Abstract Summary Keywords
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atypical Femur Fracture in an Adolescent Boy Treated with Bisphosphonates for X-Linked Osteoporosis Based on PLS3 Mutation Denise M
Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation Denise M. van de Laarschot BSc1, M. Carola Zillikens MD PhD 1 1 Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands Corresponding author at: Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands. Abstract Long-term use of bisphosphonates has raised concerns about the association with Atypical Femur Fractures (AFFs) that have been reported mainly in postmenopausal women. We report a case of an 18-year-old patient with juvenile osteoporosis based on X-linked osteoporosis due to a PLS3 mutation who developed a low trauma femoral fracture after seven years of intravenous and two years of oral bisphosphonate use, fulfilling the revised ASBMR diagnostic criteria of an AFF. The occurrence of AFFs has not been described previously in children or adolescents. The underlying monogenetic bone disease in our case strengthens the possibility of a genetic predisposition at least in some cases of AFF. We cannot exclude that a transverse fracture of the tibia that also occurred after a minor trauma at age 16 might be part of the same spectrum of atypical fractures related to the use of bisphosphonates. In retrospect our patient experienced prodromal pain prior to both the tibia and the femur fracture. Case reports of atypical fractures in children with a monogenetic bone disease such as Osteogenesis Imperfecta (OI) or juvenile osteoporosis are important to consider in the discussion about optimal -
Differential Diagnosis: Brittle Bone Conditions Other Than OI
Facts about Osteogenesis Imperfecta Differential Diagnosis: Brittle Bone Conditions Other than OI Fragile bones are the hallmark feature of osteogenesis imperfecta (OI). The mutations that cause OI lead to abnormalities within bone that result in increased bone turnover; reduced bone mineral content and decreased bone mineral density. The consequence of these changes is brittle bones that fracture easily. But not all cases of brittle bones are OI. Other causes of brittle bones include osteomalacia, disuse osteoporosis, disorders of increased bone density, defects of bone, and tumors. The following is a list of conditions that share fragile or brittle bones as a distinguishing feature. Brief descriptions and sources for further information are included. Bruck Syndrome This autosomal recessive disorder is also referred to as OI with contractures. Some people now consider this to be a type of OI. National Library of Medicine Genetics Home Reference: http://ghr.nlm.nih.gov Ehlers-Danlos Syndrome (EDS) Joint hyperextensibility with fractures; this is a variable disorder caused by several gene mutations. Ehlers-Danlos National Foundation http://www.ednf.org Fibrous Dysplasia Fibrous tissue develops in place of normal bone. This weakens the affected bone and causes it to deform or fracture. Fibrous Dysplasia Foundation: https://www.fibrousdysplasia.org Hypophosphatasia This autosomal recessive disorder affects the development of bones and teeth through defects in skeletal mineralization. Soft Bones: www.softbones.org; National Library of Medicine Genetics Home Reference: http://ghr.nlm.nih.gov/condition Idiopathic Juvenile Osteoporosis A non-hereditary transient form of childhood osteoporosis that is similar to mild OI (Type I) National Osteoporosis Foundation: www.nof.org McCune-Albright Syndrome This disorder affects the bones, skin, and several hormone-producing tissues. -
WO 2010/115932 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 14 October 2010 (14.10.2010) WO 2010/115932 Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/675 (2006.01) A61K 45/06 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 38/00 (2006.01) A61P 19/08 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 39/395 (2006.01) A61P 19/10 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, PCT/EP20 10/054605 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (22) International Filing Date: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 7 April 2010 (07.04.2010) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (30) Priority Data: ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/167,688 8 April 2009 (08.04.2009) US TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant (for all designated States except US): NO- MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, VARTIS AG [CH/CH]; Lichtstrasse 35, CH-4056 Basel TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (CH). -
Henry Ford Hospital Medical Journal Osteomalacia
Henry Ford Hospital Medical Journal Volume 31 Number 4 Article 11 12-1983 Osteomalacia Boy Frame Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Frame, Boy (1983) "Osteomalacia," Henry Ford Hospital Medical Journal : Vol. 31 : No. 4 , 213-216. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol31/iss4/11 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Henry Ford Hosp Med J Vol 31, No 4,1983 Osteomalacia Boy Frame, MD" fd. Note - This overview was originally presented at the Recent advances in laboratory methods and techniques International Symposium on Clinical Disorders of Bone related to bone and mineral metabolism have provided a and Mineral Metabolism, May 9-13, 1983. The following detailed study of factors important in bone formation. list indicates the presentations given in this session at the Osteomalacia results from a disturbance in mineraliza Symposium and the contents ofthe corresponding chap tion of bone matrix. Theoretically, bone matrix may fail ter in the Proceedings of the Symposium published by to mineralize because of abnormalities in collagen and Excerpta Medica. The numbers in parentheses refer to matrix proteins, or because of an alteration in mineral pages in this volume. Complete information about the metabolism at the mineralization front. The result is an contents ofthe Proceedings can be found at the back of accumulation of increased quantities of unmineralized this issue. -
Secondary Hyperparathyroidism Mimicking Osteomyelitis
Henry Ford Health System Henry Ford Health System Scholarly Commons Case Reports Medical Education Research Forum 2019 5-2019 Secondary Hyperparathyroidism Mimicking Osteomyelitis Mohamad Hadied Henry Ford Health System Tammy Hsia Henry Ford Health System Anne Chen Henry Ford Health System Follow this and additional works at: https://scholarlycommons.henryford.com/merf2019caserpt Recommended Citation Hadied, Mohamad; Hsia, Tammy; and Chen, Anne, "Secondary Hyperparathyroidism Mimicking Osteomyelitis" (2019). Case Reports. 84. https://scholarlycommons.henryford.com/merf2019caserpt/84 This Poster is brought to you for free and open access by the Medical Education Research Forum 2019 at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Case Reports by an authorized administrator of Henry Ford Health System Scholarly Commons. Secondary Hyperparathyroidism Mimicking Osteomyelitis Tammy Hsia, Mohamad Hadied MD, Anne Chen MD Henry Ford Hospital, Detroit, Michigan Background Case Report Discussion • The advent of dialysis technology has improved outcomes for patients • This case highlights renal osteodystrophy from secondary with end stage renal disease. hyperparathyroidism, a common sequelae of chronic kidney disease. • End stage renal disease leads to endocrine disturbances such as • Secondary hyperparathyroidism can manifest with numerous clinical secondary hyperparathyroidism. signs and symptoms including widespread osseous resorptive • Literature is sparse on exact incidence and burden of secondary changes that can mimic osteomyelitis. hyperparathyroidism among populations with end stage renal disease. • In this case, severe knee pain, elevated inflammatory markers and • This case reports examines a case of secondary hyperparathyroidism radiography findings misled the outside hospital to an incorrect secondary to renal osteodystrophy that was mistaken for acute diagnosis of osteomyelitis, resulting in unnecessary and incorrect osteomyelitis. -
CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow
CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow CKD - KDIGO Definition and Classification of CKD ◦ CKD: abnormalities of kidney structure/function for > 3 months with health implications ≥1 marker of kidney damage: ACR ≥30 mg/g Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities (imaging) History of kidney transplant OR GFR < 60 Parathyroid glands 4 glands behind thyroid in front of neck Parathyroid physiology Parathyroid hormone Normal circumstances PTH: ◦ Increases calcium ◦ Lowers PO4 (the renal excretion outweighs the bone release and gut absorption) ◦ Increases Vitamin D Controlled by feedback ◦ Low Ca and high PO4 increase PTH ◦ High Ca and low PO4 decrease PTH In renal disease: Gets all messed up! Decreased phosphate clearance: High Po4 Low 1,25 OH vitamin D = Low Ca Phosphate binds calcium = Low Ca Low calcium, high phosphate, and low VitD all feedback to cause more PTH release This is referred to as secondary hyperparathyroidism Usually not seen until GFR < 45 Who cares Chronically high PTH ◦ High bone turnover = renal osteodystrophy Osteoporosis/fractures Osteomalacia Osteitis fibrosa cystica High phosphate ◦ Associated with faster progression CKD ◦ Associated with higher mortality Calcium-phosphate precipitation ◦ Soft tissue, blood vessels (eg: coronary arteries) Low 1,25 OH-VitD ◦ Immune status, cardiac health? KDIGO KDIGO: Kidney Disease Improving Global Outcomes Most recent update regarding -
Pathogenesis and Diagnostic Criteria for Rickets and Osteomalacia
Endocrine Journal 2015, 62 (8), 665-671 OPINION Pathogenesis and diagnostic criteria for rickets and osteomalacia —Proposal by an expert panel supported by Ministry of Health, Labour and Welfare, Japan, The Japanese Society for Bone and Mineral Research and The Japan Endocrine Society Seiji Fukumoto1), Keiichi Ozono2), Toshimi Michigami3), Masanori Minagawa4), Ryo Okazaki5), Toshitsugu Sugimoto6), Yasuhiro Takeuchi7) and Toshio Matsumoto1) 1)Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan 2)Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan 3)Department of Bone and Mineral Research, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi 594-1101, Japan 4)Department of Endocrinology, Chiba Children’s Hospital, Chiba 266-0007, Japan 5)Third Department of Medicine, Teikyo University Chiba Medical Center, Ichihara 299-0111, Japan 6)Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Japan 7)Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo 105-8470, Japan Abstract. Rickets and osteomalacia are diseases characterized by impaired mineralization of bone matrix. Recent investigations revealed that the causes for rickets and osteomalacia are quite variable. While these diseases can severely impair the quality of life of the affected patients, rickets and osteomalacia can be completely cured or at least respond to treatment when properly diagnosed and treated according to the specific causes. On the other hand, there are no standard criteria to diagnose rickets or osteomalacia nationally and internationally. Therefore, we summarize the definition and pathogenesis of rickets and osteomalacia, and propose the diagnostic criteria and a flowchart for the differential diagnosis of various causes for these diseases. -
Osteogenesis Imperfecta: Recent Findings Shed New Light on This Once Well-Understood Condition Donald Basel, Bsc, Mbbch1, and Robert D
COLLABORATIVE REVIEW Genetics in Medicine Osteogenesis imperfecta: Recent findings shed new light on this once well-understood condition Donald Basel, BSc, MBBCh1, and Robert D. Steiner, MD2 TABLE OF CONTENTS Overview ...........................................................................................................375 Differential diagnosis...................................................................................380 Clinical manifestations ................................................................................376 In utero..........................................................................................................380 OI type I ....................................................................................................376 Infancy and childhood................................................................................380 OI type II ...................................................................................................377 Nonaccidental trauma (child abuse) ....................................................380 OI type III ..................................................................................................377 Infantile hypophosphatasia ....................................................................380 OI type IV..................................................................................................377 Bruck syndrome .......................................................................................380 Newly described types of OI .....................................................................377 -
Reiner Bartl Christoph Bartl Biology, Diagnosis, Prevention, Therapy
Reiner Bartl Christoph Bartl Bone Disorders Biology, Diagnosis, Prevention, Therapy 123 Bone Disorders Reiner Bartl • Christoph Bartl Bone Disorders Biology, Diagnosis, Prevention, Therapy With a contribution by Andrea Baur-Melnyk and Tobias Geith Prof. Dr. med. Reiner Bartl PD Dr. med. Christoph Bartl Osteoporosis Center Munich ZOOOM (Center of Orthopaedics, Kaufi ngerstr. 15 Osteoporosis and Sports Medicine, Munich Munich) Germany Rosa-Bavaresestr. 1 Munich Germany With a contribution by Prof. Dr. med. Andrea Baur-Melnyk and Dr. med. Tobias Geith Department of Clinical Radiology University of Munich-Grosshadern Marchioninistrasse 15 Munich, Germany All coloured illustrations from Harald Konopatzki, Heidelberg. All two-coloured and blackline illustrations from Reinhold Henkel†, Heidelberg. ISBN 978-3-319-29180-2 ISBN 978-3-319-29182-6 (eBook) DOI 10.1007/978-3-319-29182-6 Library of Congress Control Number: 2016944148 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Michael P. Whyte, M.D
Melorheostosis Michael P. Whyte, M.D. Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children; and Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital; St. Louis, Missouri, U.S.A. 1 History • 1922 – Léri and Joanny (define the disorder) • “Léri’s disease” • 5000 BC (Chilean burial site 2-year-old girl) • 1500-year-old skeleton in Alaska 2 Definitions (Greek) melo=“limb” rhein=“to flow” osteon=“bone” • Melorheostosis means "limb and I(me)-Flow“ • Flowing Periosteal Hyperostosis • Candle guttering (dripping wax) on x-ray in adults • OMIM (Online Mendelian Inheritance of Man) % 155950 DISORDERS THAT CAUSE OSTEOSCLEROSIS Dysplasias Craniodiaphyseal dysplasia Osteoectasia with hyperphosphatasia Craniometaphyseal dysplasia Mixed sclerosing bone dystrophy Dysosteosclerosis Oculodento-osseous dysplasia Endosteal hyperostosis Osteodysplasia of Melnick and Needles Van Buchem Disease Osteoectasia with hyperphosphatasia Sclerosteosis (hyperostosis corticalis) Frontometaphyseal dysplasia Osteopathia striata Infantile cortical hyperostosis Osteopetrosis (Caffey disease) Osteopoikilosis Melorheostosis Progressive diaphyseal dysplasia Metaphyseal dysplasia (Pyle disease) (Engelmann disease) Pyknodysostosis Metabolic Carbonic anhydrase II deficiency Hyper-, hypo- and pseudohypoparathyroidism Fluorosis Hypophosphatemic osteomalacia Heavy metal poisoning Milk-alkali syndrome Hypervitaminosis A,D Renal osteodystrophy Other Axial osteomalacia Multiple myeloma Paget’s disease -
Skeletal Imaging of Nutritional Disorders in Children
CRIMSONpublishers http://www.crimsonpublishers.com Clinical Image Nov Tech Nutri Food Sci ISSN: 2640-9208 Skeletal Imaging of Nutritional Disorders in Children Kakarla Subbarao* KIMS Foundation and Research Centre, India *Corresponding author: Kakarla Subbarao, MS, D.Sc. (HON), FRCR, FACR, FICP, FSASMA, FCCP, FICR, FCGP, Chairman, KIMS Foundation and Research Centre, Minister road, Sec- 500003, Telangana, India Submission: September 06, 2017; Published: January 22, 2018 Abstract Imaging of skeleton plays a major role in the diagnosis of nutritional disorders in children. The disorders can be 1) Deficiency2) Toxic (Overdose). and the grading of diagnosis of degrees of osteoporosis. The differential diagnosis is also discussed. The common deficiency disorders include rickets, scurvy, osteoporosis and anemias. Conventional radiology is adequate in the diagnosis, except in Keywords: Rickets, scurvy; Osteoporosis; Fluorosis; Lead poisoning; Vitamin A and D overdose; Radiological characteristics Introduction The toxic disorders include hypervitaminosis A and D. Other causes Despite governmental and nongovernmental service programs include plumbism, hypercalcemia, steroids, heparin over use, in improving pediatric nutrition with supplementary foods, it antiepiliptic drugs and flurosis. is not uncommon to see children with nutritional deficiency Pathophysiology of Rickets disorders. Most of them reflect upon the musculoskeletal system. The deposition of mineral in cartilage needs adequate amounts osteoporosis, hypoprotenemia and anemias. The conventional The major deficiency disorders include nutritional rickets, scurvy, radiological appearances are classical and very rarely are it needed to have advanced imaging methods. However, quantitative computed of both calcium and phosphorous. If these are deficient failure of new osteoid is less due to inhibition of osteoclastic resorption of matrix. tomography (CT), dual-energy photon absorptiometry, and dual- bone mineralization takes place. -
Osteoporosis in Children 173:6 R185–R197 Review
V Saraff and W Ho¨ gler Osteoporosis in children 173:6 R185–R197 Review ENDOCRINOLOGY AND ADOLESCENCE Osteoporosis in children: diagnosis and management Correspondence Vrinda Saraff and Wolfgang Ho¨ gler should be addressed Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Steelhouse Lane, to W Ho¨ gler Birmingham B4 6NH, UK Email [email protected] Abstract Osteoporosis in children can be primary or secondary due to chronic disease. Awareness among paediatricians is vital to identify patients at risk of developing osteoporosis. Previous fractures and backaches are clinical predictors, and low cortical thickness and low bone density are radiological predictors of fractures. Osteogenesis Imperfecta (OI) is a rare disease and should be managed in tertiary paediatric units with the necessary multidisciplinary expertise. Modern OI management focuses on functional outcomes rather than just improving bone mineral density. While therapy for OI has improved tremendously over the last few decades, this chronic genetic condition has some unpreventable, poorly treatable and disabling complications. In children at risk of secondary osteoporosis, a high degree of suspicion needs to be exercised. In affected children, further weakening of bone should be avoided by minimising exposure to osteotoxic medication and optimising nutrition including calcium and vitamin D. Early intervention is paramount. However, it is important to identify patient groups in whom spontaneous vertebral reshaping and resolution of symptoms occur to avoid unnecessary treatment. Bisphosphonate therapy remains the pharmacological treatment of choice in both primary and secondary osteoporosis in children, despite limited evidence for its use in the latter. The duration and intensity of treatment remain a concern for long- term safety.