Invertebrate Resources on the Internet

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrate Resources on the Internet Invertebrate Resources on the Internet Stephen A. Smith Abstract exponential expansion of the World Wide Web simply does not allow the publication of such a document. Instead, this The use of invertebrates in research laboratories, classroom resource should be used as a guide for locating preliminary Downloaded from https://academic.oup.com/ilarjournal/article/52/2/165/659952 by guest on 27 September 2021 teaching, and public displays has greatly increased over the information, beginning with established organizations that past 20 years, accompanied by a corresponding increase in have an interest in expanding knowledge about invertebrates the amount of online information and literature about inver- and/or ensuring their appropriate care and use in the labora- tebrates. This brief overview of Internet resources is intended tory, classroom, or display environment. to aid both novice and experienced individuals in the search The list is organized by general phylum and selected spe- for such information. cies, with a descriptive title, web address, and brief synopsis provided for each website. Specifi c information about tax- Key Words: annelid; arthropod; cephalopod; Internet resource; onomy, natural history, husbandry, culture, welfare, anatomy invertebrate; mollusc; platyhelminth and histology, physiology, ontogeny, genetics, conservation, toxicology, educational resources, listservs, and databases must be derived from each group or species link. nvertebrates consist of over 30 phyla of organisms and ac- The following list includes only those links that are con- count for more than 95% of all animal species on this planet. sidered to be of substantive value, and not sites of primarily I They are extremely diverse organisms, ranging from sim- commercial interest. However, due to the ever-changing ple sponges to complex cephalopods, and have played a major world of the Internet, with new websites springing up every role in exhibits or displays at most aquaria, zoos, and nature day and other sites no longer functional, the accuracy and centers worldwide for over a century. Invertebrates have also consistency of the links cannot be guaranteed.1 In light of the been used for a variety of research purposes, from basic bio- massive amount of information about invertebrates on the logical studies to investigations of mechanisms of cell signal- Internet, it is possible that some useful websites or links are ing to experimental models of cancer and human disease. In inadvertently missing from this compilation. the classroom, invertebrates have been used for teaching zool- ogy, anatomy, physiology, embryology, genetics, husbandry, and conservation to primary, secondary, and college students. General Information The popular use of invertebrates coupled with the emer- The Invertebrate Phyla – Earthlife.net gence of the Internet has spawned an array of online resources www.earthlife.net/inverts/an-phyla.html for invertebrate species. Conservation of invertebrate groups Brief overview of all invertebrate phyla with links to infor- such as marine corals and freshwater molluscs is a major mation on specifi c groups. theme of a number of websites, but only a few websites con- vey serious consideration of the welfare of invertebrates. As Invertebrate – Wikipedia concern increases for the care, welfare, and enrichment of http://en.wikipedia.org/wiki/Invertebrate invertebrates cultured and/or maintained in captivity, this Foundational information on the classifi cation, phyla, and will undoubtedly change in the near future. life history of invertebrates. The following compilation of Internet links is designed The Invertebrate Animals to be a practical resource for all who use and care for inver- http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/I/ tebrates, from high school biology teachers to experienced Invertebrates.html researchers. It is not meant to be an exhaustive listing as the Introductory information on the origin and evolution of Stephen A. Smith, DVM, PhD, is a professor of Aquatic, Wildlife, and invertebrates with descriptions of major taxa. Pocket Pet Medicine in the Department of Biomedical Sciences and Invertebrates – Animal Kingdom Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University in Blacksburg. http://animalkingdom.net/category/invertebrates/ Address correspondence and reprint requests to Dr. Stephen A. Smith, General website on invertebrates with links to other websites Department of Biomedical Sciences and Pathobiology, Virginia-Maryland for specifi c groups. Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, VA 24060-0442 or email [email protected]. 1All the websites listed here were accessed on March 11, 2011. Volume 52, Number 2 2011 165 The Tree of Life Web Project Catalogue of invertebrate specimens and images from the http://tolweb.org/tree/phylogeny.html Hawaiian and Pacifi c areas including a comprehensive General information about the biodiversity, characteris- checklist of all marine invertebrates native to the area. tics, and phylogeny of different groups of invertebrate Invertebrates – Australian Museum organisms. http://australianmuseum.net.au/Invertebrate-Collections Invertebrate Zoology Online – Lander University Catalogue of the museum’s invertebrate collections, which http://webs.lander.edu/rsfox/invertebrates/ primarily focus on crustaceans, worms, insects, spiders, Anatomical descriptions, systematics, and references for and molluscs. over 100 invertebrate species used in zoology teaching GBR Explorer – ReefEd and research. www.reefed.edu.au/home/explorer Invertebrates – Biology4kids.com Interactive online guide to the invertebrates of the Great Barrier Downloaded from https://academic.oup.com/ilarjournal/article/52/2/165/659952 by guest on 27 September 2021 www.biology4kids.com/fi les/invert_main.html Reef. Educational resource on invertebrate classifi cation for pri- Invertebrates as Indicators – US Environmental Protection mary and secondary teachers and students. Agency Invertebrate Lesson Plans – Discovery Education www.epa.gov/bioiweb1/html/invertebrate.html www.discoveryeducation.com/teachers/free-lesson-plans/ Information about invertebrates as biological indicators of invertebrates.cfm watershed health. Lesson plans, materials, suggested readings, and links for Information Resources on the Care and Use of Invertebrates – teaching students in grades 6-8 about invertebrates. US Department of Agriculture Dissections Online – University of Buffalo www.nal.usda.gov/awic/pubs/invertebrates.htm http://ublib.buffalo.edu/libraries/asl/guides/bio/dissections. Online compilation of references related to the care and use html of invertebrates in the laboratory, classroom, or display Links to dissection guides for a variety of invertebrates (earth- environment (AWIC Resource Series No. 8, 2000). worm, crayfi sh, grasshopper, tick, roundworm, starfi sh, Invertebrate Link – Joint Committee for the Conservation of clam, squid, and sponge). British Invertebrates Invertebrate Printouts – Enchanted Learning.com www.royensoc.co.uk/InvLink/Index.html www.enchantedlearning.com/subjects/invertebrates/index. Forum to advance the conservation of invertebrates in shtml the United Kingdom through the exchange of informa- Information and printouts on invertebrates for primary and tion among organizations and statutory bodies for the secondary education. development of strategies, policies, and best practice guide lines. Invertebrates – Electronic Zoo/NetVet http://netvet.wustl.edu/invert.htm BugLife – The Invertebrate Conservation Trust Links relating to Drosophila, bees, arthropods, worms, and www.buglife.org.uk/ crustaceans. Information about the conservation of European inverte brates. Riverwatch – Aquatic Invertebrates www.riverwatch.ab.ca/how_to_monitor/macroinvertebrates. cfm Basic Information on the Major Information on collecting, identifi cation, behavior, habitat Invertebrate Phyla preference, and pollution tolerance of aquatic inverte- brates. Porifera (Sponges) Marine Species Identifi cation Portal – ETI BioInformatics in Introduction to Porifera – University of California Museum the KeyToNature program of Paleontology http://species-identifi cation.org/index.php www.ucmp.berkeley.edu/porifera/porifera.html Information, images, and links for numerous species of Introduction to the simplest phyla of invertebrates, with marine invertebrates. examples of sponge types. Invertebrates – Smithsonian Institute National Zoological World Porifera Database Park www.marinespecies.org/porifera/ http://nationalzoo.si.edu/Animals/Invertebrates/default.cfm Database of sponges worldwide and part of the global initia- Interactive resource for general information on inverte- tive of the World Register of Marine Species (WoRMS) brates. to register all marine organisms. Invertebrate Zoology – Bishop Museum Sponges of Britain and Ireland www.bishopmuseum.org/research/natsci/invert/ www.habitas.org.uk/marinelife/sponge_guide/ 166 ILAR Journal Searchable database of publications on all aspects of sponge Octocoral Research Center – California Academy of Sciences classifi cation and biology (based on the 1992 book http://research.calacademy.org/redirect?url=http:// Sponges of the British Isles: A Colour Guide and Work- researcharchive.calacademy.org/research/izg/orc_home. ing Document, by Ackers, Moss, and Picton; revised in html 2007 by Picton, Morrow, and van Soest). Information about soft corals,
Recommended publications
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • Taxon Ordering in Phylogenetic Trees by Means of Evolutionary Algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2*
    Cerutti et al. BioData Mining 2011, 4:20 http://www.biodatamining.org/content/4/1/20 BioData Mining RESEARCH Open Access Taxon ordering in phylogenetic trees by means of evolutionary algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2* * Correspondence: mario. Abstract [email protected] 1 Department of Animal Production, Background: In in a typical “left-to-right” phylogenetic tree, the vertical order of taxa Epidemiology and Ecology, Faculty of Veterinary Medicine, University is meaningless, as only the branch path between them reflects their degree of of Torino, Via Leonardo da Vinci similarity. To make unresolved trees more informative, here we propose an 44, 10095, Grugliasco (TO), Italy innovative Evolutionary Algorithm (EA) method to search the best graphical Full list of author information is available at the end of the article representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods: Starting from a West Nile virus phylogenetic tree, in a (1 + 1)-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius) next taxa. After having set the radius to the best performance, we evolved the trees with (l + μ)-EAs to study the influence of population on the algorithm. Results: The (1 + 1)-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (l + μ)-EAs performed as well as the (1 + 1), except the larger population (1000 + 1000).
    [Show full text]
  • Curriculum Vitae Bradley Evan Carlson, Ph.D
    Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448.
    [Show full text]
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Morphology Is Still an Indispensable Discipline in Zoology: Facts and Gaps from Chilopoda
    SOIL ORGANISMS Volume 81 (3) 2009 pp. 387–398 ISSN: 1864 - 6417 Morphology is still an indispensable discipline in zoology: facts and gaps from Chilopoda Carsten H. G. Müller 1* & Jörg Rosenberg 2 1Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Str. 11–12, 17487 Greifswald; e-mail: [email protected] 2Universität Duisburg-Essen, Universitätsklinikum Essen, Zentrales Tierlaboratorium, Hufelandstr. 55, 45122 Essen, Germany; e-mail: [email protected] *Corresponding author Abstract The importance of morphology as a descent discipline of biosciences has been questioned several times in recent years, especially by molecular geneticists. The criticism ranged between an assumed already comprehensive knowledge on animals body plans resulting in no longer need for morphological research and claims that morphological data do not contribute properly to the phylogenetic reconstructions on all systematic levels or to evolutionary research based on the modern synthesis. However, at least the first assumption of an overall knowledge on animal’s outer and inner morphology at present state seems to be unjustified with respect to what is known about Myriapoda. The present paper underlines the necessity and legitimacy to carry out morphological studies in the still widely neglected subgroups of Myriapoda and among them especially in the Chilopoda. Many interesting morphological data on Chilopoda could be gained in recent years, as for instance from epidermal glands and eyes. Gaps of knowledge on the external and internal morphology of centipedes hamper the ability to compare morphological data among the five known chilopod subgroups, to conduct character conceptualisations, to draw scenarios of evolutionary transformations of certain organ systems and/or to use morphological data for reconstructing strongly disputed euarthropod interrelationships.
    [Show full text]
  • Towards a Management Hierarchy (Classification) for the Catalogue of Life
    TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758.
    [Show full text]
  • Invertebrate Biology Wileyonlinelibrary.Com/Journal/Ivb VOLUME 134 | NUMBER 3 | 2015
    ivb_134_3_oc_OC.qxd 8/18/2015 10:23 AM Page 1 Invertebrate Invertebrate Biology wileyonlinelibrary.com/journal/ivb VOLUME 134 | NUMBER 3 | 2015 VOLUME 134 NUMBER 3 2015 | | Biology CONTENTS 181–188 Ultrastructure of the rotifer integument: peculiarities of Sinantherina socialis (Monogononta: Invertebrate Biology Gnesiotrocha) Rick Hochberg, Adele Hochberg, and Courtney Chan 189–202 Linking zebra mussel growth and survival with two cellular stress indicators during chronic VOLUME temperature stress Jennifer A. Jost, Emily N. Soltis, Marshall R. Moyer, and Sarah S. Keshwani 134 203–213 Sex‐specific reproductive investment of summer spawners of Illex argentinus in the southwest | NUMBER Atlantic Dongming Lin, Xinjun Chen, Yong Chen, and Zhou Fang 3 – | 214 230 Immunohistochemical investigations of the development of Scoloplos armiger (“intertidalis clade”) 2015 indicate a paedomorphic origin of Proscoloplos cygnochaetus (Annelida, Orbiniidae) Conrad Helm, Anne Krause, and Christoph Bleidorn 231–241 Effects of tidal height and wave exposure on cirrus and penis morphology of the acorn barnacle Tetraclita stalactifera J. Matthew Hoch and Kevin V. Reyes 242–251 The distribution of cave twilight‐zone spiders depends on microclimatic features and trophic supply Raoul Manenti, Enrico Lunghi, and Gentile Francesco Ficetola 252–259 A non‐destructive tissue sampling technique for holothurians to facilitate extraction of DNA for genetic analysis Samantha J. Nowland, Dean R. Jerry, and Paul C. Southgate 260 Erratum COVER ILLUSTRATION Cave habitats are unusual among terrestrial habitats because most of their trophic resources are ultimately derived by transport from surface communities. The amount and distribution of these resources in caves may have strong effects on the biology of cave-dwelling species.
    [Show full text]
  • Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
    Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa [email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA [email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available.
    [Show full text]
  • Invertebrate ZOOLOGY Crustacea Are Issued in Parts at Irregular Intervals As Material Becomes Available Obtainable from the South African Museum, P.O
    DEEP SEA DECAPOD CRUSTACEA FROM WEST OF CAPE POINT, SOUTH AFRICA June 1968 Junie Volume 50 Band Part 12 Dee! iNVERTEBRATE ZOOLOGY Crustacea are issued in parts at irregular intervals as material becomes available Obtainable from the South African Museum, P.O. Box 61, Cape Town (Cash with order, post free) word uitgegee in dele op ongereelde tye na beskikbaarheid van stof Verkrygbaar van die Suid-Afrikaanse Museum, Posbus 61, Kaapstad (Kontant met bestelling, posvry) OUT OF PRINT/UIT DRUK I, 2(1, g, 5, 7-8), g(I-2, 5, t.-p.L), 5(2, 5, 7-9), 6(1, t.-p.i.), 7(1, g), 8, 9(1-2), IO(I-g), II (1-2, 7, t.-p.i.), 21, 24(2), 27, gl (I-g), g8, 44(4)· Price of this part/Prys van hierdie deel RI.75 Trustees of the South African Museum © Trustees van die Suid-Afrikaanse Museum 1968 Printed in South Africa by In Suid-Afrika gedruk deur The Rustica Press, Pty., Ltd. Die Rustica-pers, Edms.,Bpk. Court Road, Wynberg, Cape Courtweg, Wynberg, Kaap DEEP SEA DECAPOD CRUSTACEA FROM WEST OF CAPE POINT, SOUTH AFRICA By B. F. KENSLEY South 4frican Museum, Cape Town PAGF. Introduction 283 List of species and stations 284- Description and notes 286 Summary 321 Acknowledgements 321 References 322 In 1959 the research ship 4fricana II of the Division of Sea Fisheries carried out trawls at twelve stations off the west coast of the Cape Peninsula and off Cape Point, under the supervision of Dr. F. H. Talbot, then of the South Mrican Museum.
    [Show full text]