Methods of Distributed and Nonlinear Process Control: Structuredness, Optimality and Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Methods of Distributed and Nonlinear Process Control: Structuredness, Optimality and Intelligence Methods of Distributed and Nonlinear Process Control: Structuredness, Optimality and Intelligence A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Wentao Tang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Prodromos Daoutidis May, 2020 c Wentao Tang 2020 ALL RIGHTS RESERVED Acknowledgement Before meeting with my advisor Prof. Prodromos Daoutidis, I was not determined to do a Ph.D. in process control or systems engineering; after working with him, I could not imagine what if I had chosen a different path. The important decision that I made in the October of 2015 turned out to be most correct, that is, to follow an advisor who has the charm to always motivate me to explore the unexploited lands, overcome the obstacles and make achievements. I cherish the freedom of choosing different problems of interest and the flexibility of time managing in our research group. Apart from the knowledge of process control, I have learned a lot from Prof. Daoutidis and will try my best to keep learning, about the skills to write, present and teach, the pursuit of knowledge and methods with both elegance of fundamental theory and a promise of practical applicability, and the pride and fervor for the undertaken works. \The high hill is to be looked up to; the great road is to be travelled on."1 I want to express my deepest gratitude to him. Prof. Qi Zhang always gives me very good suggestions and enlightenment with his abundant knowledge in optimization since he joined our department. It was a joy to consult him for fresh ideas and interchange our views on a wide variety of things. Qi is not only an intelligent researcher, a thoughtful teacher, but also a generous friend. I still owe him a countless number of meals so far. I would like to thank my great colleagues: Nahla Alamoodi, Andrew Allman, Davood Babaei Pourkargar, Pedro Constantino, Udit Gupta, Victoria Jones, Lixia Kang, Shaaz Khatib, Jingjun Liu, Abdulla Malek, Ilias Mitrai, Nitish Mittal, Manjiri Moharir, Matthew Palys, Hanchu Wang, and Michael Zachar, with whom sharing the office space and discussing the research projects have always been very pleasing. Former mem- bers Seongmin Heo, Sujit Jogwar and Srinivas Rangarajan laid important foundations for a part of my research, and the outstanding works of Michael Baldea, Panagiotis Christofides, and Aditya Kumar introduced me to the history of our group's research when I was starting my work. I have learned many skills and great ideas from my colleagues, and our collaborations turned out to be very fruitful as reflected by our coauthored papers. I am also glad that some of my ideas will continued to be developed by younger members of our group. \I am not one who was born in the possession of knowledge; I am one who is fond of antiquity, and earnest in seeking it there".2 Thanks to the teachings of all the professors 1Classic of Poetry: Minor Odes of Kingdom: Che Xia (《i經·小Å·Ê舝》). 2Analects (of Confucius): Shu Er (《論語·述而》). i that have delivered the courses in chemical engineering, control, and optimization that I have taken during the first two years before my preliminary exam, especially Professors Mihailo Jovanovi´c,Andrew Lamperski, Zhi-Quan Luo and Shuzhong Zhang, I have gained the fundamentals of these disciplines to start my research. I would not be able to list the names of all the authors of the books, chapters, papers and tutorial materials that I have read, whose works have refreshed my understanding of the relevant areas as well as my own research over and over again, and the friends in the process systems engineering and control areas that I have talked to from time to time. During the painful processes of submitting and revising papers, I have encountered some sharp but anonymous reviewers who gave very critical but constructive comments. Their opinions forced me to enhance my understanding of many relevant problems. Of course, this Ph.D. is built upon my previous 16 years of study. I feel obligated to express my gratitude to the education received from my great teachers. Ms. Zhu Qiaohua (1巧華) in Lengshuitan Fourth Elementary School taught me Mathematics and told me right from wrong during the pupil years. In Nanya Middle school, Mr. Li Weiqing (NI清) was my first formal English teacher who developed a great interest in this language. The History classes by Mr. Yin Chi'e (9³T) taught me to understand things always in combination with their history. In Yali High School, Mr. Zhang Liu's (5鎏) Mathematics was my most enjoyable course, and I became an engineering student largely due to his encouragement. Mr. Zhou Shuqiao's (h9¬) Chinese class made me a fan of ancient literature and linguistics, and Mr. Li Yun's (N贇) Philosophy left me a deep impression of his dialectic and abstract lines of thinking. At Tsinghua University, Profs. Wentao Zhu (1文濤), Diannan Lu (盧Ç`) and Lixin Yu (YË新) delivered great lectures in Physical Chemistry, Chemical Engineering Thermodynamics, and Principles of Chemical Engineering, respectively. When doing my second degree in Mathematics, the rigor of Prof. Tianquan Chen (s)權)'s Real Analysis and the elegance of Profs. Meirong Zhang (章梅®) and Huaiyu Jian's (!懷玉) Ordinary and Partial Differential Equations attracted me a lot. I learned Russian as a Secondary Foreign Language from Prof. Min Zhang (5O) for a year, which turned out to be helpful when I dive into the classical control theorists' papers. Doing a Ph.D. in this frigid and strange land is not an easy journey. The doctors and nurses at Boynton Clinics, the unknown citizens who helped me to move my car out of snows, and the chestnut chicken and grilled fish at Tea House Restaurant all made me much warmer through the long-lasting winters. The help from my friends largely ii relieved my difficulties during my first semesters in Minnesota and after my little car went missing. I am grateful to the fate that has brought my beloved wife Yixin Ye and me together. She has always been the one that cheers me up in sadness, accompanies me in difficulties, encourages me in frustrations, and shares every little mood { be it proud, delight, upset or anger { that floats in my mind from time to time. For so many times in the flight to Pittsburgh, I looked through the clouds, and saw a little rainbow above the ripples of Lake Michigan reflecting the sun's beams; I realized that she was awaiting at the destination. There might be more rivers and oceans for us to travel across, more streets and valleys for us to walk through, more gains and losses coming into our lives, but the meaning of this journey is but a journey together with her. Due to the very apparent reason, I am returning home less frequently, but my families' unwavering love can always be felt. Born in an ordinary family, I understand that it was uneasy for my parents to raise me up and find me good education faraway from home for years. Knowing that they are well has always been the biggest motivation for my hardworking, although not being able to do much for them is in turn a source of guilt. And when missing my small hometown in southwestern Hunan, I would read in my heart a poem of it:3 High upon Mount Jiuyi, white clouds diffuse; ]·q上}雲飛, Down to the green hills, by wind descended the Princesses. 帝PX¨下翠®。 They sparkled the wild bamboos with their tears so profuse, 斑ù一枝C滴淚, when the clouds turned rosy behind their layers of dresses. 紅霞,5~Íc。 Waves of Dongting surge against the overwhelming snows; 洞­波g#)ê, Folks of Long Isle chant to the rhyme of earth-shaking poems. w島ºL動0i。 And when I was lost in this broad and untrammeled dream, 我2因K"寥廓, the land of hibiscus is covered with the morning sun's gleam. 芙蓉國Ïá朝暉。 3Mao Zedong, A Rhyme of Qil¨u:Reply to a Friend (毛¤q《七律·T˺》), 1961. iii To my wife and my parents iv Abstract Chemical processes are intrinsically nonlinear and often integrated into large-scale net- works, which are difficult to control effectively. The traditional challenges faced by process control, as well as the modern vision of transitioning industries into a smart manufacturing paradigm, requires the instillation of new perspectives and application of new methods to the control of chemical processes. The goal is to realize highly automated, efficient, well-performing and flexible control strategies for nonlinear, in- terconnected and uncertain systems. Motivated by this, in this thesis, the following three important aspects (objectives) for contemporary process control { structuredness, optimality, and intelligence { are discussed in the corresponding three parts. 1. For the control of process networks in a structured and distributed manner, a network-theoretic perspective is introduced, which suggests to find a decompo- sition of the problem according to the block structures in the network. Such a perspective is examined by sparse optimal control of Laplacian network dynamics. Community detection-based methods are proposed for input{output bipartite and variable-constraint network representations and applied to a benchmark chemical process. 2. For the optimality of control, we first derive a computationally efficient algo- rithm for nonconvex constrained distributed optimization with theoretically prov- able convergence properties { ELLADA, which is applied to distributed nonlinear model predictive control of a benchmark process system. We derive bilevel op- timization formulations for the Lyapunov stability analysis of nonlinear systems, and stochastic optimization for optimally designing the Lyapunov function, which can be further integrated with the optimal process design problem.
Recommended publications
  • Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
    Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux..
    [Show full text]
  • Numericaloptimization
    Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A.
    [Show full text]
  • Pysp: Modeling and Solving Stochastic Programs in Python
    Noname manuscript No. (will be inserted by the editor) PySP: Modeling and Solving Stochastic Programs in Python Jean-Paul Watson · David L. Woodruff · William E. Hart Received: September 6, 2010. Abstract Although stochastic programming is a powerful tool for modeling decision- making under uncertainty, various impediments have historically prevented its wide- spread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intri- cate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user speci- fies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deter- ministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets’ Progressive Hedging algorithm. Our particu- lar focus is on the use of Progressive Hedging as an effective heuristic for approximating Jean-Paul Watson Sandia National Laboratories Discrete Math and Complex Systems Department PO Box 5800, MS 1318 Albuquerque, NM 87185-1318 E-mail: [email protected] David L.
    [Show full text]
  • Pyomo Documentation Release 5.6.2.Dev0
    Pyomo Documentation Release 5.6.2.dev0 Pyomo Feb 06, 2019 Contents 1 Installation 3 1.1 Using CONDA..............................................3 1.2 Using PIP.................................................3 2 Citing Pyomo 5 2.1 Pyomo..................................................5 2.2 PySP...................................................5 3 Pyomo Overview 7 3.1 Mathematical Modeling.........................................7 3.2 Overview of Modeling Components and Processes...........................9 3.3 Abstract Versus Concrete Models....................................9 3.4 Simple Models.............................................. 10 4 Pyomo Modeling Components 17 4.1 Sets.................................................... 17 4.2 Parameters................................................ 23 4.3 Variables................................................. 24 4.4 Objectives................................................ 25 4.5 Constraints................................................ 26 4.6 Expressions................................................ 26 4.7 Suffixes.................................................. 31 5 Solving Pyomo Models 41 5.1 Solving ConcreteModels......................................... 41 5.2 Solving AbstractModels......................................... 41 5.3 pyomo solve Command....................................... 41 5.4 Supported Solvers............................................ 42 6 Working with Pyomo Models 43 6.1 Repeated Solves............................................. 43 6.2 Changing
    [Show full text]
  • Research and Development of an Open Source System for Algebraic Modeling Languages
    Vilnius University Institute of Data Science and Digital Technologies LITHUANIA INFORMATICS (N009) RESEARCH AND DEVELOPMENT OF AN OPEN SOURCE SYSTEM FOR ALGEBRAIC MODELING LANGUAGES Vaidas Juseviˇcius October 2020 Technical Report DMSTI-DS-N009-20-05 VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius LT-08412, Lithuania www.mii.lt Abstract In this work, we perform an extensive theoretical and experimental analysis of the char- acteristics of five of the most prominent algebraic modeling languages (AMPL, AIMMS, GAMS, JuMP, Pyomo), and modeling systems supporting them. In our theoretical comparison, we evaluate how the features of the reviewed languages match with the requirements for modern AMLs, while in the experimental analysis we use a purpose-built test model li- brary to perform extensive benchmarks of the various AMLs. We then determine the best performing AMLs by comparing the time needed to create model instances for spe- cific type of optimization problems and analyze the impact that the presolve procedures performed by various AMLs have on the actual problem-solving times. Lastly, we pro- vide insights on which AMLs performed best and features that we deem important in the current landscape of mathematical optimization. Keywords: Algebraic modeling languages, Optimization, AMPL, GAMS, JuMP, Py- omo DMSTI-DS-N009-20-05 2 Contents 1 Introduction ................................................................................................. 4 2 Algebraic Modeling Languages .........................................................................
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • Introduction to Modeling Optimization Problems in Python
    Open Source Tools for Optimization in Python Ted Ralphs SciPy 2015 IIT Bombay, 16 Decmber 2015 T.K. Ralphs (Lehigh University) COIN-OR December 16, 2015 Outline 1 Introduction 2 PuLP 3 Pyomo 4 Solver Studio 5 Advanced Modeling Sensitivity Analysis Tradeoff Analysis (Multiobjective Optimization) Nonlinear Modeling Integer Programming Stochastic Programming T.K. Ralphs (Lehigh University) COIN-OR December 16, 2015 Outline 1 Introduction 2 PuLP 3 Pyomo 4 Solver Studio 5 Advanced Modeling Sensitivity Analysis Tradeoff Analysis (Multiobjective Optimization) Nonlinear Modeling Integer Programming Stochastic Programming T.K. Ralphs (Lehigh University) COIN-OR December 16, 2015 Algebraic Modeling Languages Generally speaking, we follow a four-step process in modeling. Develop an abstract model. Populate the model with data. Solve the model. Analyze the results. These four steps generally involve different pieces of software working in concert. For mathematical programs, the modeling is often done with an algebraic modeling system. Data can be obtained from a wide range of sources, including spreadsheets. Solution of the model is usually relegated to specialized software, depending on the type of model. T.K. Ralphs (Lehigh University) COIN-OR December 16, 2015 Open Source Solvers: COIN-OR The COIN-OR Foundation A non-profit foundation promoting the development and use of interoperable, open-source software for operations research. A consortium of researchers in both industry and academia dedicated to improving the state of computational research in OR. A venue for developing and maintaining standards. A forum for discussion and interaction between practitioners and researchers. The COIN-OR Repository A collection of interoperable software tools for building optimization codes, as well as a few stand alone packages.
    [Show full text]
  • Casadi Tutorial – Introduction
    Lund, 6 December 2011 CasADi tutorial { Introduction Joel Andersson Johan Akesson˚ Department of Electrical Engineering (ESAT-SCD) & Optimization in Engineering Center (OPTEC) Katholieke Universiteit Leuven OPTEC (ESAT { SCD) { Katholieke Universiteit Leuven OPTEC { Optimization in Engineering Interdiciplinary center at Katholieke Universiteit Leuven, Belgium (Flemish region) since 2005 20 professors, 10 postdocs and 60+ PhD students from Mech.Eng, Elec.Eng, Civ.Eng, Comp.Sc. Principle investigator: Moritz Diehl Aim: Bridge the gap between state-of-the optimization algorithms and applications Applications: Kite power, river networks, robot control, chemical reactors, etc. www.kuleuven.be/optec CasADi tutorial { Introduction | Joel Andersson Johan Akesson˚ Outline 1 Optimization { an overview 2 What is CasADi? 3 Schedule of tutorials 4 Exercise: Getting started Optimization { an overview What is optimization? Optimization = search for the best solution in mathematical terms: minimization or maximization of an objective function f (x) depending on variables x subject to constraints Equivalence of maximization and minimization problems: (from now on only minimization) f(x) -f(x) x x x* Maximum x* Minimum CasADi tutorial { Introduction | Joel Andersson Johan Akesson˚ Optimization { an overview Constrained optimization Often variable x shall satisfy certain constraints, e.g.: x ≥ 0, 2 2 x1 + x2 = C. General formulation minimize f (x) (1) subject to g(x) ≥ 0; h(x) = 0 f objective (cost) function g inequality constraint function h equality constraint
    [Show full text]
  • Pyomo and Jump – Modeling Environments for the 21St Century
    Qi Chen and Braulio Brunaud Pyomo and JuMP – Modeling environments for the 21st century EWO Seminar Carnegie Mellon University March 10, 2017 1.All the information provided is coming from the standpoint of two somewhat expert users in Pyomo and Disclaimer JuMP, former GAMS users 2. All the content is presented to the best of our knowledge 2 The Optimization Workflow . These tasks usually involve many tools: Data Input – Databases – Excel – GAMS/AMPL/AIMMS/CPLEX Data – Tableau Manipulation . Can a single tool be used to complete the entire workflow? Optimization Analysis Visualization 3 Optimization Environments Overview Visualization End User ● Different input sources ● Easy to model ● AMPL: Specific modeling constructs ○ Piecewise ○ Complementarity Modeling conditions ○ Logical Implications ● Solver independent models ● Developing complex algorithms can be challenging ● Large number of solvers available Advanced Optimization algorithms Expert ● Commercial 4 Optimization Environments Overview Visualization End User ● Different input sources ● Build input forms ● Easy to model ● Multiplatform: ○ Standalone Modeling ○ Web ○ Mobile ● Solver independent models ● Build visualizations ● Commercial Advanced Optimization algorithms Expert 5 Optimization Environments Overview Visualization End User ● Different input sources ● Hard to model ● Access to the full power of a solver ● Access to a broad range of tools Modeling ● Solver-specific models ● Building visualizations is hard ● Open source and free Advanced Optimization Expert algorithms solver
    [Show full text]
  • Computational Integer Programming Lecture 3
    Computational Integer Programming Lecture 3: Software Dr. Ted Ralphs Computational MILP Lecture 3 1 Introduction to Software (Solvers) • There is a wealth of software available for modeling, formulation, and solution of MILPs. • Commercial solvers { IBM CPLEX { FICO XPress { Gurobi • Open Source and Free for Academic Use { COIN-OR Optimization Suite (Cbc, SYMPHONY, Dip) { SCIP { lp-solve { GLPK { MICLP { Constraint programming systems 1 Computational MILP Lecture 3 2 Introduction to Software (Modeling) • There are two main categories of modeling software. { Algebraic Modeling Languages (AMLs) { Constraint Programming Systems (CPSs) • According to our description of the modeling process, AMLs should probably be called \formulation languages". • AMLs assume the problem will be formulated as a mathematical optimization problem. • Although AMLs make the formulation process more convenient, the user must provide an initial \formulation" and decide on an appropriate solver. • Solvers do some internal reformulation, but this is limited. • Constraint programming systems use a much higher level description of the model itself. • Reformulation is done internally before automatically passing the problem to the most appropriate of a number of solvers. 2 Computational MILP Lecture 3 3 Algebraic Modeling Languages • A key concept is the separation of \model" (formulation, really) from \data." • Generally speaking, we follow a four-step process in modeling with AMLs. { Develop an \abstract model" (more like a formulation). { Populate the formulation with data. { Solve the Formulation. { Analyze the results. • These four steps generally involve different pieces of software working in concert. • For mathematical optimization problems, the modeling is often done with an algebraic modeling system. • Data can be obtained from a wide range of sources, including spreadsheets.
    [Show full text]
  • MPEC Methods for Bilevel Optimization Problems∗
    MPEC methods for bilevel optimization problems∗ Youngdae Kim, Sven Leyffer, and Todd Munson Abstract We study optimistic bilevel optimization problems, where we assume the lower-level problem is convex with a nonempty, compact feasible region and satisfies a constraint qualification for all possible upper-level decisions. Replacing the lower- level optimization problem by its first-order conditions results in a mathematical program with equilibrium constraints (MPEC) that needs to be solved. We review the relationship between the MPEC and bilevel optimization problem and then survey the theory, algorithms, and software environments for solving the MPEC formulations. 1 Introduction Bilevel optimization problems model situations in which a sequential set of decisions are made: the leader chooses a decision to optimize its objective function, anticipating the response of the follower, who optimizes its objective function given the leader’s decision. Mathematically, we have the following optimization problem: minimize f ¹x; yº x;y subject to c¹x; yº ≥ 0 (1) y 2 argmin f g¹x; vº subject to d¹x; vº ≥ 0 g ; v Youngdae Kim Argonne National Laboratory, Lemont, IL 60439, e-mail: [email protected] Sven Leyffer Argonne National Laboratory, Lemont, IL 60439, e-mail: [email protected] Todd Munson Argonne National Laboratory, Lemont, IL 60439, e-mail: [email protected] ∗ Argonne National Laboratory, MCS Division Preprint, ANL/MCS-P9195-0719 1 2 Youngdae Kim, Sven Leyffer, and Todd Munson where f and g are the objectives for the leader and follower, respectively, c¹x; yº ≥ 0 is a joint feasibility constraint, and d¹x; yº ≥ 0 defines the feasible actions the follower can take.
    [Show full text]
  • 1. Overview of Pyomo John D
    1. Overview of Pyomo John D. Siirola Discrete Math & Optimization (1464) Center for Computing Research Sandia National Laboratories Albuquerque, NM USA <VENUE> <DATE> Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP Pyomo Overview Idea: a Pythonic framework for formulating optimization models . Provide a natural syntax to describe mathematical models . Formulate large models with a concise syntax . Separate modeling and data declarations . Enable data import and export in commonly used formats # simple.py Highlights: from pyomo.environ import * . Python provides a M = ConcreteModel() clean, intuitive syntax M.x1 = Var() M.x2 = Var(bounds=(-1,1)) M.x3 = Var(bounds=(1,2)) . Python scripts provide M.o = Objective( a flexible context for expr=M.x1**2 + (M.x2*M.x3)**4 + \ exploring the structure M.x1*M.x3 + \ M.x2*sin(M.x1+M.x3) + M.x2) of Pyomo models model = M Overview of Pyomo 2 Overview . What happened to Coopr? . Three really good questions: . Why another Algebraic Modeling Language (AML)? . Why Python? . Why open-source? . Pyomo: Software library infrastructure . Pyomo: Team overview and collaborators / users . Where to find more information… Overview of Pyomo 3 What Happened to Coopr? . Users were installing Coopr but using Pyomo . Pyomo modeling extensions were not distinct enough . Researchers cited “Coopr/Pyomo” . Users/Developers were confused by the coopr and pyomo commands . Developers were coding in Coopr but talking about Pyomo We needed to provide clear branding this project! Overview of Pyomo 4 Optimization Modeling Goal: .
    [Show full text]