LL.. ~ 30 . z CROSS SECT l ON 6 3 - 6 ~ z t%1 0- t-4 1- <( > ~t%1 w 60 _J ~ w H 50 I~ J < t%1 .~ 'O j· I II ! I ! ! IIIII , I ...1 .. "J _Fni -~ CJ 30 ! ! J 111111 ~ ,...... ,...... ,, I II E § H "'%j 0 ~ (") H AI Left bank Ri 9hl bank GO 0 > BEND IN SECT ION I (/) (/)

(/) 50 ~ II I I I fT1 I '"'-._ I (") 1\ I +-o- y r- -i /r\ ! I / ~ 0 0 z / I (/) 30 \ v m T l I m ZO CROSS SECT l ON 64 ~

,. (') ::n Ltll oonk 2~T RiQhl bonk 0 60 ... .- ...... (/) ----·-·· IN SECTIO (/) ,(/) (') -4 ~o '" --=j··-·-r----r----T----~------r----r---p----p----r----r-- -- r= ----1----· r---- - r ---- r ---~-----r--' ! 1 n -t=l l 1 1 0 1 z (/)

01 (JI I 01 (JI

EXP L ANATION

Land- surface profile

Water- surface elevation of 1,420 cfs surveyed December 14, 15, 1970 50 --o- HIQh water, January, 1969 .. o f- w 30 0 50 100 150 200 FEET w LL. HORI ZONTAL SCALE

20 ~ CROS S SECT I 0"- ~ z '"0 - st%j z H 0 ::< - t%j f- __ ~ __ -r-r-Rf tbo ~k ~ en <( > w 60 -!- - -~-l_j_ l. +- / -I ..J w

70 I "' 'II "' liJV II ft

so I i ! I < I ~ ~ ~ ~ ! ! I I I ! I 6Q L..ell DUOI'Io

so '"' 1 1 L?'"'""J: +=<>=t ,: / ' I " , 1 I i I 50 I i II -y-: I"

~ I I ~ Q I 1 I 1 I 0

ln ln 56 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

CROSS SECTIONS 69-74

-

1-- -... - - - ·- - ~c--r--

- 1-

f-- -

f---!- - 1-- - i - f-- - f-- f-- !-1-- - .

--1- I -t-- - 0 0 0 ~ ..., "' ( ,--- - -,..---- -,~ D \..._ c: I~ ~ 0 D I ~ rr--1\ 0: -~ -f L-v v l ··- T _/ \ -ch-r.. -+ ! II " z 1)-D 0 ~ 1- i= [7 ~ c: I ~ 0 1-- Z .Q v 0 ~ -' I Jg 1- f- m l r-~ I V)

J ~ t __ !- - 1-- ! \ 0 0 0 ~ 00 U) "' ~ r-- - 1-- . -- - ·- ·- -- --

--- - - t- i- < ·--i- - - D-;- ( - - f--- - ·-

1-·- 1-- t--- - I I I - - -- lf ' ~ I

c: z z 0 - +---- 0 t - 0 - -- - 0 D I - ~f( - D .... v g ~ §I V) ~ 1- v ---- V> V> V) V> 0 ~ 1 ~ 0 l - cr cr --- .._ u l_~ -~ ·- L u 0 0 0 0 0 0 0 ,..., ,..., U) "' "' "' "'

133.:l Nl " NOI1'1A3l3 () ::tJ Le f t bonk Rtoht bonk 0 (/) 7~ (/)

(/) 70 ~--~--~---4----+---~---+----~--+---~---4----+---4----+--~~--~--- I'T1 10 I •\ I I I ~ I I! I -+ () ~ 0 60 6 0 r---~4r~--~--~r-~~~r---+---~---+---4----~--+---~--~-f-+---- z (/)

-I 50 1------i---- 1-~ 50 ~---!-----1-----f----t ()I I -I \0 ~0 ---1- .._ ~ ~0 CROS S SECT I ON 75 CROSS SE CTI ON 76

- - . __ ,,., ao Left bonk i .. -- :;.::- .--- I I I I I -I I I I I I I I I I 70 I I • I I I , ; ~-r- I I I I I _ I '0 ~ \ I I \ I I I I V ~ -v ._-L: JJ I I ' 1 50

~ w I I I I I I I I I I I .I I ~I I I I ~ 0 I w u.. ~ I I I l I I I . I I I I I I I 3 ~ z ° CROSS SECTION '1;1

400 FEET RtQhl bonk _ ,.--"---, ~ z 80 ~' ..:..' ~u~u !!.!nA~--.----.,.----.-----,------.-----,----, 0

~ 70 I I sen ~ > w 60 I .J w 50 ~--+----r----t----+---~---+--~~--+---4----1

78

EXPL ANAT I ON

Riqht bonk 80 ...... L and - surface profil e

Woter - siJI'foce elevation of 1,420 c fa 70 . I surveyed December 14, 1 ~. 1970

60 ~ HIQh water, January. 1969

50

0 ~ 0 100 1 ~0 200 FEE T

~0 HOR IZONTAL SCALE

30 lJl CROSS SECT I ON 7~ ...... , 58 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

CROSS SECTIONS 80-82

~ -

I - ~ I_ I 1 - ,_

-~c I-~- ~ --r~

- I~ 1_: - - .

-- - I~

~ I -

I

- i- ..

, __

~ - · I -

:z ,_~ - u LLI en =!': 0 \--..... :z --..... ~ ? i T L-1 /

' \

I

/ (I)"'

0 ( z 0 c: D ~ "'0 ~ 1\ Vl Vl Vl ~ 0 0 5 lu~ 5 0 0 0 0 0 0 0 0 ., c; ~ :i: ~ ~ ..... "' "' "' "'

133.:l Nl 'NOilltl\313 (") ::0 90 ..... ' """" -,----..------.--~--r---r--r--.....---.----.--.,-RiQht bonk 0 ~-, (J) (J)

(J) 80 fT1 (") -4 0 70 z (J)

60 (J) UJ I (J) 50 1..----:-~: --+- ID

~o c"Ross -st:cr ioN

70

60

50

1- w w LL. Lett bonk Roqht bonk Left bonk Rlqht bonk 90 90 ,-----, ~.-- ,. - • --~ -...,.--~- ~ z ~ - t%j 80 80 1---!----:--:- s z H Left bonk 0 70 70 ~-..,..------+- ~ - t%j 1- Cf.l ct 60 > w --' 50 50 f----!--t-- w

~O CROSS SEC T ION 85

EXPLANATION

Land- surface profile Lei t bonk Riqht bonk lO Water-surface elevation of 1, 420 cis 90 surveyed Dec ember 14, 15. 1970 --X·- HIQh wa ter, November, 1950 80 --o-- HI Qh waTer, January. 1969 70 ---o- HIQh water. January, 1970

60

0 50 tOO 150 200 FEET 50 HORIZONTAL SCALE V1 ~ O CROSS SECTION 88 \.0 R1oh1 bonk 90 .----- Loll bo n k 90 ~• " vv"" ...... w~- ~ ~·~~ ~ ov o (]\ 0

so --~--~---+---+--~----~~__j sol ~ 1 -11 1 l;lrJ-7¢= 7' 1 I1

70 :~-_,_---r:-~~------+-~--i 70 I I \j I II I II I lt-ft=~... - 'I I I I

60 I I l I I I \==tW I I I I 50;.___!I . 5o ~-+--~----1---+--~-~.-- r--~~--~--+---~ '" -+-J 1--+ : ' 0 <0 ------·- . ---1 ~0 '-- .1.. LCR~O~S~S--SE~C~T~I~ON--~9 0~--~--~--~---~--J CROSS SECT ioN 92 ~ ti:l 80 80 t-1 CJ 70 ~--~ 70 1 : 1 : - ·--+ - 1 i 1 r ~ > ..... &0 1------'-- 60 =L='I CJ w r--~~--ll--~~--1r---r--r---r---r---r--~--~--~~=--==·~--JL- H w IJ... so !--~- 50 ~--4----~---4--+---~--+--~t---+----r--~--r--;r- ~ z 9~ 5 ~ z t-4 0 ...... '1;1 1 I U\1110\ "''W" ' ...... "'""'llil > UV III\ "''I''' __ ,,. w :::0 _J 70 I J I . .. ±::::;=± I I r- I I 70 I I ~ :.L-.."l=i----l--1-1- H w <: ti:l &o I \ ...L -1- 60 I I :::0

50 1----..----l 50 ~----~--r---4---+--;---+-~~~+--~--~----+-~ CJ ~ •o C~R~O~S~S ~~~~~~--L--~---L-~---~---L--~----~-~ H 1-Tj 0 ~ H () ::t) ~-- ! WV !!n '' ' ~ "' VV !! n > 90 90 ~V !! WW!!n 0 (J) (J) 80 r--t--f-~1--,_--r-~--+--4-~--~-~-~-~- (J) s o r--t--l---r--r~4---~-+--~~L__l__j fT1 () 4 10 I ! I 1 I \ 1 ~-,---/ ~ I 70 I I I L::L r=<>=* I / I ' I I I I --' . I I 0 =+== z (J) so I 60 ~-4--~---4----+--~---+--~-.---r--;---t--~r--.----r--~ ID 0 I SO CROSS SECT ION 50 ------.- . -- ID 98 ID (") ::u Lei I bonk Righi bonk 90 ~a • • uu u • 0 90 (J) (J)

Left bonk Righ i bonk (J) 80 t---r---t-1-ir------r--~---+---+---+--~--~~~ 8 0 80 f'1 1-- (") - / -t f-o- 0 70 - 70 70 \ / z --- · -(~ (J) GO r---+----r---1----T---1-~----~r---~---r---+----r-__, 60 60 t- ......

50 I ffitm l SO CROSS SECTION 10 2

Left bonk Right bonk Le ft bonk RiQhl bonk 90 90

80 80

70 70

1- w 6 i GO CROSS SEC TION 10 '1 ° CROSS SECTION 105 w I ~ ffiNH+4+~ lL

EXPL ANAT I ON -z ~ L ond - surfoce profil e '1:1 zt:t1 z Wo ter - surfoce eleva tion of 1,4 20 c II t;j 0 L ei I tonk Righi bonk surveyed Dec ember 14, 15 , 19 70 - 90 H 1- ---x--- ~ High water. November, 1950 t:t1 80 w --<>-- ....1 High water. J onu ory . 1969 70 w ---o-- Hioh water. J onuory. 19 70 60 D~I111 1:Ntn I 0 5 0 10 0 15 0 200 F EE T

HORIZ ONT A L SCA L E

Lei 1 bonk Rioht bon k II I I l I 10 I I I I i I o I I I 90 I I ~ I I I 'I ~ I \ II' J 8 0 I I i I r--o- J v 1\,-~ -t- I _ 70 I I \ I I I I -- so I \ / , i I "-,.. I I I ' J I I I 50 l : I I I I I : i I I I l CROSS SECT I ON I 0 7 "'...... 62 CHANNEL CAPACITY, MOKELUMNE RIVER, CALIFORNIA

CROSS SECTIONS 108-111

IT r l I - 2- ~ -f- : f t ~ ! - I ~ - --· - - ~

\_ - ,__ i---r--- 1 ~

- f..-- - - 1-1--·-

j; ·--- I

- - ~-f-. f--1- I r" - - - } '- :- - - I - - -- -

\ f-- l -- '- - - - - ~ - ·- c- - I ·- I_ r CL -- ·- --I_ - ~- ) - 1- rl-j! ~ -- - - -~ L_ j - !- ~ ~- -f-f- 1-- - - - 1- z z - c: 1- 0 = 0 -r- !: 1-- .0 ,_ ,_ ~ \ u u f- UJ - - -

Left bonk Right bonk !1 0

100

90

1- w w IJ.. 70 ~ z- 1-d ~ z Cj H -0 1- f>;3 C/) <( > w _J w 90

80

9o I I I' ,.- ! - I \ 1 I I ,~ ' 90 r---~--~--~----r---~---+--~----+

8o I I I I I It= =r =:;r ; ' 8 0 r-~---t---r--i---t---r-~~-+--~--_J~

70 ~~~~~~7-__ L___ L_ __ L_ __ L_~L_ __ L_ __ L_ __ L__j 70~~--~---t---t---t---r--~--~--+---+-~~~~_j

60 ' 0'\ w 0\ ~

ll~efl

Left bonk RlQhl bonk 100 10

30 I I =--=--- ==t==>k 30

80 ' 8 0

7 ° CROSS SECTION 113

60 L-- CROSS SECT ION 118 Itr:1 t""i

(") t- w Ri qht bonk L eft bonk ~ w !20·----r- > u.. (") Lei I bonk Ri qht bonk H II z ~ - . !0 z 8 0 30 ~ - ::: k! 11!!31B tr:1 t- I t""i CROSS SEC t ~ ll timd 1#3 w ~ _J tr:1 w EXPLANATION ~ H L and-surface profile Let I bonk Ri ght bonk 13 ~ Water-surface elevation of 1, 420 cIs ~ surveyed December 14, 15, 1970 "' 12 --o-- (") HIQh water , January, 1969 II ~ ---o-- H Hiqh water. January, 1970 t'%j 10 0 () ::0 0 ~ 30 0 50 100 150 200 FEET Ul H Ul HORIZONTAL SCALE > ,Ul SO CROSS SECT I ON 122 () -; 0 z Ul

(]) I i\i N