Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and Labview

Total Page:16

File Type:pdf, Size:1020Kb

Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and Labview Bowling Green State University ScholarWorks@BGSU Master of Technology Management Plan II College of Technology, Architecture and Applied Graduate Projects Engineering Winter 12-10-2014 Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and LabVIEW Xiao Xie Bowling Green State University Follow this and additional works at: https://scholarworks.bgsu.edu/ms_tech_mngmt Part of the Mechanical Engineering Commons Recommended Citation Xie, Xiao, "Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and LabVIEW" (2014). Master of Technology Management Plan II Graduate Projects. 10. https://scholarworks.bgsu.edu/ms_tech_mngmt/10 This Dissertation/Thesis is brought to you for free and open access by the College of Technology, Architecture and Applied Engineering at ScholarWorks@BGSU. It has been accepted for inclusion in Master of Technology Management Plan II Graduate Projects by an authorized administrator of ScholarWorks@BGSU. Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and LabVIEW Xiao Xie A Major Project Report Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirement for the degree of Master of Technology Management December 2014 Committee: Dr. David Border, Chair Dr. Sri Kolla Dr. Todd C. Waggoner TABLE OF CONTENTS TABLE OF CONTENTS .............................................................................................................................. 1 LIST OF TABLES ........................................................................................................................................ 3 LIST OF FIGURES ...................................................................................................................................... 4 Acknowledgement ........................................................................................................................................ 5 Abstract ......................................................................................................................................................... 6 Chapter I Introduction ................................................................................................................................... 7 Context of the Problem ............................................................................................................................. 7 Statement of Problem .............................................................................................................................. 10 Statement of Objectives .......................................................................................................................... 10 Description of the Product ...................................................................................................................... 10 Product Performance Specification ......................................................................................................... 12 User Specification ................................................................................................................................... 12 Significance of the Project ...................................................................................................................... 12 Definitions of Terms ............................................................................................................................... 13 Chapter II Literature Review ...................................................................................................................... 14 Introduction ............................................................................................................................................. 14 History of Wireless Sensor Network Development ................................................................................ 14 Survey on Wireless Sensor Network Hardware and Software Platform ................................................. 15 1 i. Wireless Sensor Node (Mote) .......................................................................................................... 15 ii. Operating System ............................................................................................................................ 16 Application, Research and Development Trend ..................................................................................... 17 Survey on Existing Wireless Sensor Network Study Materials .............................................................. 18 Chapter III Methodology ............................................................................................................................ 21 Introduction ............................................................................................................................................. 21 Restatement of Problem .......................................................................................................................... 21 Restatement of Objectives ...................................................................................................................... 22 Experimental Environment Installation .................................................................................................. 22 Sensor Data Collection ........................................................................................................................... 22 i. MoteView ................................................................................................................................... 22 ii. LabVIEW Plug and Play Instrument Driver ............................................................................... 27 NesC and TinyOS Programming ............................................................................................................ 29 Chapter IV Results and Findings ................................................................................................................ 32 Data Collection and Statistical Analysis ................................................................................................. 32 NesC Language and TinyOS Resources ................................................................................................. 36 Chapter V Summary, Discussion and Recommendations ........................................................................... 38 Summary of Guide Development ........................................................................................................... 38 Guide Potential Limitations and Recommendations ............................................................................... 40 Reference .................................................................................................................................................... 42 Appendix ..................................................................................................................................................... 44 2 LIST OF TABLES Table 1.1 Results on sections course contents and learning and teaching 4 ................................................. 9 Table 1.2 Contents of the project guide ...................................................................................................... 11 Table 4.1 Data from sensor node 4643 & 4647 created on July 16th, 2014 ............................................... 33 Table 4.2 Summary of statistics generated by Excel .................................................................................. 36 Table 4.3 Summary of WSN guide potential content ................................................................................. 40 3 LIST OF FIGURES Figure 1.1 Global installed industrial wireless sensing points (2011-2016) ................................................. 7 Figure 3.1 MoteView data tab .................................................................................................................... 23 Figure 3.2 MoteView command tab ........................................................................................................... 24 Figure 3.3 MoteView chart tab ................................................................................................................... 25 Figure 3.4 MoteView health tab ................................................................................................................. 25 Figure 3.5 MoteView histogram tab ........................................................................................................... 26 Figure 3.6 MoteView scatterplot tab ........................................................................................................... 26 Figure 3.7 MoteView topology tab ............................................................................................................. 27 Figure 3.8 LabVIEW read data and display health interface ...................................................................... 28 Figure 3.9 MoteWorks sample programs directory .................................................................................... 30 Figure 4.1 Place where the two nodes locate .............................................................................................. 32 Figure 4.2 MoteView interface to display node data .................................................................................. 32 Figure 4.3 Charts of data from node 4643 & 4647 created on July 16th, 2014
Recommended publications
  • A Comparative Study on Operating System for Wireless Sensor Networks
    ICACSIS 2011 ISBN: 978-979-1421-11-9 A Comparative Study on Operating System for Wireless Sensor Networks Thang Vu Chien, Hung Nguyen Chan, and Thanh Nguyen Huu Thai Nguyen University of Information and Communication Technology Quyet Thang Commune, Thai Nguyen City, Vietnam E-mail: [email protected], [email protected], [email protected] Abstract—Wireless Sensor Networks (WSNs) them work correctly and effectively without a conflict have been the subject of intensive research over the in support of the specific applications for which they last years. WSNs consist of a large number of are designed. Each sensor node needs an OS that can sensor nodes, and are used for various applications control the hardware, provide hardware abstraction to such as building monitoring, environment control, application software, and fill in the gap between wild-life habitat monitoring, forest fire detection, applications and the underlying hardware. industry automation, military, security, and health- The basic functionalities of an OS include resource care. Operating system (OS) support for WSNs abstractions for various hardware devices, interrupt plays a central role in building scalable distributed management and task scheduling, concurrency control, applications that are efficient and reliable. Over and networking support. Based on the services the years, we have seen a variety of operating provided by the OS, application programmers can systems (OSes) emerging in the sensor network conveniently use high-level application programming community to facilitate developing WSN interfaces (APIs) independent of the underlying applications. In this paper, we present OS for WSNs. We begin by presenting the major issues for hardware.
    [Show full text]
  • Graphical Product-Line Configuration of Nesc-Based Sensor Network Applications Using Feature Models
    GRAPHICAL PRODUCT-LINE CONFIGURATION OF NESC-BASED SENSOR NETWORK APPLICATIONS USING FEATURE MODELS by MATTHIAS NIEDERHAUSEN Diplom, University of Applied Sciences, Frankfurt, Germany, 2007 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Computing and Information Sciences College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2008 Approved by: Major Professor John Hatcliff Copyright Matthias Niederhausen 2008 Abstract Developing a wireless sensor network application includes a variety of tasks, such as coding of the implementation, designing the architecture and assessing availability of hardware components, that provide necessary capabilities. Before compiling an application, the developer has to con- figure the selection of hardware components and set up required parameters. One has to choose from among a variety of configurations regarding communication parameters, such as frequency, channel, subnet identifier, transmission power, etc.. This configuration step also includes setting up parameters for the selection of hardware components, such as a specific hardware platform, which sensor boards and programmer boards to be used or the use of optional services and more. Reasoning about a proper selection of configuration parameters is often very difficult, since there are a lot of dependencies among these parameters which may rule out some other options. The developer has to know about all these constraints in order to pick a valid configuration. Unfor- tunately, the existing makefile approach that comes with nesC is poorly organized and does not capture important compatibility constraints. The configuration of a particular nesC application is distributed in multiple makefiles. There- fore a developer has to look at multiple files to make sure all necessary parameter are set up correctly for compiling a specific application.
    [Show full text]
  • FPGA BASED RECONFIGURABLE BODY AREA NETWORK USING Nios II and Uclinux
    FPGA BASED RECONFIGURABLE BODY AREA NETWORK USING Nios II AND uClinux A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Electrical and Computer Engineering University of Saskatchewan by Anthony Voykin Saskatoon, Saskatchewan, Canada c Copyright Anthony Voykin, April 2013. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, it is agreed that the Libraries of this University may make it freely available for inspection. Permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised this thesis work or, in their absence, by the Head of the Department of Electrical and Computer Engineering or the Dean of the College of Graduate Studies and Research at the University of Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof, for financial gain without the written permission of the author is strictly prohibited. Proper recognition shall be given to the author and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Request for permission to copy or to make any other use of material in this thesis in whole or in part should be addressed to: Head of the Department of Electrical and Computer Engineering 57 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 5A9 i Acknowledgments I would like to thank my advisors Professor Ron Bolton and Professor Francis Bui for providing me with guidance and support necessary to complete my thesis work.
    [Show full text]
  • Shared Sensor Networks Fundamentals, Challenges, Opportunities, Virtualization Techniques, Comparative Analysis, Novel Architecture and Taxonomy
    Journal of Sensor and Actuator Networks Review Shared Sensor Networks Fundamentals, Challenges, Opportunities, Virtualization Techniques, Comparative Analysis, Novel Architecture and Taxonomy Nahla S. Abdel Azeem 1, Ibrahim Tarrad 2, Anar Abdel Hady 3,4, M. I. Youssef 2 and Sherine M. Abd El-kader 3,* 1 Information Technology Center, Electronics Research Institute (ERI), El Tahrir st, El Dokki, Giza 12622, Egypt; [email protected] 2 Electrical Engineering Department, Al-Azhar University, Naser City, Cairo 11651, Egypt; [email protected] (I.T.); [email protected] (M.I.Y.) 3 Computers & Systems Department, Electronics Research Institute (ERI), El Tahrir st, El Dokki, Giza 12622, Egypt; [email protected] 4 Department of Computer Science & Engineering, School of Engineering and Applied Science, Washington University in St. Louis, St. Louis, MO 63130, 1045, USA; [email protected] * Correspondence: [email protected] Received: 19 March 2019; Accepted: 7 May 2019; Published: 15 May 2019 Abstract: The rabid growth of today’s technological world has led us to connecting every electronic device worldwide together, which guides us towards the Internet of Things (IoT). Gathering the produced information based on a very tiny sensing devices under the umbrella of Wireless Sensor Networks (WSNs). The nature of these networks suffers from missing sharing among them in both hardware and software, which causes redundancy and more budget to be used. Thus, the appearance of Shared Sensor Networks (SSNs) provides a real modern revolution in it. Where it targets making a real change in its nature from domain specific networks to concurrent running domain networks. That happens by merging it with the technology of virtualization that enables the sharing feature over different levels of its hardware and software to provide the optimal utilization of the deployed infrastructure with a reduced cost.
    [Show full text]
  • Atomicity and Visibility in Tiny Embedded Systems
    Atomicity and Visibility in Tiny Embedded Systems John Regehr Nathan Cooprider David Gay University of Utah, School of Computing Intel Research Berkeley {regehr, coop}@cs.utah.edu [email protected] Abstract bool flag = false; // interrupt handler Visibility is a property of a programming language’s void __vector_5 (void) memory model that determines when values stored by { one concurrent computation become visible to other atomic flag = true; computations. Our work exploits the insight that in } nesC, a C-like language with explicit atomicity, the traditional way of ensuring timely visibility—volatile void wait_for_interrupt(void) variables—can be entirely avoided. This is advan- { tageous because the volatile qualifier is a notorious bool done = false; do { source of programming errors and misunderstandings. atomic if (!flag) done = true; Furthermore, the volatile qualifier hurts performance } while (!done); by inhibiting many more optimizations than are neces- } sary to ensure visibility. In this paper we extend the semantics of nesC’s atomic statements to include a visi- bility guarantee, we show two ways that these semantics Figure 1. nesC code containing a visibility er- can be implemented, and we also show that our better ror implementation has no drawbacks in terms of resource usage. Until now, nesC has left it to programmers to en- 1. Introduction sure visibility by judicious use of C’s volatile qual- ifier. In this paper we investigate the idea of strength- ening nesC’s memory model such that the semantics of The nesC [5] language is a C dialect designed for pro- atomic are augmented with a visibility guarantee. This gramming embedded wireless sensor network nodes.
    [Show full text]
  • Overview of Wireless Sensor Network (WSN) Security
    Overview of Wireless Sensor Network (WSN) Security Aparicio Carranza Heesang Kim Xiao Lin Chen NYC College of Technology NYC College of Technology NYC College of Technology 186 Jay Street – V626 186 Jay Street 186 Jay Street Brooklyn, NY, USA Brooklyn, NY, USA Brooklyn NY, USA 718 – 260 – 5897 703 – 232 – 2001 917 – 285 - 5155 [email protected] [email protected] xiaolin,[email protected] ABSTRACT of different transmission schemes, allowing the connection Our civilization has entered an era of big data networking. to be made between different models. A router is a good Massive amounts of data is being converted into bits for example of a gateway. There are two common Wireless transmitting over the Internet and shared all over the world network topologies commonly used in WSN systems, they every second. The concept of “smart” devices has are “relay nodes” and “leaf nodes”. The relay network is a conquered preconceived notions of daily routines. broad network topology where the source and destination Smartphones and wearable device technologies have made are interconnected through some node. In these networks, humans to be continuously interconnected, making distance the source and destination cannot communicate directly a factor of no limitation. “Smart” systems are based on a with each other because the distance between the source single concept called the Internet of Things (IoT). IoT is a and destination is greater than the transmission range, due web of wirelessly networked devices embedded with to this an intermediate node needs to relay. The advantage electronic components and sensors that monitors physical of using the relay nodes is that the information can travel and environmental conditions and acquires data to be long distances even when the caller and recipient are far shared with other systems.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • Monitoring High Voltage Power Lines Using Efficient WSN
    Advances in Energy and Power 7(1): 10-19, 2020 http://www.hrpub.org DOI: 10.13189/aep.2020.070102 Monitoring High Voltage Power Lines Using Efficient WSN Khaled Al-Maitah, Batool Al-Khriesat, Abdullah Al-Odienat* Department of Electrical Engineering, Faculty of Engineering, Mutah University, Jordan Received March 13, 2020; Revised April 22, 2020; Accepted April 27, 2020 Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The power transmission line is one of most [1]. Moreover, power systems are now highly critical components in electrical power system. In order to interconnected which allows the transfer of a large enhance the reliability of the large power systems, an electrical energy over long distances far from the source of advanced and efficient Wireless Sensor Network (WSN) generation to locations suffer of lack in electrical energy [2] must be employed along power transmission line. However, [3]. time delay has emerged as one of the most critical issues in In power systems, transmission lines are critical the design of WSN-based monitoring network of components from the reliability and stability view point. transmission lines. This paper proposes a new model for There is a real need for an efficient monitoring system of WSN for monitoring High Voltage Transmission Line the transmission lines to enhance the normal operation of (HVTL) which improves the needed time delay to transmit the power system and avoid the major disconnections and the measured quantity from transmission line towers to the blackouts [4].
    [Show full text]
  • System Architecture Directions for Post-Soc/32-Bit Networked Sensors Hyung-Sin Kim, Michael P Andersen, Kaifei Chen, Sam Kumar, William J
    System Architecture Directions for Post-SoC/32-bit Networked Sensors Hyung-Sin Kim, Michael P Andersen, Kaifei Chen, Sam Kumar, William J. Zhao, Kevin Ma, and David E. Culler Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (hs.kim,m.andersen,kaifei,samkumar,william_zhao,kevinma.sd,culler)@berkeley.edu ABSTRACT those that have guided design over the past 20 years, since the The emergence of low-power 32-bit Systems-on-Chip (SoCs), which emergence of the field [31, 37]. While it is easy to observe high- integrate a 32-bit MCU, radio, and flash, presents an opportunity level trends and infer that at some point conventional concurrency to re-examine design points and trade-offs at all levels of the sys- models and networking stacks will fit on this class of computing tem architecture of networked sensors. To this end, we develop a platform, when dealing with low power embedded operation, the post-SoC/32-bit design point called Hamilton, showing that using devil is always in the details. integrated components enables a ∼$7 core and shifts hardware mod- The datasheets for modern 32-bit System-on-Chip units (SoCs) ularity to design time. We study the interaction between hardware with an integrated microcontroller (MCU) and radio are truly im- and embedded operating systems, identifying that (1) post-SoC pressive [10, 43]. Thread-based OSes have reemerged (e.g., RIOT motes provide lower idle current (5.9 µA) than traditional 16-bit [14]), and commercially-driven IPv6 network protocols have arrived motes, (2) 32-bit MCUs are a major energy consumer (e.g., tick (e.g., OpenThread [71]).
    [Show full text]
  • Aicesis Presidency
    20 YEARS 1999 2019 INTERNATIONAL ASSOCIATION OF ECONOMIC AND SOCIAL COUNCILS AND SIMILAR INSTITUTIONS President Iacob Baciu AICESIS PRESIDENCY SEPTEMBER 2017-OCTOBER 2019 President Iacob Baciu AICESIS PRESIDENCY – SEPTEMBER 2017-OCTOBER 2019 BOARD AND GENERAL ASSEMBLY INTERNATIONAL CONFERENCE ILO-AICESIS-ESC OF ROMANIA 9 – 11 OCTOBER 2019, BUCHAREST, ROMANIA AICESIS PRESIDENCY BETWEEN SEPTEMBER 2017 AND OCTOBER 2019 President Iacob Baciu I had the privilege and honour of being the President of the International Asso- ciation of Economic and Social Councils and Similar Institutions (AICESIS) for a two-year term, from September 2017 to October 2019, and the main theme of my mandate was the digital revolution. Industry 4.0, as named by Chancellor Angela Merkel in 2011, represents the fourth stage of the Industrial Revolution and has brought major changes in the economy, labour relations, labour market, education, significantly influencing social life. The next industrial revolution finds itself on an unknown horizon and is difficult to predict. Humanity has come a long way in seeking its solutions to the problems it faces; history has recorded all the achievements, hesitations, mistakes, conflicts and progress made. Only if we learn from experience will we be able to avoid repeating the mistakes made. The first industrial revolution began at the end of the eighteenth century and in the first decades of the nineteenth century first in England, which managed to remain the world’s first industrial power until the end of the nineteenth century. In France, the industrial revolution evolved slowly, its beginnings dating back to the 1830s. The low demand for industrial products under a predominantly agrarian population meant that the true industrial era began only in 1890.
    [Show full text]
  • Biology Inspired Approach for Communal Behavior in Sensor Networks
    Biology Inspired Approach for Communal Behavior in Sensor Networks K. H. Jones K. N. Lodding NASA Langley Research Center NASA Langley Research Center Hampton, VA 23681 Hampton, VA 23681 [email protected] [email protected] S. Olariu L. Wilson C. Xin Old Dominion University Old Dominion University Norfolk State University Norfolk, VA 23529 Norfolk, VA 23529 Norfolk, VA 23504 [email protected] [email protected] [email protected] Abstract housing, and other necessities. The realization of this dream has progressed for several centuries but has Research in wireless sensor network technology has taken a revolutionary leap through the invention of exploded in the last decade. Promises of complex and electronic computers, which facilitate more ubiquitous control of the physical environment by automation of machines. Futurists have long predicted these networks open avenues for new kinds of science that machines would eventually communicate and and business. Due to the small size and low cost of cooperate with each other to accomplish sensor devices, visionaries promise systems enabled extraordinarily complex tasks without human by deployment of massive numbers of sensors working intervention [20]. in concert. Although the reduction in size has been phenomenal it results in severe limitations on the While futurists long dreamed of machines working computing, communicating, and power capabilities of with other machines, a giant step towards realization these devices. Under these constraints, research of this dream may be credited to a DARPA sponsored efforts have concentrated on developing techniques program, SmartDust, originated in the late 1990’s for performing relatively simple tasks with minimal [11,26].
    [Show full text]
  • A Comparative Study Between Operating Systems (Os) for the Internet of Things (Iot)
    VOLUME 5 NO 4, 2017 A Comparative Study Between Operating Systems (Os) for the Internet of Things (IoT) Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi LIIAN, Department of Mathematic & Computer Sciences, Sciences School, Sidi Mohammed Ben Abdellah University, [email protected], [email protected], [email protected], [email protected] ABSTRACT Abstract : We describe The Internet of Things (IoT) as a network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data in real time with the outside world. It therefore assumes an operating system (OS) which is considered as an unavoidable point for good communication between all devices “objects”. For this purpose, this paper presents a comparative study between the popular known operating systems for internet of things . In a first step we will define in detail the advantages and disadvantages of each one , then another part of Interpretation is developed, in order to analyze the specific requirements that an OS should satisfy to be used and determine the most appropriate .This work will solve the problem of choice of operating system suitable for the Internet of things in order to incorporate it within our research team. Keywords: Internet of things , network, physical object ,sensors,operating system. 1 Introduction The Internet of Things (IoT) is the vision of interconnecting objects, users and entities “objects”. Much, if not most, of the billions of intelligent devices on the Internet will be embedded systems equipped with an Operating Systems (OS) which is a system programs that manage computer resources whether tangible resources (like memory, storage, network, input/output etc.) or intangible resources (like running other computer programs as processes, providing logical ports for different network connections etc.), So it is the most important program that runs on a computer[1].
    [Show full text]