KNOTS IN POLAND III BANACH CENTER PUBLICATIONS, VOLUME 100 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2013 JONES POLYNOMIALS, VOLUME AND ESSENTIAL KNOT SURFACES: A SURVEY DAVID FUTER Department of Mathematics, Temple University Philadelphia, PA 19122, USA E-mail:
[email protected] EFSTRATIA KALFAGIANNI Department of Mathematics, Michigan State University East Lansing, MI 48824, USA E-mail:
[email protected] JESSICA S. PURCELL Department of Mathematics, Brigham Young University Provo, UT 84602, USA E-mail:
[email protected] Abstract. This paper is a brief overview of recent results by the authors relating colored Jones polynomials to geometric topology. The proofs of these results appear in the papers [18, 19], while this survey focuses on the main ideas and examples. Introduction. To every knot in S3 there corresponds a 3-manifold, namely the knot complement. This 3-manifold decomposes along tori into geometric pieces, where the most typical scenario is that all of S3 r K supports a complete hyperbolic metric [43]. Incompressible surfaces embedded in S3 r K play a crucial role in understanding its classical geometric and topological invariants. The quantum knot invariants, including the Jones polynomial and its relatives, the colored Jones polynomials, have their roots in representation theory and physics [28, 46], 2010 Mathematics Subject Classification:57M25,57M50,57N10. D.F. is supported in part by NSF grant DMS–1007221. E.K. is supported in part by NSF grants DMS–0805942 and DMS–1105843. J.P. is supported in part by NSF grant DMS–1007437 and a Sloan Research Fellowship. The paper is in final form and no version of it will be published elsewhere.