Classroom Teacher's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Classroom Teacher's Guide CLASSROOM TEACHER’S GUIDE KEY STAGE 2 YEARS 4 - 5 - 6 TABLE OF CONTENTS WELCOME TO ABOVE AND BEYOND! 1 Experiencing ABOVE AND BEYOND: The School Trip 2 Using This Teacher’s Guide 4 TAKE FLIGHT: CLASSROOM LESSON PLANS 6 1. Map It! Partners Around the World – Geography, Data Collection, Graphing 6 2. When Drag Isn’t a Drag – Science, Mathematics 14 3. Better Suited for Mars – Science, Engineering 21 4. Logical Careers – Mathematics, Logic 29 ABOVE AND BEYOND – THE ULTIMATE INTERACTIVE FLIGHT EXHIBITION is made possible by Boeing. The exhibition is produced by Evergreen Exhibitions in association with Boeing, in collaboration with NASA. This Teacher’s Guide is created by TurnKey Education, Inc., for Evergreen Exhibitions. Education resources and programming for ABOVE AND BEYOND are made possible by Boeing in celebration of its cen- tennial and its ongoing commitment to prepare and inspire the next generation to dream, design and build something better for the next century. © 2015 Evergreen Exhibitions. All rights reserved. Except for educational fair use, no portion of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical, photocopy, recording, or any other without explicit prior permission. Multiple copies may only be made by or for the teacher for educational use. WELCOME TO ABOVE AND BEYOND! Looking back at the history of flight, one thing is abundantly clear: the sky was never the limit. ABOVE AND BEYOND is a multisensory flight and aerospace exhibition that invites you and your students to experience what it takes to make the “impossible” possible in and above the sky. This unique learning opportunity • Get airborne wherever and is brought to you by The Boeing whenever we wanted? Company and developed in • Fly faster than the speed of sound collaboration with a host of with supersonic flights that don’t renowned aviation specialists, make a lot of noise or burn too aerospace experts, historians, much fuel? archivists, teachers and educational programming professionals. These • Design ultra-green flying machines skilled partners bring science, to carry more people to more technology, engineering, the arts and places and, at the same time, treat maths instruction to new heights in the planet better? your classroom. ABOVE AND BEYOND offers your students direct access • Invent supersmart flying robots to to immersive simulations, interactive assist us in our daily lives, such as design challenges, iconic historical delivery-bots, eco-bots and more? touchstones, visionary concepts • Build a new generation of reusable for the future and inspiring stories space vehicles to make trips to from game-changing innovators past Earth’s orbit as common as air and present. Imagine the teachable travel? moments! ABOVE AND BEYOND is more than From the time humans first got off a visit to the museum. It is a way to the ground, the race was on to go inspire your students to aim higher above and beyond. Faster . further and go further in their studies. Maybe . higher . smarter! Today, these someone you know will take us all goals propel aerospace innovators above and beyond in the near future! to apply these learning principles to new discoveries and expand the boundaries of our universe. ABOVE AND BEYOND will engage your students and fellow teachers across the curriculum with its thought-provoking content. What if we could . 2 CLASSROOM TEACHER’S GUIDE EXPERIENCING ABOVE AND BEYOND: THE SCHOOL TRIP of flight are further explored through During your school trip to ABOVE a comparison of how a balloon, an AND BEYOND, you can experience airship, a glider, a fixed-wing aircraft, five interactive galleries in any a rotorcraft and a rocket each reach order: UP, FASTER, HIGHER, the skies. A look at the amazing FURTHER and SMARTER. Each aircraft of the future shows your one features simulations and students how faster and greener design activities related to real- models are already in development. life engineering challenges in the aerospace industry. Here are some FASTER of the highlights your students will In 1947, test pilot Chuck Yeager not want to miss! proved the speed of sound wasn’t a barrier when he blazed past it at 1,100 KPH in a Bell X-1 rocket plane. A school trip to ABOVE AND BEYOND In 2004, NASA’s unpiloted X-43A celebrates the power of innovation broke the speed record for an air- to make dreams take flight. An breathing aircraft when it flew expansive, multitouch timeline where 11,000 KPH. Whether to get “there” students can explore the innovations quicker, to gain an advantage over an and innovators that transformed opponent, or for the pure adrenalin our world introduces them to the rush, the quest for speed has inspired history of flight. Next, a short film innovative advances in flight. FASTER called Beyond the Limits immerses immerses you in the exhilarating students into the spirit and power of thrills of high-speed flight. aerospace innovation. Exhilarating imagery and soaring music will build To understand what is meant by anticipation for what comes next. “high-speed,” your students will design and test-fly a jet in a virtual UP competition called Full Throttle. UP gets everyone into the action This supersonic fighter jet challenge as they discover what it takes to demonstrates the effects of various get off the ground. Learn about the shapes of the fuselage, wings and breakthroughs that enabled us to tail on how well the craft flies, how join the birds in the sky. Then check fast it can go and how easy it is to out some bold new concept vehicles maneuver. A simulated wind tunnel designed to give us more freedom of test reveals how other aspects of mobility in the future. an aircraft’s shape determine where its top speed will be reached in the The concepts of lift, drag, thrust range from subsonic to supersonic. and weight come to life with a group Students will also see small-scale flying game called Spread Your Wings. aircraft models that Boeing and NASA Here, students become birds and have used in actual wind tunnel tests. follow their leader heading south in a V formation. These four principles EXPERIENCING ABOVE AND BEYOND: THE SCHOOL TRIP 3 HIGHER the challenges inherent in a months- to evaluate the best solution based Just 58 years after Wilbur Wright long journey to Mars. How long will on the parameters of their mission. “soared” to 3 metres in the Wright it take? What will you pack? What Mission options include flying into Flyer, Soviet cosmonaut Yuri Gagarin will you wear? Models of the future the eye of a storm, pollinating a became the first person to orbit spacecraft that might someday green house on Mars, or tracking an Earth. Today, astronauts regularly live get us to Mars – and beyond – are endangered species. Students will and work aboard the International also on display. Students can then also want to check out the Smart Space Station (ISS). However, it is experiment with superstrong, Skies video to discover how smart still difficult and expensive to reach lightweight composite materials that technologies will transform our space. Few people can experience already help aircraft and spacecraft airspace by improving efficiency, its wonders . for now! HIGHER fly further using less fuel. reducing pollution, decreasing explores high-altitude flight and the weather delays and lowering costs. innovations that might soon make it SMARTER easier to get into orbit. In aerospace, there is no battle DREAMS ALOFT of “brains vs. brawn.” You need both! At the conclusion of the school trip, The highlight of this gallery is the SMARTER invites your students you virtually “meet” young Boeing International Space Elevator. Your to discover what happens when employees who will share some of the class will explore the layers of the flight and smart technologies unite. exciting projects they are working atmosphere and the possibilities of See how aerospace innovators are on now, their personal inspirations high-altitude flight. This experience applying advances in computers, and how they followed a path from is a visually stunning, simulated electronics and robotics to invent the classroom to outer space. ascent in a space elevator loosely more capable aircraft and spacecraft. Students can then contribute their inspired by concepts that might one Learn how smart technologies are own vision of the future of flight to a day transport cargo and people to transforming the way we build and collaborative wall of dreams. Cool! the orbit around Earth. operate these amazing, intelligent flying machines. ABOVE AND BEYOND is designed FURTHER to ignite a passion for the greatest Across the Atlantic, around the Real objects and multimedia adventure of all: our journey of flight world, to the Moon and beyond! Since displays tell the story of space junk in the air and in space. In doing so, we first got off the ground, we have – its dangers and potential solutions. it honours past world-changing always wanted to fly even further. Your students will see how smarter innovations while looking ahead For aircraft, the current focus is on aircraft will make spaceflight safer for and demonstrating the impact going further with less – using less everyone in Space Junk. This challenge of aerospace breakthroughs in fuel and creating less pollution. In presents three out-of-this-world our everyday lives. This exhibition space, we are shooting for Mars and solutions to cleaning up orbital debris. inspires your students to imagine the stars! What will it take to fly future careers in aerospace and SMARTER also features an helps you build Science and humans to Mars? Can we “sail” to the assortment of real unmanned aerial stars? FURTHER reveals the power of Technology awareness in your vehicles.
Recommended publications
  • The Boeing Company 2012 Annual Report at Boeing, We Aspire to Be the Strongest, Best and Best-Integrated Aerospace- Based Company in the World— for Today and Tomorrow
    The Boeing Company 2012 Annual Report At Boeing, we aspire to be the strongest, best and best-integrated aerospace- based company in the world— for today and tomorrow. The Boeing Company Contents Boeing is the world’s largest aerospace Operational Summary 1 company and leading manufacturer Message From Our Chairman 2 of commercial airplanes and defense, space and security systems. The top The Executive Council 7 U.S. exporter, Boeing supports airlines and U.S. and allied government cus- Financial Results 8 tomers in more than 150 countries. Our Form 10-K 9 products and tailored services include commercial and military aircraft, satel- Selected Programs, lites, weapons, electronic and defense Products and Services 122 systems, launch systems, advanced Shareholder Information 129 information and communication sys- Cover photo: The liquid tems, and performance-based logistics Board of Directors 130 hydrogen–powered high- and training. With corporate offices in Company Officers 130 altitude long-endurance Chicago, Boeing employs more than Phantom Eye unmanned 174,000 people across the United aircraft system States and in 70 countries. In addition, Photo above: The new our enterprise leverages the talents of 737 MAX—designed for hundreds of thousands of skilled people maximum efficiency, reliabil- working for Boeing suppliers worldwide. ity and customer appeal Financial Highlights U.S. dollars in millions except per share data 2012 2011 2010 2009 2008 Revenues 81,698 68,735 64,306 68,281 60,909 Net earnings 3,900 4,018 3,307 1,312 2,672 Earnings per share* 5.11 5.33 4.46 1.87 3.65 Operating margins 7.7% 8.5% 7.7% 3.1% 6.5% Operating cash flow 7,508 4,023 2,952 5,603 (401) Contractual backlog 372,355 339,657 303,955 296,500 323,860 Total backlog† 390,228 355,432 320,826 315,558 351,926 * Represents diluted earnings per share from continuing operations.
    [Show full text]
  • Effects of Aircraft Integration on Compact Nacelle Aerodynamics
    Eects of Aircraft Integration on Compact Nacelle Aerodynamics Fernando Tejeroa,∗, Ioannis Goulosa, David G MacManusa, Christopher Sheafb aCentre for Propulsion Engineering, School of Aerospace, Transport and Manufacturing, Craneld University, Bedfordshire, MK43 0AL bRolls-Royce plc., P.O. box 31, Derby, United Kingdom, DE24 8BJ Abstract To reduce specic fuel consumption, it is expected that the next generation of aero-engines will operate with higher bypass-ratios, and therefore fan diame- ters, than current in-service architectures. These new propulsion systems will increase the nacelle size and incur in an additional overall weight and drag con- tribution to the aircraft. In addition, they will be installed more closely-coupled with the airframe, which may lead to an increase in adverse installation eects. As such, it is required to develop compact nacelles which will not counteract the benets obtained from the new engine cycles. A comprehensive investigation of the eects of nacelle design on the overall aircraft aerodynamic performance is required for a better understanding on the eects of aero-engine integration. This paper presents a method for the multi-objective optimisation of drooped and scarfed non-axisymmetric nacelle aero-engines. It uses intuitive Class Shape Tranformations (iCSTs) for the aero-engine geometry denition, multi-point aerodynamic simulation, a near-eld nacelle drag extraction method and the NSGA-II genetic algorithm. The process has been employed for the aerody- namic optimisation of a compact nacelle aero-engine as well as a conventional nacelle conguration. Subsequently, the designed architectures were installed on a conventional commercial transport aircraft and evaluated at dierent in- stallation positions.
    [Show full text]
  • IIIHIHIIIHIIII O US005143329A United States Patent (19) 11 Patent Number: 5,143,329 Coffinberry (45) Date of Patent: Sep
    IIIHIHIIIHIIII O US005143329A United States Patent (19) 11 Patent Number: 5,143,329 Coffinberry (45) Date of Patent: Sep. 1, 1992 (54) GASTURBINE ENGINE POWERED AIRCRAFT ENVIRONMENTAL CONTROL FOREIGN PATENT DOCUMENTS SYSTEM AND BOUNDARY LAYER BLEED 0065855 5/1982 European Pat. Off. (75) Inventor: George A. Coffinberry, West Chester, g 32 E." Ohio 143598 4/1953 United Kingdom. (73) Assignee: General Electric Company, 744923 5/1954 United Kingdom. 774695 4/1955 United Kingdom . Cincinnati, Ohio 846358 6/1958 United Kingdom. 21 Appl. No.: 738,985 1530330 1/1976 United Kingdom . 202.7874 2/1980 United Kingdom ............. 24418.5 22 Filed: Aug. 1, 1991 2074654 4/1980 United Kingdom . 2076897 12/1981 United Kingdom ............. 244/118.5 Related U.S. Application Data 2127492 6/1983 United Kingdom . 62 Division of Ser. No. 531,718, Jun. 1, 1990. Primary Examiner-Joseph F. Peters, Jr. 5 Assistant Examiner-Christopher P. Ellis O2,207. Attorney, Agent, or Firm-Jerome C. Squillaro 244/53 R; 45.4/71 57 ABSTRACT 58) Field of Search ..................... 244/118.5, 207, 208, 244/209 53 R. 60/39. 142 39.07, 39.15, 39.183: An aircraft gas turbine engine is provided with a start s A 4-y 9. '987 ing air turbine that is directly connected through the starter gearbox to the high pressure (HP) shaft and is 56) References Cited provided with an apparatus to extract excess energy U.S. PATENT DOCUMENTS from engine compressor bleed air, return it to the en 2,734,443 2/1956 Wood ..................................... oss gine, and to start the engine with compressed air from 2,777,301 1/1957 Kuhn .....
    [Show full text]
  • Boeing 787 Dreamliner Video System Advanced, Integrated Security and Surveillance Solutions for Modern Airplanes Photo Courtesy Boeing
    Boeing 787 Dreamliner Video System Advanced, integrated security and surveillance solutions for modern airplanes Photo courtesy Boeing ™ Cabin Video Monitoring UTC Aerospace Systems provides one of the most advanced airplane security and surveillance systems in commercial transport. The Cabin Video Monitoring System (CVMS) provides video and audio surveillance capability through the deployment of up to 16 covertly mounted digital cameras that also contain an integrated microphone. The cabin video can be viewed real-time and/or recorded. Flight Deck Entry Video Surveillance System cameras can also be integrated into the CVMS to provide the flight crew with comprehensive, situational awareness of all on-airplane systems. Equipment CVMS Benefits & Features • Up to 12 8410P1 Series Internet Protocol (IP) cameras provide • Enables real-time audio and video cabin monitoring color or monochromatic images and digital audio and video • IP cameras allow transition from analog to all-digital system, customizable to meet installation requirements • 8930A1 series Digital Video Recorder (DVR) • System accessed by Class 3 EFB system or via Ground Access • 256GB removable solid state memory Panel • Digital Video Recorder (DVR) capability CVMS P/N Table • Flight deck notified of CVMS activation via Engine Indicating and Crew-Alerting System (EICAS) “Cabin Alert” message IP Camera 8410P1 series Digital Video Recorder (DVR) 8930A1 series Digital Video Recorder Storage Memory 8732C1 series Security Camera Interface Unit (SCIU) 8730B2 series CVMS Client Application 8410P1 Series Camera Specifications Video Signal Dual Stream MPEG-4 (H.264) and MJPEG over Ethernet (RTP/RTSP) Video Format Color or Monochromatic Resolution 640 x 480 pixels Field of View 50º horizontal / 37.5º vertical Frame Rate 1 - 30 FPS configurable Power Consumption 2.5W max.
    [Show full text]
  • Helicopter Safety November-December 1988
    F L I G H T S A F E T Y F O U N D A T I O N HELICOPTER SAFETY Vol. 14 No. 6 November/December 1988 Tiltrotor Offers A Choice Although the first flight of the V-22 Osprey tiltrotor has been delayed, the author has had the opportunity to fly Bell-Boeing’s simulator at Ft. Worth, Tex., U.S. Through his description of his simulator ride, it is apparent the tiltrotor will be a challenge for both fixed-wing and helicopter pilots. by Joe Mashman Bell Helicopter Textron, Inc. and Boeing Helicopter Com- Flying the Tiltrotor Simulator pany joined forces to develop the V-22 Osprey tiltrotor air- craft, based upon the Bell Model 301/XV-15, a two-seat tiltro- This pilot recently flew the Bell-Boeing engineering tiltrotor tor research aircraft. simulator, at Ft. Worth, Tex., U.S., and discovered the unique qualities of the tiltrotor aircraft. The all-composite (epoxy/graphite laminate) V-22 is 57.25 feet long and has a 46.5 foot wingspan. Its obstruction-free The simulator was configured with the U.S. Navy V-22 Os- cabin is 24 feet 2 inches long, 5 feet 11 inches wide and 6 feet prey control system and flight characteristics; the simulation high, and allows versatile configurations for personnel or called for 40,000 pounds maximum gross weight at sea level, cargo. Two Allison T406-AD-400 engines will deliver up to standard conditions. The handling qualities of the aircraft 6,150 shp to turn the two 38-foot diameter rotors.
    [Show full text]
  • Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2006 Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment Scott Bennett Trail University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Trail, Scott Bennett, "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1816 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled "Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Rodney Allison, Frank Collins Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Scott Bennett Trail entitled “Evaluation of V-22 Tiltrotor Handling Qualities in the Instrument Meteorological Environment”.
    [Show full text]
  • Transatlantic Airline Fuel Efficiency Ranking, 2017
    WHITE PAPER SEPTEMBER 2018 TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 Brandon Graver, Ph.D., and Daniel Rutherford, Ph.D. www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank Tim Johnson, Andrew Murphy, Anastasia Kharina, and Amy Smorodin for their review and support. We also acknowledge Airline Data Inc. for providing processed BTS data, and FlightGlobal for Ascend Fleet data. International Council on Clean Transportation 1225 I Street NW Suite 900 Washington, DC 20005 USA [email protected] | www.theicct.org | @TheICCT © 2018 International Council on Clean Transportation TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ iii 1. INTRODUCTION .................................................................................................................... 2 2. METHODOLOGY ................................................................................................................... 3 2.1 Airline selection .................................................................................................................................3 2.2 Fuel burn modeling..........................................................................................................................5 2.3 Fuel efficiency calculation ............................................................................................................6
    [Show full text]
  • GPO PRICE CFSTI PRICE(S) $ Hard Copy (HC)
    GPO PRICE $ CFSTI PRICE(S) $ Hard copy (HC)- Microfiche (MF) - NASA TM X-1683 WIND TUNNE IL INVESTIGATION OF AIRFRAME INSTALLATION EFFECTS ON UNDERWING ENGINE NACELLES AT MACH NUMBERS FROM 0.56 TO 1.46 By Bernard J. Blaha and Daniel C. Mikkelson Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACT A 1/20 scale model of the F-106B with simulated underwing engine nacelles was tested in the Lewis Research Center 8- by 6-foot supersonic wind tunnel. Pressures and boattail drag coefficients were obtained on cone-cylinder and bulged nacelles with 15' conical boattail afterbodies and jet boundary simulators. Data were obtained with and without inlet airflow through the nacelles at attack angles from 0' to 8'. Effects of nacelle strut geometry, local elevon geometry, and elevon deflection were also investi- gated. The installed boattail pressure drag coefficient was lower than isolated nacelle values at all Mach numbers, and transonic drag rise was delayed to Mach 0.975. ii WIND TUNNEL INVESTIGATION OF AIRFRAME INSTALLAT~ONEFFECTS ON UNDERWING ENGINE NACELLES AT MACH NUMBERS FROM 0.56 TO 1.46 by Bernard J. Blaha and Daniel C. Mikkelson Lewis Research Center SUMMARY A test was conducted in the Lewis Research Center 8- by 6-foot supersonic wind tunnel utilizing a 1/20 scale model of the F-106B aircraft with simulated underwing en- gine nacelles. Pressures and boattail drag coefficients were obtained on cone-cylinder nacelles and on bulged nacelles, both with 15' conical boattail afterbodies and jet bound- ary simulators.
    [Show full text]
  • Download This Issue (PDF)
    03 Jeppesen Expands Products and Markets 05 Preparing Ramp Operations for the 787-8 15 Fuel Filter Contamination 21 Preventing Engine Ingestion Injuries QTR_03 08 A QUARTERLY PUBLICATION BOEING.COM/COMMERCIAL/ AEROMAGAZINE Cover photo: Next-Generation 737 wing spar. contents 03 Jeppesen Expands Products and Markets Boeing subsidiary Jeppesen is transforming its support to customers with a broad array of technology-driven solutions that go beyond the paper navigational charts for which Jeppesen 03 is so well known. 05 Preparing Ramp Operations for the 787-8 Airlines can ensure a smooth transition to the Boeing 787 Dreamliner by understanding what it has in common with existing airplanes in their fleets, as well as what is unique. 15 Fuel Filter Contamination 05 Dirty fuel is the main cause of engine fuel filter contamination. Although it’s a difficult problem to isolate, airlines can take steps to deal with it. 21 Preventing Engine Ingestion Injuries 15 Observing proper safety precautions, such as good communication and awareness of the hazard areas in the vicinity of an operating jet engine, can prevent serious injury or death. 21 01 WWW.BOEING.COM/COMMERCIAL/AEROMAGAZINE Issue 31_Quarter 03 | 2008 Publisher Design Cover photography Shannon Frew Methodologie Jeff Corwin Editorial director Writer Printer Jill Langer Jeff Fraga ColorGraphics Editor-in-chief Distribution manager Web site design Jim Lombardo Nanci Moultrie Methodologie Editorial Board Gary Bartz, Frank Billand, Richard Breuhaus, Darrell Hokuf, Al John, Doug Lane, Jill Langer,
    [Show full text]
  • 787 Interior
    Backgrounder Boeing Commercial Airplanes P.O. Box 3707 MC 03-XW Seattle, Washington 98124-2207 www.boeing.com Boeing 787 Dreamliner Offers Enhanced Experience for Passengers By combining its unique understanding of how the human body reacts to flight conditions and how emerging technologies can improve those conditions, Boeing has created a better flying experience with its 787 Dreamliner. Along with universities from around the world, Boeing embarked on several studies to understand how altitude, humidity, air contaminants, lighting, sound and space affect passengers. In addition, Boeing studied how these factors play together to develop combinations that create the best overall experience. These findings led to significant improvements on the 787. Ride Quality: Providing a Smoother Flight Passengers give higher ratings to flights that do not encounter turbulence. Sensors on the 787 are designed to counter the effects of turbulence by causing certain control surfaces to change slightly. This innovative system helps maintain a smoother ride throughout the flight, reducing nausea for those subject to motion sickness. Altitude: How High Is Just Right? Most airplanes are pressurized to a typical cabin altitude of 6,500 to 7,000 feet (1,981 – 2,133 m), with a maximum certification altitude of 8,000 feet (2,438 m). Because the advanced composite materials that make up the 787’s fuselage do not fatigue, the 787 can be pressurized more, which allows for lower cabin altitude levels. Studies at Oklahoma State University explored the effect of altitude on passengers to determine optimum levels. After testing at various altitudes, it became clear that lowering the cabin altitude to 6,000 feet (1,830 m) provided meaningful improvements.
    [Show full text]
  • How Business Flies Safran Overview
    HOW BUSINESS FLIES SAFRAN OVERVIEW PROPULSION SYSTEMS Safran Aircraft Engines Safran Nacelles SAFRAN IS AN INTERNATIONAL HIGH-TECHNOLOGY GROUP, OPERATING IN THE AVIATION (PROPULSION, Safran Transmission Systems EQUIPMENT AND INTERIORS), DEFENSE AND SPACE MARKETS. ITS CORE PURPOSE IS TO CONTRIBUTE TO A SAFER, MORE SUSTAINABLE WORLD, WHERE AIR TRANSPORT IS MORE ENVIRONMENTALLY FRIENDLY, COMFORTABLE AND ACCESSIBLE. SAFRAN HAS A GLOBAL PRESENCE, WITH 81,000 EMPLOYEES AND HOLDS, ALONE OR IN ELECTRICAL POWER SYSTEMS PARTNERSHIP, WORLD OR REGIONAL LEADERSHIP POSITIONS IN ITS CORE MARKETS. SAFRAN UNDERTAKES Safran Electrical & Power RESEARCH AND DEVELOPMENT PROGRAMS TO MAINTAIN THE ENVIRONMENTAL PRIORITIES OF ITS R&T AND Safran Power UnitsAL INNOVATION ROADMAP. LANDING AND BRAKING SYSTEMS 81,000 #1 WORLDWIDE EMPLOYEES Safran Landing SystemsCAL AEROSPACE: WORLDWIDE • ENGINES FOR SINGLE-AISLE COMMERCIAL JETS AVIONICS SYSTEMS in (in partnership with GE) Safran Electronics & DefenseAL 30 • HELICOPTER TURBINE ENGINES COUNTRIES • LANDING GEAR • WHEELS AND CARBON BRAKES(1) CABIN INTERIORS & SEATS 7% • ELECTRICAL WIRING OF SALES INVESTED Safran Cabin €24.6 • HELICOPTER FLIGHT CONTROLS IN R&D BILLION IN SALES Safran Passenger Solutions • NACELLE SYSTEMS FOR BUSINESS JETS generated in 2019 Safran applies a strategy based Safran Seats • LATERAL PARTITION PANELS, CARTS, on innovation and continuous CONTAINERS AND CABIN INTERIORS FOR REGIONAL AND BUSINESS AIRCRAFT improvement in competitiveness, ONBOARD SYSTEMS • EVACUATION SLIDES AND OXYGEN working closely with our suppliers and SYSTEMS partners to address today’s economic, Safran Aerosystems • ONBOARD WATER AND WASTE societal and environmental challenges. MANAGEMENT SYSTEMS Photo credits: p. 4: Master Image, Pierre Soissons/Safran, Christian Fleury/CAPA Pictures/Safran - p. 5: Safran - p. 6: Adrien Daste / Safran - p.
    [Show full text]
  • Airframe & Aircraft Components By
    Airframe & Aircraft Components (According to the Syllabus Prescribed by Director General of Civil Aviation, Govt. of India) FIRST EDITION AIRFRAME & AIRCRAFT COMPONENTS Prepared by L.N.V.M. Society Group of Institutes * School of Aeronautics ( Approved by Director General of Civil Aviation, Govt. of India) * School of Engineering & Technology ( Approved by Director General of Civil Aviation, Govt. of India) Compiled by Sheo Singh Published By L.N.V.M. Society Group of Institutes H-974, Palam Extn., Part-1, Sec-7, Dwarka, New Delhi-77 Published By L.N.V.M. Society Group of Institutes, Palam Extn., Part-1, Sec.-7, Dwarka, New Delhi - 77 First Edition 2007 All rights reserved; no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publishers. Type Setting Sushma Cover Designed by Abdul Aziz Printed at Graphic Syndicate, Naraina, New Delhi. Dedicated To Shri Laxmi Narain Verma [ Who Lived An Honest Life ] Preface This book is intended as an introductory text on “Airframe and Aircraft Components” which is an essential part of General Engineering and Maintenance Practices of DGCA license examination, BAMEL, Paper-II. It is intended that this book will provide basic information on principle, fundamentals and technical procedures in the subject matter areas relating to the “Airframe and Aircraft Components”. The written text is supplemented with large number of suitable diagrams for reinforcing the key aspects. I acknowledge with thanks the contribution of the faculty and staff of L.N.V.M.
    [Show full text]