Code Duplication and Reuse in Jupyter Notebooks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jupyter Notebooks—A Publishing Format for Reproducible Computational Workflows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elpub digital library Jupyter Notebooks—a publishing format for reproducible computational workflows Thomas KLUYVERa,1, Benjamin RAGAN-KELLEYb,1, Fernando PÉREZc, Brian GRANGERd, Matthias BUSSONNIERc, Jonathan FREDERICd, Kyle KELLEYe, Jessica HAMRICKc, Jason GROUTf, Sylvain CORLAYf, Paul IVANOVg, Damián h i d j AVILA , Safia ABDALLA , Carol WILLING and Jupyter Development Team a University of Southampton, UK b Simula Research Lab, Norway c University of California, Berkeley, USA d California Polytechnic State University, San Luis Obispo, USA e Rackspace f Bloomberg LP g Disqus h Continuum Analytics i Project Jupyter j Worldwide Abstract. It is increasingly necessary for researchers in all fields to write computer code, and in order to reproduce research results, it is important that this code is published. We present Jupyter notebooks, a document format for publishing code, results and explanations in a form that is both readable and executable. We discuss various tools and use cases for notebook documents. Keywords. Notebook, reproducibility, research code 1. Introduction Researchers today across all academic disciplines often need to write computer code in order to collect and process data, carry out statistical tests, run simulations or draw figures. The widely applicable libraries and tools for this are often developed as open source projects (such as NumPy, Julia, or FEniCS), but the specific code researchers write for a particular piece of work is often left unpublished, hindering reproducibility. Some authors may describe computational methods in prose, as part of a general description of research methods. -
Deep Dive on Project Jupyter
A I M 4 1 3 Deep dive on Project Jupyter Dr. Brian E. Granger Principal Technical Program Manager Co-Founder and Leader Amazon Web Services Project Jupyter © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Project Jupyter exists to develop open-source software, open standards and services for interactive and reproducible computing. https://jupyter.org/ Overview • Project Jupyter is a multi-stakeholder, open source project. • Jupyter’s flagship application is the Text Math Jupyter Notebook. • Notebook document format: • Live code, narrative text, equations, images, visualizations, audio. • ~100 programming languages supported. Live code • Over 500 contributors across >100 GitHub repositories. • Part of the NumFOCUS Foundation: • Along with NumPy, Pandas, Julia, Matplotlib,… Charts Who uses Jupyter and how? Students/Teachers Data science Data Engineers Machine learning Data Scientists Scientific computing Researchers Data cleaning and transformation Scientists Exploratory data analysis ML Engineers Analytics ML Researchers Simulation Analysts Algorithm development Reporting Data visualization Jupyter has a large and diverse user community • Many millions of Jupyter users worldwide • Thousands of AWS customers • Highly international • Over 5M public notebooks on GitHub alone Example: Dive into Deep Learning • Dive into Deep Learning is a free, open-source book about deep learning. • Zhang, Lipton, Li, Smola from AWS • All content is Jupyter Notebooks on GitHub. • 890 page PDF, hundreds of notebooks • https://d2l.ai/ © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Common threads • Jupyter serves an extremely broad range of personas, usage cases, industries, and applications • What do these have in common? Ideas of Jupyter • Computational narrative • “Real-time thinking” with a computer • Direct manipulation user interfaces that augment the writing of code “Computers are good at consuming, producing, and processing data. -
Exploratory Programming for the Arts and Humanities
Exploratory Programming for the Arts and Humanities Exploratory Programming for the Arts and Humanities Second Edition Nick Montfort The MIT Press Cambridge, Massachusetts London, England © 2021 Nick Montfort The open access edition of this work was made possible by generous funding from the MIT Libraries. This work is subject to a Creative Commons CC-BY-NC-SA license. Subject to such license, all rights are reserved. This book was set in ITC Stone Serif Std and ITC Stone Sans Std by New Best-set Typesetters Ltd. Library of Congress Cataloging-in-Publication Data Names: Montfort, Nick, author. Title: Exploratory programming for the arts and humanities / Nick Montfort. Description: Second edition. | Cambridge, Massachusetts : The MIT Press, [2021] | Includes bibliographical references and index. | Summary: "Exploratory Programming for the Arts and Humanities offers a course on programming without prerequisites. It covers both the essentials of computing and the main areas in which computing applies to the arts and humanities"—Provided by publisher. Identifiers: LCCN 2019059151 | ISBN 9780262044608 (hardcover) Subjects: LCSH: Computer programming. | Digital humanities. Classification: LCC QA76.6 .M664 2021 | DDC 005.1—dc23 LC record available at https://lccn.loc.gov/2019059151 10 9 8 7 6 5 4 3 2 1 [Contents] [List of Figures] xv [Acknowledgments] xvii [1] Introduction 1 [1.1] 1 [1.2] Exploration versus Exploitation 4 [1.3] A Justification for Learning to Program? 6 [1.4] Creative Computing and Programming as Inquiry 7 [1.5] Programming Breakthroughs -
SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA
TRAINING KIT – R01 DFSDFGAGRIAGRA SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA Research and User Support for Sentinel Core Products The RUS Service is funded by the European Commission, managed by the European Space Agency and operated by CSSI and its partners. Authors would be glad to receive your feedback or suggestions and to know how this material was used. Please, contact us on [email protected] Cover image credits: ESA The following training material has been prepared by Serco Italia S.p.A. within the RUS Copernicus project. Date of publication: November 2020 Version: 1.1 Suggested citation: Serco Italia SPA (2020). Sentinel-2 data processing using R (version 1.1). Retrieved from RUS Lectures at https://rus-copernicus.eu/portal/the-rus-library/learn-by-yourself/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. DISCLAIMER While every effort has been made to ensure the accuracy of the information contained in this publication, RUS Copernicus does not warrant its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made of this publication. Consequently, such use is at the recipient’s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The information contained in this publication does not purport to constitute professional advice. 2 Table of Contents 1 Introduction to RUS ........................................................................................................................ -
Final Report for the Redus Project
FINAL REPORT FOR THE REDUS PROJECT Reduced Uncertainty in Stock Assessment Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) RAPPORT FRA HAVFORSKNINGEN NR. 2021-16 Tittel (norsk og engelsk): Final report for the REDUS project Sluttrapport for REDUS-prosjektet Undertittel (norsk og engelsk): Reduced Uncertainty in Stock Assessment Rapportserie: År - Nr.: Dato: Distribusjon: Rapport fra havforskningen 2021-16 17.03.2021 Åpen ISSN:1893-4536 Prosjektnr: Forfatter(e): 14809 Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Program: Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Marine prosesser og menneskelig Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, påvirkning Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) Forskningsgruppe(r): Godkjent av: Forskningsdirektør(er): Geir Huse Programleder(e): Bentiske ressurser og prosesser Frode Vikebø Bunnfisk Fiskeridynamikk Pelagisk fisk Sjøpattedyr Økosystemakustikk Økosystemprosesser -
Part I: Julia for Matlab Users
Julia Part I Julia for Matlab Users Prof. Matthew Roughan [email protected] http://www.maths.adelaide.edu.au/matthew.roughan/ UoA Oct 31, 2017 M.Roughan (UoA) Julia Part I Oct 31, 2017 1 / 33 I write to find out what I think about something. Neil Gaiman, The View From the Cheap Seats M.Roughan (UoA) Julia Part I Oct 31, 2017 2 / 33 Section 1 Get Started M.Roughan (UoA) Julia Part I Oct 31, 2017 3 / 33 The reason I feel like we can do this is because (I hope) you all know some Matlab, and Julia is syntactically and operationally very much like Matlab I syntax is very similar 1 I REPL is similar F tab completion, and up arrows work F ? = help F ; = shell escape to OS I JIT compiler I Use cases are similar 1REPL = Read-Evaluate-Print Loop; old-school name is the shell, or CLI. M.Roughan (UoA) Julia Part I Oct 31, 2017 4 / 33 So have a go You should have installed Julia before the workshop Start it up I start up varies depending on IDE, and OS I I am using simplest case (for me): the CLI, on a Mac I it’s all very Unix-y Type some calculations a = 3 b = a + 2 c = a + bˆ2 Create a script, e.g., “test.jl”, and “include” it include("test.jl") I its a little more cumbersome than Matlab M.Roughan (UoA) Julia Part I Oct 31, 2017 5 / 33 Section 2 Julia Isn’t Matlab (or Octave) M.Roughan (UoA) Julia Part I Oct 31, 2017 6 / 33 Julia may look a lot like Matlab but under the hood its very different and there are a lot of changes that affect you otherwise why would we bother? M.Roughan (UoA) Julia Part I Oct 31, 2017 7 / 33 Why Julia? Big -
Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17]. -
2019 Annual Report
ANNUAL REPORT 2019 TABLE OF CONTENTS LETTER FROM THE BOARD CO-CHAIRPERSON ..............................................03 PROJECTS ....................................................................................................................... 04 New Sponsored Projects Project Highlights from 2019 Project Events Case Studies Affiliated Projects NumFOCUS Services to Projects PROGRAMS ..................................................................................................................... 16 PyData PyData Meetups PyData Conferences PyData Videos Small Development Grants to NumFOCUS Projects Inaugural Visiting Fellow Diversity and Inclusion in Scientific Computing (DISC) Google Season of Docs Google Summer of Code Sustainability Program GRANTS ........................................................................................................................... 25 Major Grants to Sponsored Projects through NumFOCUS SUPPORT ........................................................................................................................ 28 2019 NumFOCUS Corporate Sponsors Donor List FINANCIALS ................................................................................................................... 34 Revenue & Expenses Project Income Detail Project EOY Balance Detail PEOPLE ............................................................................................................................ 38 Staff Board of Directors Advisory Council LETTER FROM THE BOARD CO-CHAIRPERSON NumFOCUS was founded in -
Teaching an ODE Course with Cocalc, Sage, Jupyter Notebooks, and LATEX
An ODE Course with Jupyter Notebooks Teaching an ODE Course with CoCalc, Sage, Jupyter Notebooks, and LATEX Thomas W. Judson Stephen F. Austin State University [email protected] MAA Contributed Paper Session on The Teaching and Learning of Undergraduate Ordinary Differential Equations 2019 Joint Mathematics Meetings January 18, 2019 An ODE Course with Jupyter Notebooks UTMOST 1.0 The first UTMOST (Undergraduate Teaching in Mathematics with Open Software and Textbooks) project was a National Science Foundation CCLI Type 2 grant (2010{2014) that promoted open-source software and open-source curriculum in the undergraduate mathematics classroom. I American Institute of Mathematics (DUE{1022574) I Drake University (DUE{1022036) I Stephen F. Austin State University (DUE{1020957) I University of Colorado Boulder (DUE{1020687) I University of Washington (DUE{1020378) I University of California, San Diego An ODE Course with Jupyter Notebooks Highlights of UTMOST 1.0 The products of the first UTMOST grant included: I CoCalc (formerly SageMathCloud)|A comprehensive cloud computing environment for education and scientific computing. I Sage Cell Server|A mechanism to embed live computations into any webpage. I PreTeXt (formerly MathBook XML)|A framework for writing mathematics that can be published in a variety of formats. I Sage Education Workshops|Workshops for learning how to use Sage for the teaching and learning of mathematics. I AIM Open Textbook Initiative|An editorial board to identify and support quality open-source textbooks. An ODE Course with Jupyter Notebooks UTMOST 2.0 The second phase of UTMOST was launched in Fall 2016 and supported by the National Science Foundation as a two-year IUSE grant. -
Java Makes Scripting Languages Irrelevant?
tools of the trade Editor: Diomidis Spinellis ■ Athens University of Economics and Business ■ [email protected] Java Makes Scripting Languages Irrelevant? Diomidis Spinellis Simplicity does not precede complexity, but follows it. — Alan J. Perlis n computing, we often solve a complex came up with Application Basic as its general- problem by adding another level of indi- purpose scripting language for all its office pro- rection. For example, in Unix file systems, ductivity applications. an index node, or inode, data structure lets Those early developments acquainted pro- I the operating system allocate files concur- grammers with the notion of customizing ap- rently and sparsely while still providing an plications through scripting and opened the efficient random-access capability. When we road for powerful, general-purpose scripting want to customize large, complex systems or languages such as Perl, Python, and Ruby (see express fluid, rapidly changing John Ousterhout’s article, “Scripting: Higher- requirements, we frequently Level Programming for the 21st Century,” in add a scripting layer on top of Computer’s March 1998 issue). Scripting lan- the corresponding system. Back guages glued to applications serve an impor- in 1962 to 1963, Dan Murphy tant purpose: they greatly ease the application’s did this when he developed his configuration and customization and support TECO (text editor and correc- end-user programming by offering a safe and tor) editor on the Digital Equip- friendly development environment. Gone are ment Corp.’s PDP-1; its com- the intricacies of C’s memory management, the mand language also doubled as convoluted string manipulation, and the com- an arcane (to put it politely) plexity of the application’s internal data struc- macro language. -
Data-Driven Tool Construction in Exploratory Programming Environments
Data-driven Tool Construction in Exploratory Programming Environments by Marcel Taeumel A thesis submitted to the Digital Engineering Faculty University of Potsdam in partial fulfllment of the requirements for the degree of Doctor Rerum Naturalium (Dr. rer. nat.) Advisor Prof. Dr. Robert Hirschfeld Software Architecture Group Hasso Plattner Institute University of Potsdam, Germany February 2, 2020 This work is licensed under a Creative Commons License: Attribution – NonCommercial – NoDerivatives 4.0 International. This does not apply to quoted content from other authors. To view a copy of this license visit https://creativecommons.org/licenses/by-nc-nd/4.0/ Published online at the Institutional Repository of the University of Potsdam: https://doi.org/10.25932/publishup-44428 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-444289 Abstract This work presents a new design for programming environments that promote the exploration of domain-specifc software artifacts and the construction of graphical tools for such program comprehension tasks. In complex software projects, tool building is essential because domain- or task-specifc tools can support decision making by representing concerns concisely with low cognitive efort. In contrast, generic tools can only support anticipated scenarios, which usually align with programming language concepts or well-known project domains. However, the creation and modifcation of interactive tools is expensive because the glue that connects data to graphics is hard to fnd, change, and test. Even if valuable data is available in a common format and even if promising visualizations could be populated, programmers have to invest many resources to make changes in the programming environment. -
[Getting Started Guide]
[Getting Started Guide] Contents What is Jupyter Notebook? .......................................................................................................................... 3 How To Use Jupyter Notebook? ................................................................................................................... 4 Log in to the UofT JupyterHub .................................................................................................................. 4 Jupyter file explorer .................................................................................................................................. 5 Create a new Jupyter notebook for python .............................................................................................. 6 Markdown cell .......................................................................................................................................... 7 Installing packages .................................................................................................................................... 8 Docstring (Package, class, and function descriptions) .............................................................................. 9 Magic commands .................................................................................................................................... 10 How to share/distribute files? .................................................................................................................... 11 One-click download (nbgitpuller) ..........................................................................................................