D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II

Total Page:16

File Type:pdf, Size:1020Kb

D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and Interfactory Integration and AutomaTION (Grant Agreement No 723145) D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II Date: 2019-02-27 Version 1.0 Published by the COMPOSITION Consortium Dissemination Level: Public Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 723145 COMPOSITION D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II Document control page Document file: D5.4 Continuous deep learning toolkit for real time adaptation II v1.0.docx Document version: 1.0 Document owner: ISMB Work package: WP5 – Key Enabling Technologies for Intra- and Interfactory Interoperability and Data Analysis Task: T5.2 – Continuous Deep Learning Toolkit for real time adaptation Deliverable type: O Document status: Approved by the document owner for internal review Approved for submission to the EC Document history: Version Author(s) Date Summary of changes made 0.1 Paolo Vergori (LINKS) 29-11-2018 Definition of table of contents 0.8 Paolo Vergori, Nadir Raimondo, Luigi 19-02-2019 Updated according to the new development Giugliano (LINKS) 0.9 Luigi Giugliano (LINKS) 25-02-2019 Merged the review of Peter Haigh (TNI-UCC) 1.0 Luigi Giugliano (LINKS) 27-02-2019 Merged the review of Nacho González (ATOS) Internal review history: Reviewed by Date Summary of comments Peter Haigh (TNI-UCC) 23-02-2019 Approved with comments Nacho González (ATOS) 27-02-2019 Approved with minor comments Legal Notice The information in this document is subject to change without notice. The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material. Possible inaccuracies of information are under the responsibility of the project. This report reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein. Document version: 1.0 Page 2 of 120 2019-02-27 COMPOSITION D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II 1 Executive Summary ................................................................................................................. 4 2 Abbreviations and acronyms .................................................................................................. 5 3 Introduction .............................................................................................................................. 6 3.1 Summary .......................................................................................................................... 6 3.2 Background ...................................................................................................................... 6 4 State-Of-The-Art analysis ........................................................................................................ 7 4.1 Intro to machine learning .................................................................................................. 7 4.2 Intro to neural network and deep learning ........................................................................ 8 4.3 Deep Feed Forward NN ................................................................................................... 8 4.4 Recurrent neural network and long-short term memory network ..................................... 9 5 Frameworks comparison .......................................................................................................10 5.1 Introduction to deep learning frameworks ......................................................................10 5.2 Evaluation criteria ...........................................................................................................10 5.3 Comparison ....................................................................................................................11 6 Inter and Intra-factory end users’ historical data assessment ..........................................19 6.1 Predictive maintenance (UC-BSL-2) ..............................................................................20 6.1.1 Background ..............................................................................................................20 6.1.2 Data Overview .........................................................................................................21 6.1.3 Fitness for usage .....................................................................................................24 6.1.4 Data assessment .....................................................................................................25 6.2 Prices and logistics (UC-ELDIA-1) .................................................................................25 6.2.1 Background ..............................................................................................................25 6.2.2 Data Overview .........................................................................................................26 6.2.3 Fitness for usage .....................................................................................................27 6.2.4 Data assessment .....................................................................................................27 7 Deep Learning Toolkit design ...............................................................................................28 7.1 Supervised learning results on price prediction from UC-ELDIA-1 ................................28 7.1.1 Eldia goods prices estimation with continuous learning ..........................................28 7.1.2 Eldia goods prices estimation with additional features ............................................31 7.2 Supervised learning results on predictive maintenance from UC-BSL-2 .......................32 7.2.1 Brady oven ...............................................................................................................32 7.2.2 Rhythmia oven .........................................................................................................39 7.2.3 Audio data preliminary analysis and solutions .........................................................47 7.3 Comparison of CPU and GPU training ...........................................................................48 8 Deep Learning Toolkit deployment ......................................................................................51 9 Conclusions ............................................................................................................................55 10 Annex I ....................................................................................................................................56 10.1 Unfitted use cases ..........................................................................................................56 10.1.1 Maintenance Decision Support (UC-KLE-1) .......................................................56 10.1.2 Fill level classification use cases (UC-ELDIA-1 UC-ELDIA-2) ...........................57 10.2 Deep Learning Toolkit preliminary design and testing ...................................................57 10.2.1 Introduction .........................................................................................................57 10.2.2 Feed Forward NN in TensorFlow........................................................................58 10.2.3 Feed Forward NN in H2O ....................................................................................64 10.2.4 Recurrent NN for time series regression ............................................................68 11 Annex II .................................................................................................................................100 12 List of Figures and Tables ...................................................................................................118 12.1 Figures ..........................................................................................................................118 12.2 Tables ...........................................................................................................................119 13 References ............................................................................................................................120 Document version: 1.0 Page 3 of 120 2019-02-27 COMPOSITION D5.4 Continuous Deep Learning Toolkit for Real Time Adaptation II 1 Executive Summary The present document named “D5.4 Continuous deep learning toolkit for real time adaptation II.docx” is a public deliverable of the COMPOSITION project, co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 723145. It reports the final results of task “5.2 – Continuous Deep Learning Toolkit for real time adaptation” that foresees its development in work package 5 “Key Enabling Technologies for Intra- and Interfactory Interoperability and Data”. The document owner is ISMB and in this final version is a reiteration of the submitted at M16, namely D5.3 Continuous deep learning toolkit for real time adaptation I. This version highlights the final results after a second iteration of task 5.2, regarding
Recommended publications
  • March 2012 Version 2
    WWRF VIP WG CONNECTED VEHICLES White Paper Connected Vehicles: The Role of Emerging Standards, Security and Privacy, and Machine Learning Editor: SESHADRI MOHAN, CHAIR CONNECTED VEHICLES WORKING GROUP PROFESSOR, SYSTEMS ENGINEERING DEPARTMENT UA LITTLE ROCK, AR 72204, USA Project website address: www.wwrf.ch This publication is partly based on work performed in the framework of the WWRF. It represents the views of the authors(s) and not necessarily those of the WWRF. EXECUTIVE SUMMARY The Internet of Vehicles (IoV) is an emerging technology that provides secure vehicle-to-vehicle (V2V) communication and safety for drivers and their passengers. It stands at the confluence of many evolving disciplines, including: evolving wireless technologies, V2X standards, the Internet of Things (IoT) consisting of a multitude of sensors that are housed in a vehicle, on the roadside, and in the devices worn by pedestrians, the radio technology along with the protocols that can establish an ad-hoc vehicular network, the cloud technology, the field of Big Data, and machine intelligence tools. WWRF is presenting this white paper inspired by the developments that have taken place in recent years in standards organizations such as IEEE and 3GPP and industry consortia efforts as well as current research in academia. This white paper provides insights into the state-of-the-art regarding 3GPP C-V2X as well as security and privacy of ETSI ITS, IEEE DSRC WAVE, 3GPP C-V2X. The White Paper further discusses spectrum allocation worldwide for ITS applications and connected vehicles. A section is devoted to a discussion on providing connected vehicles communication over a heterogonous set of wireless access technologies as it is imperative that the connectivity of vehicles be maintained even when the vehicles are out of coverage and/or the need to maintain vehicular connectivity as a vehicle traverses multiple wireless access technology for access to V2X applications.
    [Show full text]
  • Comparativa De Tecnologías De Deep Learning
    Universidad Carlos III de Madrid Departamento de Informática Proyecto Final de Carrera Comparativa de Tecnologías de Deep Learning Author: Alberto Lozano Benjumea Supervisors: Alejandro Baldominos Gómez Ignacio Navarro Martín Leganés.Septiembre de 2017 Alberto Lozano Benjumea Universidad Carlos III de Madrid Avenida de la Universidad, 30 28911 Leganés, Madrid (Spain) Email: [email protected] “Just because it’s not nice doesn’t mean it’s not miraculous” Terry Pratchett This page has been intentionally left blank. Abstract Este proyecto se localiza en la rama de aprendizaje automático del campo de la in- teligencia artificial. El objetivo del mismo es realizar una comparativa de los diferentes frameworks y bibliotecas existentes en el mercado, a día de la realización del presente documento, sobre aprendizaje profundo. Esta comparativa, pretende compararlos us- ando diferentes métricas y una batería heterogénea de pruebas. Adicionalmente se realizará un detallado estudio del arte indicando las técnicas sobre las que sustentan dichas bibliotecas. Se indicarán con ejemplos cómo usar cada una de estas técnicas, las ventajas e inconvenientes de las mismas y sus relaciones. Keywords: aprendizaje profundo, aprendizaje automático frameworks, comparativa v This page has been intentionally left blank. Agradecimientos Probablemente se podría escribir la mitad del documento con agradecimientos a las personas que han influido en que este documento pueda existir. Podría partir de mi abuelo quién me enseñó la informática y lo que se podía lograr con el Amstrad y de ahí hasta el día de hoy, a familia, compañeros, amigos que te influyen, incluso las personas que influyen negativamente, con los que ves que que camino no debes escoger.
    [Show full text]
  • Giant List of AI/Machine Learning Tools & Datasets
    Giant List of AI/Machine Learning Tools & Datasets AI/machine learning technology is growing at a rapid pace. There is a great deal of active research & big tech is leading the way. Luckily there are also a lot of resources out there for the technologist to utilize. So many we had to cherry pick what look like the most legit & useful tools. 1. Accord Framework http://accord-framework.net 2. Aligned Face Dataset from Pinterest (CCO) https://www.kaggle.com/frules11/pins-face-recognition 3. Amazon Reviews Dataset https://snap.stanford.edu/data/web-Amazon.html 4. Apache SystemML https://systemml.apache.org 5. AWS Open Data https://registry.opendata.aws 6. Baidu Apolloscapes http://apolloscape.auto 7. Beijing Laboratory of Intelligent Information Technology Vehicle Dataset http://iitlab.bit.edu.cn/mcislab/vehicledb 8. Berkley Caffe http://caffe.berkeleyvision.org 9. Berkley DeepDrive https://bdd-data.berkeley.edu 10. Caltech Dataset http://www.vision.caltech.edu/html-files/archive.html 11. Cats in Movies Dataset https://public.opendatasoft.com/explore/dataset/cats-in-movies/information 12. Chinese Character Dataset http://www.iapr- tc11.org/mediawiki/index.php?title=Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_Characters_(HIT- OR3C) 13. Chinese Text in the Wild Dataset (CC4.0) https://ctwdataset.github.io 14. CelebA Dataset (research only) http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 15. Cityscapes Dataset https://www.cityscapes-dataset.com | License 16. Clash of Clans User Comments Dataset (GPL 2) https://www.kaggle.com/moradnejad/clash-of-clans-50000-user-comments 17. Core ML https://developer.apple.com/machine-learning 18. Cornell Movie Dialogs Corpus http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html 19.
    [Show full text]
  • Machine Learning
    1 LANDSCAPE ANALYSIS MACHINE LEARNING Ville Tenhunen, Elisa Cauhé, Andrea Manzi, Diego Scardaci, Enol Fernández del Authors Castillo, Technology Machine learning Last update 17.12.2020 Status Final version This work by EGI Foundation is licensed under a Creative Commons Attribution 4.0 International License This template is based on work, which was released under a Creative Commons 4.0 Attribution License (CC BY 4.0). It is part of the FitSM Standard family for lightweight IT service management, freely available at www.fitsm.eu. 2 DOCUMENT LOG Issue Date Comment Author init() 8.9.2020 Initialization of the document VT The second 16.9.2020 Content to the most of chapters VT, AM, EC version Version for 6.10.2020 Content to the chapter 3, 7 and 8 VT, EC discussions Chapter 2 titles 8.10.2020 Chapter 2 titles and Acumos added VT and bit more to the frameworks Towards first full 16.11.2020 Almost every chapter has edited VT version First full version 17.11.2020 All chapters reviewed and edited VT Addition 19.11.2020 Added Mahout and H2O VT Fixes 22.11.2020 Bunch of fixes based on Diego’s VT comments Fixes based on 24.11.2020 2.4, 3.1.8, 6 VT discussions on previous day Final draft 27.11.2020 Chapters 5 - 7, Executive summary VT, EC Final draft 16.12.2020 Some parts revised based on VT comments of Álvaro López García Final draft 17.12.2020 Structure in the chapter 3.2 VT updated and smoke libraries etc.
    [Show full text]
  • Deep Neural Networks Practical Examples of Deep Neural Networks
    Introduction Why to use (deep) neural networks? Types of deep neural networks Practical examples of deep neural networks Deep Neural Networks Convolutional Neural Networks René Pihlak [email protected] Department of Software Sciences School of Information Technologies Tallinn University of Technology April 29, 2019 . René Pihlak CNN Introduction Why to use (deep) neural networks? Self-introduction Types of deep neural networks Topics to cover Practical examples of deep neural networks Table of Contents 1 Introduction Types of training Self-introduction Types of structures Topics to cover Convolutional neural network 2 Why to use (deep) neural networks? 4 Practical examples of deep neural Description networks Comparision Road defect detection Popular frameworks YOLO3: darknet 3 Types of deep neural networks Estonian sign language . René Pihlak CNN 2nd year Master’s student Current: Department of Software Sciences Past: Member of Board, Tiigrihüppe SA (now HITSA) STUDIES: WORK: Introduction Why to use (deep) neural networks? Self-introduction Types of deep neural networks Topics to cover Practical examples of deep neural networks Background . René Pihlak CNN Current: Department of Software Sciences Past: Member of Board, Tiigrihüppe SA (now HITSA) 2nd year Master’s student WORK: Introduction Why to use (deep) neural networks? Self-introduction Types of deep neural networks Topics to cover Practical examples of deep neural networks Background STUDIES: . René Pihlak CNN Current: Department of Software Sciences Past: Member of Board, Tiigrihüppe SA (now HITSA) WORK: Introduction Why to use (deep) neural networks? Self-introduction Types of deep neural networks Topics to cover Practical examples of deep neural networks Background STUDIES: 2nd year Master’s student .
    [Show full text]
  • Big Data Management of Hospital Data Using Deep Learning and Block-Chain Technology: a Systematic Review
    EAI Endorsed Transactions on Scalable Information Systems Research Article Big Data Management of Hospital Data using Deep Learning and Block-chain Technology: A Systematic Review Nawaz Ejaz1, Raza Ramzan1, Tooba Maryam1,*, Shazia Saqib1 1 Department of Computer Science, Lahore Garrison University, Lahore, Pakistan Abstract The main recompenses of remote and healthcare are sensor-based medical information gathering and remote access to medical data for real-time advice. The large volume of data coming from sensors requires to be handled by implementing deep learning and machine learning algorithms to improve an intelligent knowledge base for providing suitable solutions as and when needed. Electronic medical records (EMR) are mostly stored in a client-server database and are supported by enabling technologies like Internet of Things (IoT), Sensors, cloud, big data, Deep Learning, etc. It is accessed by several users involved like doctors, hospitals, labs, insurance providers, patients, etc. Therefore, data security from illegal access is crucial especially to manage the integrity of data . In this paper, we describe all the basic concepts involved in management and security of such data and proposed a novel system to securely manage the hospital’s big data using Deep Learning and Block-Chain technology. Keywords: Electronic medical records, big data, Security, Block-chain, Deep learning. Received on 23 December 2020, accepted on 16 March 2021, published on 23 March 2021 Copyright © 2021 Nawaz Ejaz et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
    [Show full text]
  • Outline of Machine Learning
    Outline of machine learning The following outline is provided as an overview of and topical guide to machine learning: Machine learning – subfield of computer science[1] (more particularly soft computing) that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions. Contents What type of thing is machine learning? Branches of machine learning Subfields of machine learning Cross-disciplinary fields involving machine learning Applications of machine learning Machine learning hardware Machine learning tools Machine learning frameworks Machine learning libraries Machine learning algorithms Machine learning methods Dimensionality reduction Ensemble learning Meta learning Reinforcement learning Supervised learning Unsupervised learning Semi-supervised learning Deep learning Other machine learning methods and problems Machine learning research History of machine learning Machine learning projects Machine learning organizations Machine learning conferences and workshops Machine learning publications
    [Show full text]
  • European Journal of Computer Science and Information
    European Journal of Computer Science and Information Technology Vol.9, No.2, pp.21-28, 2021 Print ISSN: 2054-0957 (Print), Online ISSN: 2054-0965 (Online) COMPARING THE TECHNOLOGIES USED FOR THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS Elda Xhumari PhD Candidate, University of Tirana, Faculty of Natural Sciences, Department of Informatics ABSTRACT: In the past few years, artificial neural networks (ANNs) have become a practice wherever it is necessary to solve problems of forecasting, classification, or control. ANNs are intuitively attractive because they are based on a primitive biological model of nervous systems. In the future, the development of such neurobiological models may lead to the creation of truly thinking computers. The areas of application of neural networks are very diverse - these are text and speech recognition, semantic search, expert systems, and decision support systems, prediction of stock prices, security systems, text analysis, etc. Based on the wide application of artificial neural networks, the application of numerous and diverse technologies can be inferred. In this research paper, a comparative approach towards the above-mentioned technologies will be undertaken in order to identify the optimal technology for each problem area in accordance with their respective advantages and disadvantages. KEYWORDS: artificial neural networks, applications, modules INTRODUCTION Artificial Neural Network (ANN) is a computational method that integrates the concepts of the human biological brain to computers for machine learning. The main purpose is to enable computers to adapt and learn the exact behaviour of human beings. As such, machine learning facilitates the continued processing of information that leads to the capacity to solve complex problems and equations that are beyond human ability (Goncalves et al., 2013).
    [Show full text]
  • Machine Learning Technique Used in Enhancing Teaching Learning Process in Education Sector and Review of Machine Learning Tools Diptiverma #1, Dr
    International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018 ISSN 2229-5518 741 Machine Learning Technique used in enhancing Teaching Learning Process in education Sector and review of Machine Learning Tools DiptiVerma #1, Dr. K. Nirmala#2 MCA Department, SavitribaiPhule Pune University DYPIMCA, Akurdi, Pune , INDIA [email protected], [email protected] Abstract: Machine learning is one of the widely rigorous study that teaching learning process has used research area in today’s world is artificial been changing over the time. The traditional intelligence and one of the scope full area is protocol of classroom teaching has been taken to Machine Learning (ML). This is study and out of box level, where e-learning, m-learning, analysis of some machine learning techniques Flipped Classroom, Design Thinking (Case used in education for particularly increasing the Method),Gamification, Online Learning, Audio & performance in teaching learning process, along Video learning, “Real-World” Learning, with review of some machine learning tools. Brainstorming, Classes Outside the Classroom learning, Role Play technique, TED talk sessions Keyword:Machine learning, Teaching Learning, are conducted to provide education beyond text Machine Learning Tools, NLP book and syllabus. I. INTRODUCTION II. MACHINE LEARNING PROCESS: Machine Learning is a science making system Machine Learning is a science of making system (computers) to understand from the past behavior smart. Machine learning we can say has improved of data or from historic data to behave smartly in the lives of human being in term of their successful every situation like human beings do. Without implementation and accuracy in predicting having the same type of situation a human can results.[11] behave or can react to the condition smartly.
    [Show full text]
  • RSNA Mini-Course Image Interpretation Science
    7/31/2017 Can deep learning help in cancer diagnosis and treatment? Lubomir Hadjiiski, PhD The University of Michigan Department of Radiology Outline • Applications of Deep Learning to Medical Imaging • Transfer Learning • Some practical aspects of Deep Learning application to Medical Imaging Neural network (NN) Input Output node node 1 7/31/2017 Convolution neural network (CNN) First hidden Second hidden layer layer Output node Input Image patch filter filter N groups M groups CNN in medical applications First hidden Second hidden layer layer Input Output Image node patch filter filter N groups M groups Chan H-P, Lo S-C B, Helvie MA, Goodsitt MM, Cheng S and Adler D D 1993 Recognition of mammographic microcalcifications with artificial neural network, RSNA Program Book 189(P) 318 Chan H-P, Lo S-C B, Sahiner B, Lam KL, Helvie MA, Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network, 1995, Medical Physics Lo S-C B, Chan H-P, Lin J-S, Li H, Freedman MT and Mun SK 1995, Artificial convolution neural network for medical image pattern recognition, Neural Netw. 8 1201-14 Sahiner B, Chan H-P, Petrick N, Wei D, Helvie MA, Adler DD and Goodsitt MM 1996 Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images, IEEE Trans.on Medical Imaging 15 Samala RK, Chan H-P, Lu Y, Hadjiiski L, Wei J, Helvie MA, Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images, 2014 Physics in Medicine and Biology Deep Learning Deep-Learning Convolutional Neural Network (DL-CNN) FC Conv1 Conv2 Local1 Local2 Pooling, Norm Pooling, Pooling, Norm Pooling, Input layer Convolution Convolution Convolution Convolution Fully connected Layer Layer Layer (local) Layer (local) layer ROI images Krizhevsky et al, 2012, Adv.
    [Show full text]
  • Machine Learning for Numerical Stabilization of Advection-Diffusion
    Machine learning for numerical stabilization of advection-diffusion PDEs Courses: Numerical Analysis for Partial Differential Equations - Advanced Programming for Scientific Computing Margherita Guido, Michele Vidulis Suprevisor: prof. Luca Ded`e 09/09/2019 Contents 1 Introduction5 2 Problem: SUPG stabilization and Isogeometric analysis7 2.1 Advection-diffusion problem.......................7 2.1.1 Weak formulation and numerical discretization using FE...8 2.2 SUPG stabilization............................9 2.2.1 A Variational Multiscale (VMS) approach...........9 2.3 Isogeometric analysis........................... 11 2.3.1 B-Spline basis functions..................... 11 2.3.2 B-Spline geometries....................... 11 2.3.3 NURBS basis functions..................... 12 2.3.4 NURBS as trial space for the solution of the Advection-Diffusion problem.............................. 12 2.3.5 Mesh refinement and convergence results............ 12 3 Artificial Neural Networks 15 3.1 Structure of an Artificial Neural Network............... 15 3.1.1 Notation.............................. 15 3.1.2 Design of an ANN........................ 16 3.2 Universal approximation property.................... 17 3.3 Backpropagation and training...................... 17 3.3.1 Some terminology........................ 17 3.3.2 The learning algorithm..................... 18 4 A Neural Network to learn the stabilization parameter 21 4.1 Our Neural Network scheme....................... 21 4.2 Mathematical formulation of the problem............... 22 4.3 Expected results............................. 24 4.4 Implementation aspects......................... 24 4.4.1 Keras............................... 24 4.4.2 C++ libraries........................... 25 5 Isoglib and OpenNN 27 5.1 Structure of IsoGlib........................... 27 5.1.1 Definition of the problem.................... 27 5.1.2 Main steps in solving process.................. 28 5.1.3 Export and visualization of the results............
    [Show full text]
  • Essential Tools for Scientific Machine Learning and Scientific AI
    Essential Tools for Scientific Machine Learning and Scientific AI Comparison of tools readily usable with differentiable programming (automatic differentiation) frameworks Subject | AD Frameworks ADIFOR or TAF ADOL-C Stan Julia (Zygote.jl, Tracker.jl, ForwardDiff.jl, etc.) TensorFlow PyTorch Misc. other good packages Language Fortran C++ Misc. Julia Python, Swift, Julia, etc. Python Neural Networks neural-fortran OpenNN None Flux.jl Built-in Built-in ADIFOR DifferentialEquations.jl / DiffEqFlux.jl (ODE, DifferentialEquations.jl Neural Differential Equations Sundials (ODE+DAE) Sundials (ODE+DAE) Sundials (ODE+DAE) torchdiffeq (non-stiff ODEs) PyMC3 (Python) SDE, DDE, DAE, hybrid, (S)PDE) (through Tensorflow.jl) FATODE PETSc TS Built-in (non-stiff ODE) Sundials.jl (ODE through DiffEqFlux.jl) diffeqpy SMT (Python) Probabilistic Programming None CPProb Built-In Gen.jl Edward Pyro sensitivity (R) Turing.jl PyMC4 pyprob ColPACK (Fortran) Sparsity Detection Built-in (TAF) Built-in None SparsityDetection.jl None None Dakota Sparse Differentiation Built-in (TAF) Built-in None SparseDiffTools.jl None None PSUDAE GPU Support CUDA CUDA OpenCL CUDANative.jl + CuArrays.jl Built-in Built-in Mondrian torch.distributed (no Distributed Dense Linear Algebra ScaLAPACK Elemental None Elemental.jl Built-in SimLab (MATLAB) factorizations) DistributedArrays.jl Elemental Halide Distributed Sparse Linear Algebra ScaLAPACK PETSc None Elemental.jl Built-in (no factorizations) Elemental PARASOL Trilinos PETSc.jl None petsc4py Elemental None Structured Linear Algebra
    [Show full text]