Effects of Monensin on Volatile Fatty Acid Kinetics in Steers Louis Armentano Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Monensin on Volatile Fatty Acid Kinetics in Steers Louis Armentano Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Effects of monensin on volatile fatty acid kinetics in steers Louis Armentano Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Armentano, Louis, "Effects of monensin on volatile fatty acid kinetics in steers " (1982). Retrospective Theses and Dissertations. 7023. https://lib.dr.iastate.edu/rtd/7023 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. UniversiV Microfilms International 300 N. ZEEB RD., ANN ARBOR, Ml 48106 8221171 Aimentano, Louis EFFECTS OF MONENSIN ON VOLATILE FATTY ACID KINETICS IN STEERS loy/a State University PH.D. 1982 University Microfilms Internâtionsi 3%N.zeebRoaa.AnnAibor,MI48106 Effects of monensin on volatile fatty acid kinetics in steers by Louis Armentano A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Animal Science Major: Nutritional Physiology Approved; Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1982 ii TABLE OF CONTENTS Page ABSTRACT vii INTRODUCTION 1 REVIEW OF LITERATURE 2 Introduction to In Vivo Kinetics 2 Microbial Metabolism in the Rumen 9 Measurement of Ruminai VFA Production 12 In vitro technique for rumen VFA production 12 Isotope dilution techniques for rumen VFA production 13 Trans-portal measurement to determine rumen VFA production 24 VFA Metabolism by Ruminant Tissues Measured In Vivo 25 Isotope dilution studies 25 Trans-organ balance studies 29 Mode of Action of Monensin 33 Effects of monensin on animal performance 33 History and chemistry of monensin 34 Effects of monensin on rumen fermentation and microbial population 35 Effects of monensin on rumen turnover and feed intake 41 Effects of monensin on digestibility 43 Effects of monensin on protein metabolism in the rumen 44 Summary of monensin effects 52 MATERIALS AND METHODS 54 Trial 1 54 Animal management and experimental design 54 Experimental protocol 58 Chemical analyses , 62 Analysis of data 65 Trial 2 70 Animals and experimental design 70 Experimental protocol 71 iii Page Chemical analyses 72 Analysis of data 78 RESULTS AND DISCUSSION 80 Trial 1 82 Trial 2 84 Combined Results of Trial 1 and Trial 2 96 General Discussion 107 Usefulness of multi-compartmental models 107 Modeling rumen VFA kinetics 109 Effects of monensin 115 SUMMARY 118 APPENDIX A: TABLES 119 APPENDIX B: INDIVIDUAL MODEL SOLUTIONS 126 APPENDIX C: SPECIFIC ACTIVITY PLOTS FOR 8327B 133 REFERENCES CITED 139 ACKNOWLEDGEMENTS 153 iv LIST OF TABLES Page Table 1. Transfer quotients for ruminai acetate, butyrate and propionate 15 Table 2. Individual VFA production rates and digestible energy intake in sheep 18 Table 3. Effect of monensin on volatile fatty acid production in vitro 36 Table 4. Effect of monensin on rumen volatile fatty acid concentrations 37 Table 5. Effect of monensin on rumen propionate production and propionate and acetate pool size in vivo 38 Table 6. Effect of monensin on growth parameters for steers before and after protein withdrawal 46 Table 7. Effects of protein percentage and monensin supplementation on rate of gain of steers and on the metabolizable energy content of the diet 47 Table 8. Effect of monensin on rumen ammonia concentration in vivo 50 Table 9. Experimental design for trial 1 56 14 Table 10. Purity of C labeled volatile fatty acids used in trial 1 and trial 2 69 Table 11. Timed events used for HPLC analysis of rumen fluid in trial 2 76 Table 12. Effects of monensin on VFA molar percen­ tages measured by gas-liquid and high pressure liquid chromatography 97 Table 13. Effects of monensin on water intake and rumen liquid turnover 106 V Page Table A-1. Doses used and data obtained from specific activity curves in trial 1 120 Table A-2. Pool size, irreversible loss, total entry rate and transfer quotients for rumen fatty acids in Trial 1 121 Table A-3. Dose, area and transfer rate matrices for steer 8325 in period A (- monensin) 122 Table A-4. Dose, area and transfer rate matrices for steer 8325 in period B (+ monensin) 123 Table A-5. Dose, area and transfer rate matrices for steer 8327 in period B (- monensin) 124 Table A-6. Dose, area and transfer rate matrices for steer 8327 in period A (+ monensin) 125 vi LIST OF FIGURES Page Figure 1. Hypothetical three compartment system 6 Figure 2. Solution of the five compartment model from trial 2 86 Figure 3. Solution of the simplified model for rumen VFA kinetics 99 Figure 4. Regression of rumen propionate production on rumen acetate production 102 Figure B-1. Solution to the five compartment model for steer 8325 127 Figure B-2. Solution to the five compartmenc model for steer 8327 129 Figure B-3. Solution to the rumen VFA production model for steer 181 131 Figure B-4. Solution to the rumen VFA production model for steer 182 132 Figure C-1. Specific activity curves for experiment 8327 ARB 134 Figure C-2. Specific activity curves for experiment 8327 BRB 135 Figure C-3. Specific activity curves for experiment 8327 PRB 136 Figure C-4. Specific activity curves for experiment 8327 GBB 137 Figure C-5. Specific activity curves for experiment 8327 CBB 138 vii ABSTRACT Two trials were conducted to investigate various aspects of the production and metabolism of acetate, propionate, and butyrate. Two Holstein steers, each serving as its own control, were used in each trial. The four steers weighed between 223 and 307 kg. Each steer was fed 4.6 kg/day of 70% chopped alfalfa/30% cracked corn, with or without 150 mg monensin, at 2-hour intervals. In 14 14 14 trial 1, [U- C] acetate, [U- C] butyrate and [1- C] propionate were used to measure plasma acetate irreversible loss (XL), rumen propionate XL, and the production and interconversion rates of 14 rumen acetate and butyrate. In trial 2, uniformly C labeled acetate, propionate, butyrate, glucose and bicarbonate were used to solve a five compartment model. This model included rumen acetate, propionate, and butyrate; and plasma acetate and blood bicarbonate. The five compartment model from trial 2 showed no monensin effects and was therefore analyzed without regard to treatment. Flow to compartment x from compartment y is designated F^. The five compartments are designated as follows: a = acetate, p = propionate, b = butyrate, g = glucose, c = bicarbonate, and o = viii outside of the model. The transfer rates were (mol C/day): 2-5' V-'- V-'- V-'- V'-'- fp." 7-2. V' foa-5-2. f.o-18.5. F^^-O V^' ^ac--2; ^bg'O. fba= 2.0, and F^^-O; F^^-92.5. F^^.62.8, F^g=10.9, F^^-A.!. F^^.13.0, and F^^=5.6. The results of both trials were combined to measure the effect of monensin on production of acetate, propionate and butyrate. Three of the four steers responded by increasing pro­ pionate production at the expense of acetate production. For these three steers, propionate production increased from 7.5 to 10.8 mol C/day and acetate production decreased from 19.2 to 15 mol C/day (p<.05). Monensin had no significant effects on butyrate production, interconversion of acetate and butyrate or the total hexose fermented. Using data from all four steers, the following regression was calculated: Propionate production = 26.3 - .98 * Acetate production (r = -.935, p<.001).
Recommended publications
  • The Synthesis of the Monensin Spiroketal' Robert E
    J. Am. Chem. SOC.1985, 107, 3271-3278 3271 sample remained homogeneous throughout the experiment. Foundation. We thank Gail Steehler, Joe Heppert, and Joan Kunz In another experiment, 1.0 mmol of IOBlabeled 2-MeB5H8in a large for helpful discussions. excess of 2,6-lutidine reached equilibrium in 3 h. Registry No. B5H9, 19524-22-7; B,H6, 19287-45-7; MeB,H5, 23777- Acknowledgment. This research was supported by grants, in- 55-1; K[ 1-MeB5H,], 56009-96-2; loB,H,, 19465-29-3; Me,O, 115-10-6; cluding departmental instrument grants, from the National Science 2,6-lutidine, 108-48-5. The Convergent Synthesis of Polyether Ionophore Antibiotics: The Synthesis of the Monensin Spiroketal' Robert E. Ireland,* Dieter Habich,z and Daniel W. Norbeck3 Contribution No. 7074 from the Chemical Laboratories, California Institute of Technology, Pasadena, California 91 125. Received September 28, 1984 Abstract: The monensin spiroketal2, a versatile intermediate for the synthesis of polyether ionophore antibiotics, is prepared from D-fructose. Key steps include the ester enolate Claisen rearrangement of a glycal propionate, expansion of a furanoid to a pyranoid ring, and the acid-catalyzed equilibration of a bicyclic ketal to a spiroketal. An alternative approach, entailing the hetero-Diels-Alder condensation of the exocyclic enol ether 15 with acrolein, is thwarted by facile isomerization to the endocyclic enol ether 18. The complex chemistry and potent biological activity of the of substituted tetrahydropyran and tetrahydrofuran rings. Com- polyether antibiotics have engaged widespread intere~t.~As parison reveals that nearly all these rings recur with high fre- ionophores, these compounds possess a striking ability to perturb quency, often in stereochemically indistinguishable sequences.
    [Show full text]
  • Role of an Electrical Potential in the Coupling of Metabolic Energy To
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 6, pp. 1804-1808, June 1973 Role of an Electrical Potential in the Coupling of Metabolic Energy to Active Transport by Membrane Vesicles of Escherichia coli (chemiosmotic hypothesis/lipid-soluble ions/valinomycin/ionophores/amino-acid transport) HAJIME HIRATA, KARLHEINZ ALTENDORF, AND FRANKLIN M. HAROLD* Division of Research, National Jewish Hospital and Research Center, Denver, Colorado 80206; and Department of Microbiology, University of Colorado Medical Center, Denver, Colorado 80220 Communicated by Saul Roseman, April 12, 1973 ABSTRACT Membrane vesicles from E. coli can oxidize probably occurs quite directly at the level of the membrane D-lactate and other substrates and couple respiration to its the active transport of sugars and amino acidl8. The pres- and constituent proteins (5-7). Kaback and Barnes (8) ent experiments bear on the nature of the link between proposed a tentative mechanism by which the coupling might respiration and transport. be effected: the transport carriers are thought to monitor Respiring vesicles were found to accumulate dibenzyl- the redox state of the electron-transport chain and themselves dimethylammonium ion, a synthetic lipid-soluble cation undergo cyclic oxidation and reduction of critical sulfhydryl that serves as an indicator of an electrical potential. The results suggest that oxidation of it-lactate generates groups; each cycle is accompanied by concurrent changes in a membrane potential, vesicle interior negative, of the the orientation of the carrier center and in its affinity for the order of -100 mV. In vesicles lacking substrate, an electri- substrate, leading to accumulation of the substrate in the cal potential was created by induction of electrogenic lumen of the vesicle.
    [Show full text]
  • Short Communications Effects of Ionophore-Mediated Transport on the Cardiac Resting Potential
    J. exp. Biol. 107, 491-493 (1983) 49 \ Printed in Great Britain © The Company of Biologists Limited 1983 SHORT COMMUNICATIONS EFFECTS OF IONOPHORE-MEDIATED TRANSPORT ON THE CARDIAC RESTING POTENTIAL BY MOHAMMAD FAHIM*, ALLEN MANGELf AND BERTON C. PRESSMAN Department of Pharmacology, University of Miami School of Medicine, P.O. Box 016189, Miami, FL33101 U.SA. (Received 25 January 1983-Accepted 18 March 1983) The monovalent carboxylic ionophores form lipid-soluble complexes with alkali cations which transport these ions across membranes. In a biological setting, they promote an electrically neutral exchange of intracellular potassium for extracellular sodium (Pressman, 1976). The ionophore monensin, which has a complexation preference for sodium (Pressman, 1968), has very little capability for complexing or transporting calcium or catecholamines (Pressman, Painter & Fahim, 1980). How- ever, monensin produces a strong positive inotropic effect (Pressman, Harris, Jagger & Johnson, 1967; Sutko et al. 1977; Shlafer, Somani, Pressman & Palmer, 1978; Saini, Hester, Somani & Pressman, 1979) which is attenuated, but not abolished, by /J-adrenergic blockade (Sutko et al. 1977; Shlafer et al. 1978; Saini et al. 1979). This indicates that the inotropic effect is partially mediated through an indirect release of catecholamines and, also, through a more direct mechanism, presumably by an altera- tion of transcellular cation gradients. Studies with cardiac Purkinje fibres show that monensin produces a shortening of the action potential, without an accompanying alteration in the resting potential (Sutko et al. 1977; Shlafer et al. 1978). Inasmuch as monensin should decrease the transcellular gradients of both sodium and potassium, one would expect that not only the action potential, dominated by the sodium diffusion potential, but also the resting potential, dominated by the potassium diffusion potential, should decrease.
    [Show full text]
  • Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K+/Na+ Selectivity in the Absence of Proteins
    life Article Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K+/Na+ Selectivity in the Absence of Proteins Xianfeng Zhou 1,2, Punam Dalai 1 and Nita Sahai 1,* 1 Department of Polymer Science, University of Akron, Akron, OH 44325, USA; [email protected] (X.Z.); [email protected] (P.D.) 2 Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China * Correspondence: [email protected] Received: 5 March 2020; Accepted: 9 April 2020; Published: 14 April 2020 Abstract: Two important ions, K+ and Na+, are unequally distributed across the contemporary phospholipid-based cell membrane because modern cells evolved a series of sophisticated protein channels and pumps to maintain ion gradients. The earliest life-like entities or protocells did not possess either ion-tight membranes or ion pumps, which would result in the equilibration of the intra-protocellular K+/Na+ ratio with that in the external environment. Here, we show that the most primitive protocell membranes composed of fatty acids, that were initially leaky, would eventually become less ion permeable as their membranes evolved towards having increasing phospholipid contents. Furthermore, these mixed fatty acid-phospholipid membranes selectively retain K+ but allow the passage of Na+ out of the cell. The K+/Na+ selectivity of these mixed fatty acid-phospholipid semipermeable membranes suggests that protocells at intermediate stages of evolution could have acquired electrochemical K+/Na+ ion gradients in the absence of any macromolecular transport machinery or pumps, thus potentially facilitating rudimentary protometabolism. Keywords: membrane; prebiotic chemistry; K+/Na+ gradient; energy; origin of life 1.
    [Show full text]
  • Nigericin Sodium Salt from Streptomyces Hygroscopicus
    Nigericin sodium salt from Streptomyces hygroscopicus Product Number N 7143 Storage Temperature 2-8 °C CAS RN: 28643-80-3 Precautions and Disclaimer This product is for R&D use only, not for drug, Synonyms: Helexin C; Polyetherin A; Azalomycin M; household, or other uses. Please consult the Material Antibiotic X464; Antibiotic K178 Safety Data Sheet for information regarding hazards and safe handling practices. Product Description Preparation Instructions The product is soluble in chloroform (10 mg/ml), in methanol (10 mg/ml), in ethanol (5 mg/ml), practically insoluble in water. Storage/Stability Store the product desiccated and protected from light at 2-8 °C. Under these conditions the product is stable for 3 years. References 1. Guffanti A.A., et al., Nigericin-induced death of an acidophilic bacterium., J Gen Microbiol., 114, 201-6 (1979). 2. Rottenberg, H., and Scarpa, A., Calcium uptake Molecular formula: C40H67NaO11 and membrane potential in mitochondria., Molecular weight: 746.94 Biochemistry,. 13, 4811-17 (1974). 3. Eytan G.D., et al., Energy-linked transhydrogenase. Nigericin is a polyether ionophore which catalyzes the Effects of valinomycin and nigericin on the ATP- electroneutral exchange of alkali metal (K+) for H+ driven transhydrogenase reaction catalyzed by (antiport).1 It disrupts membrane potential and reconstituted transhydrogenase-ATPase vesicles., stimulates ATPase activity in mitochondria2,3 Nigericin J. Biol. Chem., 265, 12949-54 (1990). transports monovalent cations across membranes with 4. Ahmed S. and Booth I.R., The use of valinomycin, the following specificity: K+>Rb+>Cs+>>Na+. Nigericin nigericin and trichlorocarbanilide in control of the kills bacteria by facilitating the diffusion of ions across protonmotive force in Escherichia coli cells., membranes.1,4 Biochem.
    [Show full text]
  • Title of the External Scientific Report
    Towards next generation risk assessment of chemicals: Development and application of physiologically based kinetic models in farm animals Leonie S. Lautz 2020 Towards next generation risk assessment of chemicals: Development and application of physiologically based kinetic models in farm animals Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 2 juni 2020, om 16.30 uur precies door Leonie Sophie Lautz geboren op 5 maart 1990 te Bad Oeynhausen, Duitsland 2 Promotoren Prof. dr. A.M.J. Ragas (Open Universiteit) Prof. dr. ir. A.J. Hendriks Copromotor Dr. J.L.C.M. Dorne (European Food Safety Authority, Parma, Italïe) Manuscriptcomissie Prof. dr. A.M. Breure Prof. dr. F.G.M. Russel Prof. dr. R. Gehring (Universiteit Utrecht) This research described in this thesis was funded by the European Food Safety Authority (EFSA) [Contract number: EFSA/SCER/2014/06]. 3 This is how you do it: you sit down at the keyboard and write one word after another until it is done. It’s that easy, and that hard. (Neil Gaiman) 4 Table of Contents Chapter 1 ................................................................................................................................................... 6 General introduction ................................................................................................................................... Chapter 2 ................................................................................................................................................
    [Show full text]
  • Role of Membrane Transporters in Drug Delivery, Drug Disposition and Drug-Drug Interactions
    ROLE OF MEMBRANE TRANSPORTERS IN DRUG DELIVERY, DRUG DISPOSITION AND DRUG-DRUG INTERACTIONS A DISSERTATION IN Pharmaceutical Sciences and Chemistry Presented to the Faculty of University of Missouri-Kansas City in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY By VARUN KHURANA B. Pharmacy, Guru Gobind Singh Indraprastha University, India, 2008 Kansas City, Missouri 2014 © 2013 VARUN KHURANA ALL RIGHTS RESERVED ROLE OF MEMBRANE TRANSPORTERS IN DRUG DELIVERY, DRUG DISPOSITION AND DRUG-DRUG INTERACTIONS Varun Khurana, Candidate for the Doctor of Philosophy Degree University of Missouri-Kansas City, 2014 ABSTRACT Tissues such as liver, kidney, brain and intestine expresses membrane transporters which play a vital role in drug absorption, distribution, metabolism and excretion. Understanding of functionality and molecular expression of drug transporters can prove to be of utmost importance in drug delivery or drug design by targeting specific transporter proteins. It’s a well-known fact that drug transporters play an important role in governing drug disposition which act as potential piece of information during the drug discovery and development process. By exploring the transporter functionality chances of delivering a therapeutic agent to the target organ enhances. Transporter targeted drug delivery helps in improving the bioavailability, controlling the elimination process and also avoid distribution to non-specific organs, hence diminishes the odds of toxic adverse effects. It is always suitable to choose a potential molecule which may or may not interact with the membrane transporters, depending on whether such an interaction is of any use or not. Activity of individual transport process can be examined by exploring the expression system of transporters.
    [Show full text]
  • Effect of Direct-Fed Microbials and Monensin on in Vitro Rumen Fermentation
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2014 EFFECT OF DIRECT-FED MICROBIALS AND MONENSIN ON IN VITRO RUMEN FERMENTATION Sheryl Wingard University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Wingard, Sheryl, "EFFECT OF DIRECT-FED MICROBIALS AND MONENSIN ON IN VITRO RUMEN FERMENTATION" (2014). Theses and Dissertations--Animal and Food Sciences. 42. https://uknowledge.uky.edu/animalsci_etds/42 This Master's Thesis is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • MONENSIN First Draft Prepared by Lynn G. Friedlander, Rockville, MD, USA and Pascal Sanders, Fougères, France IDENTITY Internat
    MONENSIN First draft prepared by Lynn G. Friedlander, Rockville, MD, USA and Pascal Sanders, Fougères, France IDENTITY International Non-proprietary names (INN): Monensin sodium Synonyms: Monensin A sodium salt; Monensin sodium; Monensin sodium salt; NSC 343257; Sodium monensin; Elancoban®; Elancogran®, Coban®, Rumensin®, Coxidin® International Union of Pure and Applied Chemistry (IUPAC) Names: Stereoisomer of 2- [2-ethyloctahydro-3′methyl-5′[tetrahydro-6-hydroxy-6-(hydroxymethyl)]-3,5-dimethyl-2H- pyran-2-yl] [2,2′-bifuran′5′yl] ]-9-hydroxy-β-methoxy-a,γ,2, 8,-tetramethyl-1,6- dioxaspiro[4.5]decan-7-butanoic acid. And: 4-[2-[5-ethyl-5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyl-oxan-2-yl]-3- methyl-oxolan-2-yl]oxolan-2-yl]-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]dec-7-yl]-3- methoxy-2-methyl-pentanoic acid; Chemical Abstract Service (CAS) Number: Monensin 17090-78-8 Monensin Sodium 22373-78-0 Structural formula of main components: Figure 1: 2 Table 1: Summary of Monensin Factors. Monensin Factor R1 R2 R3 A C2H5 H H B† CH3 H H C* C2H5 H CH3 D* Not supplied †Factor B accounts for less than 4% of the total composition. *The relative biological activity of trace factors C and D assayed against Streptococcus faecium are negligible (Haney and Hoehn., 1967; Agtarap and Chamberlin, 1967; Chamberlin and Agtarap, 1970). Molecular formula: Monensin A (sodium salt): C36H61O11Na Monensin B (sodium salt): C35H59O11Na Molecular weight: Monensin A (sodium salt): 692 Monensin B (sodium salt): 678 OTHER INFORMATION ON IDENTITY AND PROPERTIES Pure active ingredient: Appearance: Off-white to tan crystalline powder Melting point: 267-269˚ C (sodium salt); 103-106° C (acid) Solubility: Soluble in ethyl acetate, acetone, chloroform and dimethyl sulphoxide.
    [Show full text]
  • 298-83914-Rusko Janis Jr12046.Pdf
    UNIVERSITY OF LATVIA FACULTY OF CHEMISTRY APPLICATION OF HIGH RESOLUTION MASS SPECTROMETRY AND MULTI-ENZYMATIC BIOSENSORS FOR NON-TARGETED SCREENING OF CHEMICAL ENVIRONMENTAL AND FOOD CONTAMINANTS DOCTORAL THESIS AUGSTAS IZŠĶIRTSPĒJAS MASSPEKTROMETRIJAS UN MULTI- ENZIMĀTISKU BIOSENSORU PIELIETOJUMS ĶĪMISKO VIDES UN PĀRTIKAS PIESĀRŅOTĀJU NEMĒRĶĒTAM (NON-TARGETED) SKRĪNINGAM PROMOCIJAS DARBS JĀNIS RUŠKO Scientific supervisors: Prof., Dr. chem. Vadims Bartkevičs Prof., Dr. chem. Arturs Vīksna Rīga 2021 The doctoral thesis was carried out at the Institute of Food Safety, Animal Health and Environment “BIOR” from 2017 to 2020 and National Research Council of Italy – Institute of Protein Biochemistry from 2017 to 2018. The thesis contains the introduction, 3 chapters, conclusions, reference list, 9 annexes. Form of the thesis: dissertation in chemistry, analytical chemistry. Supervisors: Prof., Dr. chem. Vadims Bartkevičs Prof., Dr. chem. Arturs Vīksna Reviewers: 1) Prof., Dr. habil. chem. Māris Kļaviņš, University of Latvia; 2) Dr. Kristaps Kļaviņš, Riga Technical University; 3) Prof., Habil. Dr. Arunas Ramanavicius, Vilnius University, Lithuania. The thesis will be defended at the public session of the Doctoral Committee of Chemistry, University of Latvia, at the Faculty of Chemistry of the University of Latvia (Jelgavas Str. 1, Riga, Latvia) on June 18th, 2021 at 14:00. The thesis is available at the Library of the University of Latvia, Raiņa Blvd. 19, Riga, Latvia. Chairman of the Doctoral Committee _______________/ Prof., Dr. chem. Edgars
    [Show full text]
  • Reduced Toxicity and Enhanced Antitumor Effects in Mice of the Lonophoric Drug Valinomycin When Incorporated in Liposomes1
    [CANCER RESEARCH 46, 5518-5523, November 1986] Reduced Toxicity and Enhanced Antitumor Effects in Mice of the lonophoric Drug Valinomycin When Incorporated in Liposomes1 Sayed S. Daoud and R. L. Juliano Department of Pharmacology, University of Texas Medical School, Houston, Texas 77225 ABSTRACT severely impair membrane function in tumor cells might well have useful chemotherapeutic potential. Indeed, some of the Valinomycin (NSC 122023) is a cyclic depsipeptide antibiotic with effects of anthracyclines have been attributed to their actions potassium selective ionophoric activity. This drug has been reported to on plasma membrane or mitochondria! membrane function (3). display antitumor effects but its utilization has been limited by its extreme toxicity. Here we report that the incorporation of valinomycin into However, none of the current clinically useful antitumor agents multilamellar liposomes composed of dimyristoyl phosphatidyl cho- acts primarily at the membrane level (1). Perhaps one reason )ine:cholesterol:phosphatidyl serine (10:4:1 Mratio) results in a profound for this is that membrane active drugs are likely to be quite reduction in toxicity with maintainence of antitumor efficacy. Thus the toxic to those tissues and organs whose physiological functions median lethal dose (LDW) for i.p. administered valinomycin (VM) in rely on ion gradients and membrane potentials. CS7BL/6 x DBA/2 mice is 1.7 mg/kg whereas the I IK,, for liposome lonophores comprise a class of agents which act primarily on incorporated valinomycin (MVL-VM) is in excess of 50 mg/kg. In like cellular membranes (4-6); there are two basic types of iono- manner, the LDWfor i.v.
    [Show full text]
  • United States Patent (19) 11 4,213,966 Liu Et Al
    United States Patent (19) 11 4,213,966 Liu et al. 45 Jul. 22, 1980 54 METHOD FOR ISOLATING POLYETHER OTHER PUBLICATIONS ANT BOTCS 75 Inventors: Wen-Chih Liu, Princeton Junction; Oy ett al.,a J. Antibiotics,ntibiotics XXIX,IX, No. 1 (1976) y pp17s William E. Brown; Gail L. Astle, both of Princeton, all of N.J. Primary Examiner-Jerome D. Goldberg 4. Attorney, Agent, or Firm-Lawrence S. Levinson; 73) Assignee: E. R. Squibb & Sons, Inc., Princeton, Burton Rodney N.J. 21 802.768 57 ABSTRACT 21 Appl. No.: 9 A method is provided for recovering a polyether antibi 22 Filed: Jun. 2, 1977 otic, such as lonomycin, monensin or ionomycin from a fermentation broth, wherein the polyether is first ex 51 Int. Cl........................ A61K 35/00; C07H 15/22 tracted with a water-immiscible solvent, such as ethyl 52 U.S. C. .................................. 424/123; 536/17 R acetate, and the resulting extracts concentrated, dis 58 Field of Search ................... 424/123, 122,536/17 solved in aqueous methanol and then extracted into 56 Ref Cito hexane,s benzene or mixtures thereof. The polyetnepolwether is 56) U.S parents thereby recovered in crystalline form directly from the YW- latter extract. 3,476,856, 11/1969 Kulbakh et al. ... 424/23 3,873,693 3/1975 Meyers et al...... as ow 424/22 8 Claims, No Drawings 4,213,966 1. 2 includes the steps of adjusting the pH of the filtrate METHOD FOR ISOLATING POLYETHER (obtained by filtering fermentation broth) to a slightly ANTIBOTCS basic pH, extracting the filtrate with a water-immiscible organic solvent, such as a lower alkyl ester, for exam FIELD OF THE INVENTION ple, ethyl acetate or butyl acetate; a lower alkanol, for The present invention relates to a simple, efficient example, butanol; a chlorinated solvent, for example, method for isolating polyethers, such as lonomycin, chloroform; a lower alkyl ketone, for example, methyl isobutyl ketone; or benzene.
    [Show full text]