Serotonin 5HT1A and 5HT1D Agonists Serotonin 5HT1A Und 5HT1D Agonisten Agonistes 5HT1A Et 5HT1D De La Sérotonine

Total Page:16

File Type:pdf, Size:1020Kb

Serotonin 5HT1A and 5HT1D Agonists Serotonin 5HT1A Und 5HT1D Agonisten Agonistes 5HT1A Et 5HT1D De La Sérotonine Europäisches Patentamt (19) European Patent Office Office européen des brevets (11) EP 0 478 954 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int. Cl.7: C07D 209/08, C07D 319/20, of the grant of the patent: A61K 31/40 18.10.2000 Bulletin 2000/42 (21) Application number: 91114456.6 (22) Date of filing: 28.08.1991 (54) Serotonin 5HT1A and 5HT1D agonists Serotonin 5HT1A und 5HT1D Agonisten Agonistes 5HT1A et 5HT1D de la sérotonine (84) Designated Contracting States: • Bernotas, Ronald C. AT BE CH DE DK ES FR GB GR IT LI LU NL SE Cincinnati, Ohio 45249 (US) • Sprouse, Jeffrey S. (30) Priority: 29.08.1990 US 574710 Cincinnati, Ohio 45215 (US) 30.07.1991 US 735700 (74) Representative: (43) Date of publication of application: VOSSIUS & PARTNER 08.04.1992 Bulletin 1992/15 Postfach 86 07 67 81634 München (DE) (73) Proprietor: MERRELL PHARMACEUTICALS INC. (56) References cited: Cincinnati, Ohio 45215-6300 (US) EP-A- 0 054 304 EP-A- 0 252 005 EP-A- 0 271 099 US-A- 2 725 386 (72) Inventors: • McDonald, Ian A. Remarks: Loveland, Ohio 45140 (US) The file contains technical information submitted • Dudley, Mark W. after the application was filed and not included in Somerville, Ohio 45064 (US) this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 478 954 B1 Printed by Xerox (UK) Business Services 2.16.7 (HRS)/3.6 EP 0 478 954 B1 Description [0001] The present invention is directed to a new class of serotonin 5HT1A and 5HT1D agonists as well as pharma- ceutical and diagnostic compositions containing them for use in the treatment of anxiety, depression, migraine, stroke 5 and hypertension. [0002] In EP-A-0 271 099 aminopropionamide derivatives are disclosed which are described as having nootropic properties. [0003] EP-A-0 054 304 relates to compounds wherein benzodioxan is linked to alkylenedioxybenzene having hypo- tensive activity. 10 [0004] EP-A-0 252 005 discloses hydrogenated 1-benzooxacycloalkylpyridine carboxylic acid derivatives which are nootropic. [0005] US-A-2725386 discloses sympatholytics which are derivatives of amino lower fatty acid amides bearing a 2- (1,4-benzodioxan)methyl substituent. [0006] In accordance with the present invention, a new class of serotonin 5HT1A and 5HT1D agonists has been dis- 15 covered which can be described by the following formula: 20 25 in which B is represented by a -CH2- or -C2H4-alkylene bridging group; Alk is represented by a linear alkylene bridging 30 group containing from 2-5 carbon atoms, X and Y are each independently represented by hydrogen or C1-4 alkyl, R1 is represented by a substituent selected from the group consisting of hydrogen, halogen, C1-5 alkoxy, CF3, -NR2R3, R2 and R3 are each independently represented by H or a C1-4 alkyl; Het is represented by one of the following substituents: 35 40 in which R is represented by a substituent selected from the group consisting of hydrogen, OH, C1-5 alkoxy, or car- 45 bamoyl; or a pharmaceutically acceptable salt thereof. [0007] The compounds endompassed by Formula I above may also be represented by the following subgeneric for- mulae: in which R, B, Alk, X, Y and R1 are as defined above. 50 55 2 EP 0 478 954 B1 5 10 15 20 25 [0008] These compounds mimic the effects of serotonin at the 5HT1A and 5HT1D receptor. Pharmaceutical compo- 30 sitions containing them are useful in the treatment of anxiety, depression, migraine, stroke and hypertension. [0009] As used in this application: a) the term "halogen" refers to a fluorine, chlorine, or bromine atom; 35 b) the term "C1-4 alkyl" refers to a branched or straight chained alkyl group containing from 1-4 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, etc.; c) the term "C1-5 alkoxy" refers to a straight or branched alkoxy group containing from 1-5 carbon atoms, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, etc.; 40 d) the term "pharmaceutically acceptable salt" refers to either a basic addition salt or an acid addition salt. e) Representative examples of linear alkylene groups having 2-5 carbon atoms include ethylene, propylene, and butylene, 45 f) the term "indolyl derivative" refers to a compound in which Het is represented by: 50 55 k) the term "benzodioxan derivative" refers to a compound in which Het is represented by: 3 EP 0 478 954 B1 5 10 [0010] The expression "pharmaceutically acceptable acid addition salts" is intended to apply to any non-toxic organic or inorganic acid addition salt of the base compounds represented by Formula I or any of its intermediates. Illus- trative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulphuric, and phosphoric acid and 15 acid metal salts such as sodium monohydrogen orthophosphate, and potassium hydrogen sulfate. Illustrative organic acids which form suitable salts include the mono-, di-, and tricarboxylic acids. Illustrative of such acids are, for example, acetic, glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, benzoic, hydroxy-benzoic, phenylacetic, cinnamic, salicyclic, 2-phenoxy-benzoic, p-toluenesulfonic acid, and sulfonic acids such as methanesulfonic acid and 2-hydroxyethane sulfonic acid. Such salts can exist in either a hydrated or sub- 20 stantially anhydrous form. In general, the acid addition salts of these compounds are soluble in water and various hydrophilic organic solvents, and in comparison to their free base forms, generally demonstrate higher melting points. [0011] The expression "pharmaceutically acceptable basic addition salts" is intended to apply to any non-toxic organic or inorganic basic addition salts of the compounds represented by Formula I or any of its intermediates. Illus- trative bases which form suitable salts include alkali metal or alkaline-earth metal hydroxides such as sodium, potas- 25 sium, calcium, magnesium, or barium hydroxides; ammonia, and aliphatic, alicyclic, or aromatic organic amines such as methylamine, dimethylamine, trimethylamine, and picoline. Either the mono- or di-basic salts can be formed with those compounds. [0012] Some of the compounds of Formula I contain one or more asymmetric centers and will therefore exist as enantiomers and diastereomers. Any reference in this application to one of the compounds represented by Formula I, 30 or any intermediate thereof, should be construed as covering a specific optical isomer, a racemic mixture or a diaster- eomeric mixture. The specific optical isomers can be synthesized or can be separated and recovered by techniques known in the art such as chromatography on chiral stationary phases, resolution via chiral salt formation and subse- quent separation by selective crystallization, or enzymatic hydrolysis using stereoselective esterases as is known in the art. Alternatively, a chirally pure starting material may be utilized. 35 [0013] All of the compounds of Formula Ia contain an indole. This indole may be optionally substituted as is indi- cated by the presence of the R substituent. When R is represented by a substituent other than hydrogen, these substit- uents may appear at any of the positions 2, 4, 5, 6, or 7. [0014] All of the compounds represented by Formula Ib contain a benzodioxan. [0015] All of the compounds of Formula I contain a phenyl ring adjacent to the amide substituent. This phenyl ring 40 may also be substituted as is indicated by the R1 substituent. This substituent can be located at any of the ortho, meta, or para positions. [0016] The amino-alkylene chain connecting the benzodioxan or indole with the terminal phenyl ring may be further substituted as indicated by the X and Y, substituents. X and Y, may be represented by the same substituents or differing substituents. 45 [0017] Examples of compounds encompassed by the present invention include: a) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-[4-(trifluoromethyl)phenyl]-heptanamide; b) 7-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-(4-methoxyphenyl)-octanamide; c) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-phenyl-heptanamide; 50 d) 5-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-[4-(trifluoromethyl)phenyl]-hexanamide; e) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-(4-methoxyphenyl)-heptanamide; f) 4-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-[4-(trifluoromethyl)phenyl]-pentanamide; g) 6-[[2-(5-methoxy-1H-indol-3-yl)ethyl]amino]-N-[4-(trifluoromethyl)phenyl]-heptanamide; h) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]methylamino]-N-[4-(trifluoromethyl)phenyl]-heptanamide; 55 i) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-(2-methoxyphenyl)-heptanamide; j) 6-[[2-(5-carboxamido-1H-indol-3-yl)ethyl]amino]-N-(4-methoxyphenyl)-heptanamide; k) 6-[[2-(1H-indol-3-yl)ethyl]amino]-N-[4-(trifluoro-methyl)phenyl]-hexanamide; l) 6-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-[4-(1-propyl)phenyl]-hexanamide; 4 EP 0 478 954 B1 m) 5-[[2-(5-hydroxy-1H-indol-3-yl)ethyl]amino]-N-[4-(1-propyloxy)phenyl]-hexanamide; n) 6-[2-[(2,3-dihydro-1,4-benzodioxin-2-yl)ethyl]amino]-N-phenyl-hexanamide; o) 6-[(2,3-dihydro-1,4-benzodioxin-2-yl)methylamino]-N-[4-(trifluoromethyl)phenyl]-heptanamide; p) 6-[(2,3-dihydro-1,4-benzodioxin-2-yl)methylamino]-N-(4-methoxyphenyl)-heptanamide;
Recommended publications
  • 8–21–09 Vol. 74 No. 161 Friday Aug. 21, 2009 Pages 42169–42572
    8–21–09 Friday Vol. 74 No. 161 Aug. 21, 2009 Pages 42169–42572 VerDate Nov 24 2008 21:37 Aug 20, 2009 Jkt 217001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\21AUWS.LOC 21AUWS srobinson on DSKHWCL6B1PROD with MISCELLANEOUS II Federal Register / Vol. 74, No. 161 / Friday, August 21, 2009 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records PUBLIC Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public Subscriptions: interest. Paper or fiche 202–741–6005 Documents are on file for public inspection in the Office of the Assistance with Federal agency subscriptions 202–741–6005 Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Activation of 5-HT2C (But Not 5-HT1A) Receptors in the Amygdala Enhances Fear-Induced Antinociception: Blockade with Local 5-HT2C Antagonist Or Systemic fluoxetine
    Neuropharmacology 135 (2018) 376e385 Contents lists available at ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Activation of 5-HT2C (but not 5-HT1A) receptors in the amygdala enhances fear-induced antinociception: Blockade with local 5-HT2C antagonist or systemic fluoxetine Lígia Renata Rodrigues Tavares a, b, Daniela Baptista-de-Souza a, c, * Azair Canto-de-Souza a, b, c, d, a Psychobiology Group, Department of Psychology/CECH- Federal University of Sao~ Carlos-UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil b Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil c Neuroscience and Behavioral Institute-IneC, Ribeirao~ Preto, Sao~ Paulo, 14040-901, Brazil d Program in Psychology UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil article info abstract Article history: It is well-known that the exposure of rodents to threatening environments [e.g., the open arm of the Received 17 August 2017 elevated-plus maze (EPM)] elicits pain inhibition. Systemic and/or intracerebral [e.g., periaqueductal gray Received in revised form matter, amygdala) injections of antiaversive drugs [e.g., serotonin (5-HT) ligands, selective serotonin 5 March 2018 reuptake inhibitors (SSRIs)] have been used to change EPM-open arm confinement induced anti- Accepted 6 March 2018 nociception (OAA). Here, we investigated (i) the role of the 5-HT and 5-HT receptors located in the Available online 13 March 2018 1A 2C amygdaloid complex on OAA as well as (ii) the effects of systemic pretreatment with fluoxetine (an SSRI) on the effects of intra-amygdala injections of 8-OH-DPAT (a 5-HT1A agonist) or MK-212 (a 5-HT2C agonist) Keywords: fi Amygdala on nociception in mice con ned to the open arm or enclosed arm of the EPM.
    [Show full text]
  • Paradoxical Actions of the Serotonin Precursor 5-Hydroxytryptophan on the Activity of Identified Serotonergic Neurons in a Simple Motor Circuit
    The Journal of Neuroscience, February 15, 2000, 20(4):1622–1634 Paradoxical Actions of the Serotonin Precursor 5-hydroxytryptophan on the Activity of Identified Serotonergic Neurons in a Simple Motor Circuit David J. Fickbohm and Paul S. Katz Department of Biology, Georgia State University, Atlanta, Georgia 30302 Neurotransmitter synthesis is regulated by a variety of factors, cated an increase in a putative 5-HT electrochemical signal yet the effect of altering transmitter content on the operation of during swim CPG activation. Paradoxically, the spiking activity neuronal circuits has been relatively unexplored. We used elec- of the serotonergic neurons decreased to a single burst at the trophysiological, electrochemical, and immunohistochemical onset of the rhythmic motor program, whereas the overall techniques to investigate the effects of augmenting the seroto- duration of the episode remained about the same. 5-HTP treat- nin (5-HT) content of identified serotonergic neurons embed- ment gradually reduced the rhythmicity of the CPG output. ded in a simple motor circuit. The dorsal swim interneurons Thus, more serotonin did not result in a more robust swim (DSIs) are serotonergic neurons intrinsic to the central pattern motor program, suggesting that serotonin synthesis must be generator (CPG) for swimming in the mollusc Tritonia diom- kept within certain limits for the circuit to function correctly and edea. As expected, treatment with the serotonin precursor indicating that altering neurotransmitter synthesis can have 5-hydroxytryptophan (5-HTP) increased the intensity of seroto- serious consequences for the output of neural networks. nin immunolabeling and enhanced the potency of synaptic and Key words: intrinsic neuromodulation; central pattern gener- modulatory actions elicited by the DSIs.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • A Serotonin Receptor with a Possible Role in Joint Diseases
    Anders Kling 5-HT2 A – a serotonin receptor with a possible role in joint diseases role with a possible receptor – a serotonin 5-HT2A – a serotonin receptor with a possible role in joint diseases Anders Kling Umeå University 2013 Umeå University Department of Pharmacology and Clinical Neuroscience New Serie 1547 Department of Pharmacology and Clinical Neurosciences Umeå University ISSN: 0346-6612 Umeå University, Sweden 2013 SE-901 87 Umeå, Sweden ISBN 978-91-7459-549-9 5-HT2A – a serotonin receptor with a possible role in joint diseases Anders Kling Institutionen för farmakologi och klinisk neurovetenskap, Klinisk farmakologi/ Department of Pharmacology and Clinical Neuroscience, Clinical Pharmacology Umeå universitet/ Umeå University Umeå 2013 Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-549-9 ISSN: 0346-6612 New series No: 1547 Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print och Media, Umeå universitet Umeå, Sweden 2013 Innehåll/Table of Contents Innehåll/Table of Contents i Abstract iv Abbreviations vi List of studies viii Populärvetenskaplig sammanfattning ix 5-HT2A – en serotoninreceptor med möjlig betydelse för ledsjukdomar ix Introduction 1 The serotonin system 1 Serotonin 1 Serotonin receptors 2 The serotonin system and platelets 2 Serotonin receptor 5-HT2A 3 Localisation/expression of 5-HT2A receptors 3 Functions of the 5-HT2A receptor 4 Regulation of the 5-HT2A receptor
    [Show full text]
  • Serotonin Autoreceptors on Dorsal Raphe Neurons: Structure-Activity Relationships of Tryptamine Analogs’
    0270.6474/81/0110-1148$o2.oo/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 1, No. 10, pp. 1148-1154 Printed in U.S.A. October 1981 SEROTONIN AUTORECEPTORS ON DORSAL RAPHE NEURONS: STRUCTURE-ACTIVITY RELATIONSHIPS OF TRYPTAMINE ANALOGS’ MICHAEL A. ROGAWSKI’ AND GEORGE K. AGHAJANIAN Departments of Pharmacology and Psychiatry, Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut 06510 Abstract A series of indole-ethylamines were tested for their ability to suppress the spontaneous firing of single dorsal raphe serotonergic neurons in the rat. The compounds were all derivatives of either tryptamine or N,N-dimethyltryptamine possessing hydroxy or methoxy substituents on the benzene ring portion of the indole nucleus. Their activity was assessed using quantitative microiontophoresis or following systemic (intravenous) administration. The serotonin autoreceptor or so-called “S2 receptor” mediating the inhibition of raphe serotonergic neurons was found to exhibit a high degree of structural specificity among the closely related tryptamine analogs. The following structure- activity rules were demonstrated: (1) for either hydroxy or methoxy derivatives, the relative favorability of the ring positions conforms to the series 5 >> 4 > 6; (2) methoxy derivatives are more sensitive to a shift of the ring substituent from the 5- to the 4- or 6-positions than are hydroxy compounds; and (3) activity is enhanced by N,N-dimethylation. Furthermore, addition of a methyl group at the 7-position of 5-methoxy-N,N-dimethyltryptamine markedly reduces the activity of this potent agonist. Of the radioligands which label brain serotonin receptors, the pharmacological characteristics of D-[“HIlysergic acid diethylamide binding best correspond to those displayed by the SZ receptor as determined in the present physiological analysis, although sufficient data are not yet available to make a complete comparison.
    [Show full text]
  • Psychedelics: a Window to Mental Illness; Psilocybin and Depression
    Nova Southeastern University NSUWorks College of Pharmacy Student Articles College of Pharmacy 7-22-2020 Psychedelics: A Window To Mental Illness; Psilocybin And Depression Kiomary Rivera Quintana [email protected] Follow this and additional works at: https://nsuworks.nova.edu/hpd_corx_stuarticles Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Rivera Quintana, Kiomary, "Psychedelics: A Window To Mental Illness; Psilocybin And Depression" (2020). College of Pharmacy Student Articles. 5. https://nsuworks.nova.edu/hpd_corx_stuarticles/5 This Literature Review is brought to you for free and open access by the College of Pharmacy at NSUWorks. It has been accepted for inclusion in College of Pharmacy Student Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 2020 Psychedelics: A Window to Mental Illness PSILOCYBIN AND DEPRESSION KIOMARY RIVERA QUINTANA STUDENT PHARMACIST CLASS OF 2022 PHRE 5223-DRUGS OF ABUSE NOVA SOUTHEASTERN UNIVERSITY INTRODUCTION Drug abuse is characterized by improper repeated use of drugs to seek outcomes such as pleasure, stress relief and an altered reality.1 It can lead to addiction, a severe form of substance use disorder (SUD) in which a person’s drug habits worsen and they become unable to control the impulse to use drugs despite knowing the negative consequences.1 In addition to drug seeking behavior, brain function also changes affecting the natural inhibition and reward centers. Use of and addiction to alcohol, nicotine, and illicit drugs costs the Nation more than $740 billion a year related to healthcare, crime, and lost productivity.1 Whether a person will abuse drugs or become addicted is influenced by multiple factors; the more risk factors a person has, the greater the chance.
    [Show full text]
  • Lysergic Acid Diethylamide (LSD) Promotes Social Behavior Through Mtorc1 in the Excitatory Neurotransmission
    Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission Danilo De Gregorioa,b,1, Jelena Popicb,2,3, Justine P. Ennsa,3, Antonio Inserraa,3, Agnieszka Skaleckab, Athanasios Markopoulosa, Luca Posaa, Martha Lopez-Canula, He Qianzia, Christopher K. Laffertyc, Jonathan P. Brittc, Stefano Comaia,d, Argel Aguilar-Vallese, Nahum Sonenbergb,1,4, and Gabriella Gobbia,f,1,4 aNeurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1; bDepartment of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3; cDepartment of Psychology, McGill University, Montreal, QC, Canada, H3A 1B1; dDivision of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy; eDepartment of Neuroscience, Carleton University, Ottawa, ON, Canada, K1S 5B6; and fMcGill University Health Center, Montreal, QC, Canada, H3A 1A1 Contributed by Nahum Sonenberg, November 10, 2020 (sent for review October 5, 2020; reviewed by Marc G. Caron and Mark Geyer) Clinical studies have reported that the psychedelic lysergic acid receptor (6), but also displays affinity for the 5-HT1A receptor diethylamide (LSD) enhances empathy and social behavior (SB) in (7–9). Several studies have demonstrated that LSD modulates humans, but its mechanism of action remains elusive. Using a glutamatergic neurotransmission and, indirectly, the α-amino- multidisciplinary approach including in vivo electrophysiology, 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. optogenetics, behavioral paradigms, and molecular biology, the Indeed, in vitro studies have shown that LSD increased the ex- effects of LSD on SB and glutamatergic neurotransmission in the citatory response of interneurons in the piriform cortex following medial prefrontal cortex (mPFC) were studied in male mice.
    [Show full text]
  • Differential Regulation of Serotonin 2A Receptor Responsiveness by Agonist
    Differential regulation of serotonin 2A receptor responsiveness by agonist- directed interactions with arrestin2 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Cullen Laura Schmid, B.S. Neuroscience Graduate Studies Program The Ohio State University 2011 Dissertation Committee: Laura M. Bohn, Co-advisor Georgia A. Bishop, Co-advisor Candice C. Askwith Wolfgang Sadee Copyright by Cullen Laura Schmid 2011 Abstract The G protein-coupled, serotonin 2A (5-HT2A) receptor is a major drug target for the treatment of a number of mental health disorders, including schizophrenia, anxiety and depression. In addition to modulating several of the physiological effects of the neurotransmitter serotonin, activation of the 5-HT2A receptor mediates the psychotomimetic effects of serotonergic hallucinogenic drugs, such as lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-iodoamphetamine (DOI) and 5-methoxy-N,N- dimethyltryptamine (5-MeO-DMT). Though hallucinogens are agonists at the 5-HT2A receptor, not all 5-HT2A receptor agonists induce hallucinations in humans, including the endogenous ligand serotonin. Therefore, the activation of the 5-HT2A receptor can result in different biological responses depending upon the chemical nature of the ligand, a concept that has been referred to as “functional selectivity.” One way in which ligands can induce differential signaling at GPCRs is through interactions with arrestins, which can act to dampen or facilitate receptor signaling cascades or mediate the internalization of receptors into intracellular vesicles. The overarching hypothesis of this dissertation is that the interaction between the regulatory protein, arrestin2, and the 5-HT2A receptor is a critical point in the divergence of agonist-directed 5-HT2A receptor responsiveness.
    [Show full text]
  • Hallucinogens: an Update
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Hallucinogens: An Update 146 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Hallucinogens: An Update Editors: Geraline C. Lin, Ph.D. National Institute on Drug Abuse Richard A. Glennon, Ph.D. Virginia Commonwealth University NIDA Research Monograph 146 1994 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGEMENT This monograph is based on the papers from a technical review on “Hallucinogens: An Update” held on July 13-14, 1992. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]
  • N,N-Dimethyltryptamine Compound Found in the Hallucinogenic Tea Ayahuasca, Regulates Adult Neurogenesis in Vitro and in Vivo Jose A
    Morales-Garcia et al. Translational Psychiatry (2020) 10:331 https://doi.org/10.1038/s41398-020-01011-0 Translational Psychiatry ARTICLE Open Access N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo Jose A. Morales-Garcia 1,2,3,4, Javier Calleja-Conde 5, Jose A. Lopez-Moreno 5, Sandra Alonso-Gil1,2, Marina Sanz-SanCristobal1,2, Jordi Riba6 and Ana Perez-Castillo 1,2,4 Abstract N,N-dimethyltryptamine (DMT) is a component of the ayahuasca brew traditionally used for ritual and therapeutic purposes across several South American countries. Here, we have examined, in vitro and vivo, the potential neurogenic effect of DMT. Our results demonstrate that DMT administration activates the main adult neurogenic niche, the subgranular zone of the dentate gyrus of the hippocampus, promoting newly generated neurons in the granular zone. Moreover, these mice performed better, compared to control non-treated animals, in memory tests, which suggest a functional relevance for the DMT-induced new production of neurons in the hippocampus. Interestingly, the neurogenic effect of DMT appears to involve signaling via sigma-1 receptor (S1R) activation since S1R antagonist blocked the neurogenic effect. Taken together, our results demonstrate that DMT treatment activates the subgranular neurogenic niche regulating the proliferation of neural stem cells, the migration of neuroblasts, and promoting the generation of new neurons in the hippocampus, therefore enhancing adult neurogenesis and
    [Show full text]
  • Synthesis of Serotonergic Agents
    SYNTHESIS OF SEROTONERGIC AGENTS A Thesis Presented by PARVIZ GHARAGOZLOO According to the Requirements o f the University of London for the Degree of DOCTOR OF PHILOSOPHY Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it, is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. Signature: Date: Department of Chemistry, University College London, December 1991 London. ProQuest Number: 10797729 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797729 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To those whom I love and so greatly miss ACKNOWLEDGMENTS I wish to express my sincere thanks to Professor C. R. Ganellin for suggesting and supervising the serotonin project. I am also deeply indebted to him for his continuous encouragement, guidance, enthusiasm and friendship throughout this work.
    [Show full text]