Inspection Procedures for Isocyanates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinetics of the Reaction Between Alcohols and Isocyanates Catolyzed by Ferric Acetylacetonate
.. -. - Kinetics of the Reaction Between Alcohols and Isocyanates Catolyzed by Ferric Acetylacetonate Leroy Schieler OTS PRICE XEROX $- % i JET PROPULSION LABORATORY I CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA,CALIFORNIA July 1, 1961 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACTNo. NASw-6 Technical Report No. 32-129 Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate Leroy Schieler Robert F. Landel, Chief Solid Propellant Chemistry Section JET PROPULSION LABORATORY CALIFORNIA lNSTlTUTE OF TECHNOLOGY PASADENA, CALIFORNIA July 1, 1961 Copyright @ 1961 Jet Propulsion laboratory California Institute of Technology JPL TECHNICAL REPORT NO. 32-129 CONTENTS Page 1. Introduction................................................ 1 II. Kinetics of Ferric Acetylacetonate Catalyzed Urethane Formation ........................................ 3 A . Experimental Methods ..................................... 3 B. Kinetic Investigations ...................................... 3 111 . Dependence of Rate of Urethane Formation on Nature of Reactants ........................................ 11 A . Substituted Isocyanates..................................... 11 B. Substituted Alcohols ....................................... 12 C . Metal Chelate Catalysts ..................................... 12 IV. Conclusions ................................................ 13 References..................................................... 14 TABLES 1. Ferric Acetylacetonate Catalyzed Reaction of a-Naphthyl Isocyanate with -
Safe Work Procedures for Isocyanate-Containing Products
Safe Work Procedures for Isocyanate-Containing Products June 2000 IATSE Local 891 1640 Boundary Road Vancouver, BC 99-6798-01 Submitted By DILLON CONSULTING LIMITED 130-10691 Shellbridge Way Richmond, B.C. V6X 2W8 IATSE Local 891 Safe Work Procedures for Isocyanate-Containing Products EXECUTIVE SUMMARY Dillon Consulting Limited (Dillon) was retained by I.A.T.S.E. Local 891 to develop safe work procedures to direct film industry personnel in the safe performance of their duties when working with isocyanate-containing products. This document also contains a guideline for minimizing exposure to other individuals in the studio or set that are not working directly with the product. A brief summary of potential routes of exposure and health hazards are outlined as a guideline on how to control the potential for exposure to isocyanate-containing products by the use of engineering controls, administrative controls and personal protective equipment. However, the best method of minimizing exposure to isocyanate products is substituting with less hazardous products. Dillon Consulting Limited IATSE Local 891 Safe Work Procedures for Isocyanate-Containing Products TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................................................................................................1 2.0 ISOCYANATE-CONTAINING PRODUCTS ..........................................................................................1 3.0 POTENTIAL ROUTES OF EXPOSURE AND HEALTH EFFECTS ...................................................1 -
Thermodynamics and Reaction Mechanism of Urea Decomposition† Cite This: Phys
PCCP View Article Online PAPER View Journal | View Issue Thermodynamics and reaction mechanism of urea decomposition† Cite this: Phys. Chem. Chem. Phys., 2019, 21,16785 a b b b Steffen Tischer, * Marion Bo¨rnhorst, Jonas Amsler, Gu¨nter Schoch and Olaf Deutschmann ab The selective catalytic reduction technique for automotive applications depends on ammonia production from a urea–water solution via thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these Received 18th March 2019, by-products have been studied by thermogravimetric analysis and differential scanning calorimetry. Accepted 5th July 2019 A new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the DOI: 10.1039/c9cp01529a reactants in liquid and solid phases. Thermodynamic data for triuret have been refined. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range of 193–230 1Cis rsc.li/pccp explained by formation of a eutectic mixture with urea. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction and ammonium ISE (ion-selective electrode) measurements. Concluding from experimental results and literature data, 23 Air pollution by nitrogen oxides from Diesel engines is a major possible reactions including urea and its by-products biuret, problem concerning the environment and society. Therefore, cyanuric acid, ammelide, ammeline and melamine are presented. governments follow the need to regulate emissions by law (e.g., Further, cyanate and cyanurate salts and cyanamide are 715/2007/EG, ‘‘Euro 5 and Euro 6’’).1 The favored method to proposed as possible intermediates of high temperature urea reduce nitrogen oxides is selective catalytic reduction (SCR) decomposition. -
Catalyst for Low Temperature Cure of Blocked Isocyanates
Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 810 245 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Intel6: C08G 18/24, C08G 18/80, 03.12.1997 Bulletin 1997/49 C08G 63/85, C08G 77/08 (21) Application number: 97108506.3 (22) Date of filing: 27.05.1997 (84) Designated Contracting States: (72) Inventors: AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC • Gitlitz, Melvin H. NL PT SE Berwyn, PA 1931 2 (US) • Seshadri, Sri R. (30) Priority: 28.05.1996 US 18438 P Newtown, PA 18940 (US) 03.04.1997 US 826603 (74) Representative: (71) Applicant: Kraus, Walter, Dr. et al ELF ATOCHEM NORTH AMERICA, INC. Patentanwalte Kraus, Weisert & Partner Philadelphia, Pennsylvania 19103-3222 (US) Thomas-Wimmer-Ring 15 80539 Munchen (DE) (54) Catalyst for low temperature cure of blocked isocyanates (57) The present invention comprises a polystan- noxane catalyst, a curable composition containing the catalyst and a method of using the catalyst and curing the composition. The curable composition comprises: (i) a blocked isocyanate; (ii) a functional component containing reactive hydrogen; (iii) a polystannoxane catalyst for promoting the reaction of the blocked isocyanate with the func- tional component. A co-catalyst may also be employed based on Cu, Zn, Ni, Zr, Ce, Fe, Co, V, Sb and Bi and especially oxides, salts or chelates of said metals. The invention also relates to a method for curing a blocked isocyanate at a low reaction temperature which comprises combining the catalyst with the blocked isocyanate and functional component and heating to a temperature less than about 180°C to obtain a cured urethane. -
United States Patent Office E
Unitede States- Patent- Office 3,845,059E. 1. 2 The reaction of biuret with diethanolamine to form PREPARATION OF N,N'-DIETHANOL3,845,059 PIPERAZINE N,N'-diethanol piperazine can be illustrated as follows: Alvin F. Beale, Jr., Lake Jackson, Tex., assignor to The Dow Chemical Company, Midland, Mich. 2(HOCH)NH -- NH2CONHCONH --> No Drawing. Filed June 19, 1972, Ser. No. 264,704 5 CHO Int, C. C07d51/70 U.S. C. 260-268. SY 8 Claims /N al-woman-mamm CH, CH, ABSTRACT OF THE DISCLOSURE + 2CO. 1 + 8NHat Diethanolamine is reacted with urea or a urea pyrol- lo Y yzate (e.g. biuret, triuret, or cyanuric acid) to form N,N'-diethanol piperazine. The following chart illustrates the balanced stoichiom BACKGROUND OF THE INVENTION la etry for reacting diethanolamine with urea, biuret, triuret, N,N'-diethanol piperazine has been previously prepared and cyanuric acid. Reaction products Moles of Empirical Moles N,N'- Moles of formula of of diethanol Moles Moles (HOCH)NH Name of reactant reactant reactant piperazine of Co2 of NH3 2---------------------- Urea------------------------ CHNO 2 2 4. 2- ---. Biuret---. C2HNO2 2 3 6-- --- Triuret.----- ... C3HNO3 2 3. 6 8 6.----- ... Cyanuric aci - C3H3NO3 2 3. 6 6 by the condensation of piperazine with ethylene chloro- The reaction has been found to be specific for dieth hydrin as reported in J. Am. Chem. Soc., Vol. 55, p. 3823 anolamine since analogous dialkanolamines do not give (1933). The compound has been reported to have phar- corresponding dialkanol-substituted cyclic structures con macological properties as an anesthetic or sedative in 30 taining nitrogens within a carbon ring. -
Asian Journal of Chemistry Asian Journal of Chemistry
Asian Journal of Chemistry; Vol. 27, No. 9 (2015), 3149-3151 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2015.16726 Synthesis and Antimicrobial Activities of 2-S-Hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets * REENA J. DESHMUKH and SHIRISH P. D ESHMUKH P.G. Department of Chemistry, Shri Shivaji College, Akola-444 001, India *Corresponding author: E-mail: [email protected] Received: 20 April 2014; Accepted: 14 March 2015; Published online: 26 May 2015; AJC-17213 A series of novel 2-S-hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets have been synthesized by the interaction of S-hepta-O-benzoyl lactosyl-1-arylisothiocarbamides and hepta-O-benzoyl-β-D-lactosyl isocyanate. These compounds were screened for their antibacterial and antifungal activities against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. The newly synthesized compounds have been characterized by analytical and IR, 1H NMR and mass spectral studies. Keywords: Arylisothiocarbamides, Lactosyl thiocyanate, Isothiobiurets. INTRODUCTION an efficient synthetic route to novel lactosyl isothiourea derivatives and their antimicrobial activities are reported. A number of thiourea derivatives have been reported to 1 2 exhibit antibacterial , herbicidal and fungicidal activities. EXPERIMENTAL Sugar thioureas3 has synthetic applications in neoglycocon- jugate synthetic strategies4, including neoglycoproteins5, Melting points determined are uncorrected. IR Spectra glycodendrimers6, glycoclusters7 and pseudooligosaccharides8. were recorded on Perkin-Elmer spectrum RXI FTIR spectro- Thiobiurets (mono and di) are also important derivatives meter. 1H NMR was obtained on Bruker DRX-300 MHz NMR of (thio) urea which may increase the biological activity of Spectrometer. -
MINI-REVIEW Methyl Isocyanate and Carcinogenesis: Bridgeable Gaps in Scientific Knowledge
DOI:http://dx.doi.org/10.7314/APJCP.2012.13.6.2429 Methyl Isocyanate and Carcinogenesis: Bridgeable Gaps in Scientific Knowledge MINI-REVIEW Methyl Isocyanate and Carcinogenesis: Bridgeable Gaps in Scientific Knowledge Chinnu Sugavanam Senthilkumar1, 2*, Nand Kishore Sah3, Narayanan Ganesh1 Abstract Methyl isocyanate may have a role in cancer etiology, although the link is unclear. There is evidence in the literature that it can induce cancer in animals but the carcinogenic potency is weak. Pheochromocytoma of adrenal medulla and acinar cell tumors of pancreas have been observed in methyl isocyanate exposed animals. Conversely, emerging data from population-based epidemiological studies are contradictory since there is no evidence of such cancers in methyl isocyanate exposed humans. Recently, we reported a high prevalence of breast and lung cancers in such a population in Bhopal. In vitro findings appearing in the latest scientific literature suggest that genomic instability is caused by methyl isocyanate analogs in lung, colon, kidney, ovary epithelial cells, and that hepatocytes may undergo oncogenic transformation, have obvious implications. The conflicting information prompted us to present this update over the last three decades on methyl isocyanate-induced cancers after an extensive literature search using PubMed. While the pertinent literature remains limited, with a scarcity of strong laboratory analyses and field-epidemiological investigations, our succinct review of animal and human epidemiological data including in vitro evidences, should hopefully provide more insight to researchers, toxicologists, and public health professionals concerned with validation of the carcinogenicity of methyl isocyanate in humans. Keywords: Methyl isocyanate - carcinogenicity - need for validation - review Asian Pacific J Cancer Prev, 13, 2429-2435 Introduction recognized the toxicity of MIC in humans. -
Spray Foam Event 2013, Session a Presentations Contents List
Spray Foam Event 2013, Session A Presentations Contents List 1. Introduction to Spray Polyurethane Foam (Click to go to PDF Page 2) 2. OSHA’s Isocyanates National Emphasis Program (Click to go to PDF Page 58) 3. EOLWD On-site Consultation Program (Click to go to PDF Page 76) 4. Essential Resources and Training, American Chemistry Council (Click to go to PDF Page 109) 5. Safe Spray Foam (Click to go to PDF Page 126) 6. EPA Safe Use of Polyurethane Products (Click to go to PDF Page 137) Return to Contents List Introduction to Spray Polyurethane Foam This presentation will provide important background information on SPF, including history, product categories and delivery methods and applications. It will also address chemical concerns and include tips for a quality installation, and briefly cover environmental impacts of the product COPYRIGHTED MATERIALS This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of any part of this presentation without written permission of the speaker is prohibited. © 2013 Spray Polyurethane Foam Alliance Presentation Content 1. History 2. Product Categories 3. Basic Chemistry 4. Delivery Methods 5. Chemical Concerns 6. Environmental Impact 7. Quality Installation 8. Summary History of SPF in Buildings in construction for 50 years • Late 60’s ‐ Medium Density (agricultural and industrial) • Mid 70’s ‐Roofing ‐ Medium Density (general const.) ‐ Sealants • Mid 90’s ‐ Low Density (residential) Product Category Four general categories of SPF Spray Foam -
Biuret Applications in Beef and Dairy Rations
The Technical Edge Biuret has Practical Applications in Beef and Dairy Rations Feed grade biuret, an economical source of non-protein nitro- gen (NPN), is an ADM Alliance Nutrition® exclusive. It can be Table 1 Nutrient Composition of Biuret used in ruminant diets and is approved for use in dairy lactation Item % AF % DM diets. Prior to May 2003, biuret was not approved for use in dairy DM, % 99 — rations. ADM was instrumental in getting biuret approved for use in dairy rations. Numerous research articles were reviewed and Protein, % 246 248.5 summarized. On May 27, 2003, ADM received an approval letter RDP, % CP 100 100 from the Food and Drug Administration (FDA) allowing biuret to 1 be formulated into dairy rations. SIP , % CP 100 100 Biuret is formed by the controlled decomposition of urea, con- NPN, % SIP 100 100 densing two molecules of urea into a single molecule of biuret, NRC, 2001 A Protein, % CP 100 100 which retains three of the nitrogen atoms (see Figure 1). Feed- 1 grade biuret is a mixture containing biuret and urea (maximum of For use in formulation; biuret is slowly soluble. 14%) with small amounts of triuret and cyanuric acid. Typically, biuret contains a minimum of 35% nitrogen with a crude protein fed in confinement. The slower degradation and physical proper- value of 246% (See Table 1). ties assist in forming a high-quality, self-fed supplement. Biuret Biuret is less soluble than urea. The combination of structural is at least 7.3 times less toxic than urea, making it ideal when and physical characteristics slows the rumen digestion of biuret. -
Explosive Chemical Management Procedures
NMSU EXPLOSIVE CHEMICAL MANAGEMENT PROCEDURES These procedures are a guide to help prevent explosions and protect health and the environment. If you identify old explosives or old organic peroxide forming chemicals, immediately contact Environmental Health and Safety (EH&S) at 646-3327. 1. INTRODUCTION: All explosive chemicals should be identified and carefully managed. There are two main classes of explosive chemicals: 1.1. STANDARD EXPLOSIVE CHEMICALS: These consist of explosive compounds manufactured for detonation such as dynamite, gunpowder, blasting caps, and fireworks. These compounds are rare on the NMSU campus and relatively stable under normal conditions. If these compounds are not being used for a specific, authorized activity they should be immediately called in for pick up by EH&S at 646-3327. 1.2. POTENTIALLY EXPLOSIVE CHEMICALS (PECs): These consist of lab chemicals not intentionally made for detonation but which may explode and/or cause fires if not properly managed. A number of PECs are common on the NMSU campus and should be handled with extra precaution. The main focus of this SOP is to help identify PECs and describe the precautions that should be taken to manage them from purchase through disposal. 2. ORGANIC PEROXIDE FORMING CHEMICALS: This is the principle group of PECs that lead to problems in university labs. They are carbon-based chemicals capable of forming potentially explosive peroxide “O-O” bonds. Below is a breakdown of the four main subcategories of organic peroxide forming chemicals; common ones are specifically identified in the appendices. 2.1. Chemicals that form explosive levels of peroxides without a concentration step, e.g., evaporation, distillation, etc., are listed in Appendix 1. -
Attachment A
Attachment A Proposed 15-Day Modifications California Code of Regulations, Title 17, Division 3, Chapter 1, Subchapter 7.7, Article 1 Note: This document shows proposed modifications to the originally proposed amendments to the Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants, as presented during the November 19, 2020, meeting of the California Air Resources Board. At that meeting, the Board directed staff to make modifications to the proposed amendments based on public comments received, and to provide these updates for public comment for a period of at least 15 days. The pre-existing regulation text is set forth below in normal type. The original proposed amendments are shown in underline formatting to indicate additions and strikeout to indicate deletions. The additional proposed modifications made available with the notice of public availability of modified text dated March XY, 2021, are shown in double- underline to indicate additions and double-strikethrough to indicate deletions. The symbol “***” means that intervening text not proposed for amendment is not shown. Proposed Amendments to the Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants California Code of Regulations, Title 17, Division 3, Chapter 1, Subchapter 7.7, Articles 1 and 2 Amend Subchapter 7.7, Article 1, and sections 93400, 93401, 93402, 93403, 93404, 93405, 93406, 93407, 93408, 93409, 93410, title 17, California Code of Regulations, and adopt new Subchapter 7.7, Article 2, sections 93420, 93421, and new Subchapter 7.7, Article 2, Appendices A and B to title 17, California Code of Regulations, to read as follows: Subchapter 7.7: Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants Article 1. -
United States Patent Office Patented Feb
3,367,956 United States Patent Office Patented Feb. 6, 1968 1 2 3,367,956 or cycloaliphatic hydrocarbons. When following the pro PREPARATION OF BIURET POLYISOCYANATES cedure of the present invention, it is critical to elevate Hans Joachim Hennig, Cologne-Starnmheim, and Otto the temperature at least in the later stage of the reaction Bayer, Erwin Windemuth, and Wilhelm Bunge, Lever ' to about ISO-250° C. to bring about formation of mono kusen, Germany, assignors to Farhenfabriken Bayer isocyanate which must be continuously removed substan Aktiengesellschaft, Leverkusen, Germany, a German corporation tially as soon as it is formed, preferably by operating at N0 Drawing. Filed Apr. 1, 1964, Ser. No. 356,650 the elevated temperature at a reduced pressure or by Claims priority, application Germany, Apr. 13, 1963, using a carrier gas to remove the organic monoisocyanate F 39,482 from the reaction mixture substantially as soon as it is 6 Claims. (Cl. 260—453) formed. Then the well-de?ned biuret polyisocyanates of the invention are formed instead of high molecular weight This invention relates to organic polyisocyanates and condensation products. Thus, it is an essential feature of more particularly to a process for the preparation of this invention to carry out the process under such tem biuret polyisocyanates. Moreover, this invention provides perature conditions that a monoisocyanate is split off and a new and unexpected way of preparing biuret polyiso the reactants may recombine to form a biuret polyiso cyanates which may also contain carbamyl groups with cyanate. Instead of high molecular weight condensation out the formation of undesirable by-products.