Pituitary Growth Hormone

Total Page:16

File Type:pdf, Size:1020Kb

Pituitary Growth Hormone PITUITARY AND MAMMARY GROWTH HORMONE IN DOGS Sofie Bhatti Utrecht, 2006 Wat was dus het leven? Het was warmte, het warmteproduct van vormaannemende ongedurigheid, een koorts van de materie, waarmee het proces van onophoudelijke ontbinding en herstel der onhoudbaar ingewikkeld, onhoudbaar kunstig opgebouwde eiwitmoleculen gepaard ging. Thomas Mann, “De Toverberg” (1875-1955) Voor mijn ouders Voor Sarne PITUITARY AND MAMMARY GROWTH HORMONE IN DOGS Hypofysair en mammair groeihormoon bij de hond (met een samenvatting in het Nederlands) PROEFSCHRIFT Ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op woensdag 17 mei 2006 des namiddags te 14.30 uur door Sofie Fatima Mareyam Bhatti Geboren op 24 november 1973 te Luik, België Promotor Prof. Dr. A. Rijnberk Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands Copromotoren Dr. L. M. L. Van Ham Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Belgium Dr. H. S. Kooistra Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands Dr. ir. J. A. Mol Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands The studies described in this thesis were conducted at and financially supported by the Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands and the Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Belgium Printing of this thesis was financially supported by: Cover: Paly De Vliegher Printing: Plot-it, Merelbeke, België CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Bhatti, Sofie Fatima Mareyam Pituitary and mammary growth hormone in dogs Sofie Bhatti, Merelbeke, België Universiteit Gent, Faculteit Diergeneeskunde Thesis Universiteit Utrecht. – With ref. – With summary in Dutch ISBN-10: 90-393-4202-4 ISBN-13: 978-90-393-4202-2 Subject headings: growth hormone, ghrelin, pituitary gland, mammary gland, dogs Table of contents Chapter 1 Aims and outline of the thesis 15 Chapter 2 General introduction 21 Part I: Pituitary growth hormone Chapter 3 Pulsatile secretion pattern of growth hormone in dogs with pituitary-dependent hyperadrenocorticism 71 Chapter 4 Effects of growth hormone-releasing peptides on the release of adenohypophyseal hormones in healthy dogs and in dogs with pituitary-dependent hyperadrenocorticism 89 Chapter 5 Effects of growth hormone secretagogues on the release of adenohypophyseal hormones in young and old healthy dogs 109 Chapter 6 Ghrelin-stimulation test in the diagnosis of canine pituitary dwarfism 133 Chapter 7 Effects of food intake and fasting on the plasma ghrelin concentration in healthy dogs 151 Part II: Mammary growth hormone Chapter 8 Role of progestin-induced mammary-derived growth hormone in the pathogenesis of cystic endometrial hyperplasia in the bitch 175 Chapter 9 Adenohypophyseal function in bitches treated with medroxyprogesterone acetate 203 Chapter 10 Treatment of growth hormone excess in dogs with the progesterone receptor antagonist aglépristone 229 Chapter 11 Summarizing discussion and conclusions 247 Chapter 12 Samenvatting en conclusies 271 Dankwoord 295 Curriculum vitae – List of publications and manuscripts 303 Chapter 1 Aims and outline of the thesis 15 Chapter 1 16 Aims and outline of the thesis The pulsatile secretion of growth hormone (GH) by pituitary somatotrophs is regulated by two antagonistic hypothalamic peptides: GH-releasing hormone (GHRH) and somatostatin. In addition, GH release can be stimulated by synthetic GH secretagogues (GHSs), such as growth hormone-releasing peptide-6 (GHRP-6), by acting through receptors different from those for GHRH. In 1999, the endogenous ligand for this GHS-receptor was purified and characterized from rat and human stomach and was called ‘ghrelin’. Ghrelin has also been identified in the fundus of the canine stomach. The general aim of Part I of this thesis was to document spontaneous, GHS-, and ghrelin-induced GH release in healthy dogs and dogs with a pituitary disorder. In addition, ghrelin secretion was studied in healthy dogs. The pituitary gland is not the only site of GH production. Under the influence of endogenous progesterone or the administration of progestins, the canine mammary gland is also able to secrete considerable amounts of GH into the systemic circulation. This mammary- derived GH is identical to pituitary GH. Part II of this thesis concentrates on several aspects of this progestin-induced mammary-derived GH in dogs. The first part of the general introduction is an overview of pituitary GH secretion and its regulation, and of the diverse endocrine and nonendocrine effects of synthetic GHSs and ghrelin (Chapter 2, part I). The second part of the general introduction (Chapter 2, part II) concentrates on the effects of progesterone and synthetic progestins in the bitch. Besides the physiological effects of several hormones on pituitary GH secretion, the secretion pattern of GH may also change as a result of pathological hypersecretion of hormones such as, for example, cortisol. In Chapter 3 and Chapter 4 the effects of pituitary- dependent hyperadrenocorticism on the plasma GH profile and the GH response to various GHSs (ghrelin, GHRP-6, and GHRH) are reported. In humans, not only diseases such as hypercortisolism, but also ageing and obesity affect pituitary GH secretion and cause a reduced response to GH stimulating factors. In dogs, little is known about the effect of age on the plasma GH response to GH-releasing stimuli. Chapter 5 reports on the effects of several GHSs (ghrelin, GHRP-6, and GHRH) on the release of GH in young and old healthy Beagle dogs. In a search for the specificity of these stimulations, the effects of GHRP-6 and ghrelin administration on plasma adrenocorticotrophic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and prolactin (PRL) release were also studied. Ghrelin is a potent stimulator of GH release. The option of using ghrelin in the diagnosis of congenital GH deficiency was studied by measuring the effect of ghrelin administration on the plasma GH concentration in German shepherd dogs with pituitary 17 Chapter 1 dwarfism. The dwarfism in German shepherd dogs is a combined pituitary hormone deficiency. Therefore, also the plasma concentrations of ACTH, cortisol, TSH, LH, and PRL were determined before and after ghrelin administration (Chapter 6). Through activation of pathways distinct from those involved in the stimulation of GH secretion, ghrelin also functions as a potent orexigenic peptide. Ghrelin induces weight gain by increasing food intake and reducing fat utilization. In several mammalian species it also plays a role in meal initiation. Chapter 7 reports on the physiological effects of food intake and fasting on the circulating concentrations of ghrelin, GH, glucose, insulin, and insulin-like growth factor-I (IGF-I) in healthy Beagle dogs. In Part II of this thesis several aspects of progestin-induced mammary-derived GH in dogs are presented. Cystic endometrial hyperplasia (CEH) is frequently seen in bitches treated repeatedly with progestins for prevention of oestrus. The condition may also develop spontaneously in the luteal phase of the oestrous cycle of middle-aged or elderly bitches, i.e. bitches that have gone through several luteal phases. Because of the similarity of the progestin-induced epithelial changes in both the mammary gland and the uterus, it was hypothesized that mammary GH is involved in the pathogenesis of progestin-induced CEH. Therefore, the effect of chronic administration of a synthetic progestin on the development of CEH was investigated in bitches with surgically excised mammary glands and in healthy control bitches (Chapter 8). It is not clear whether the oestrus-preventing properties of progestins in the bitch are due to effects at the level of the hypothalamus, the pituitary gland, or the ovary. In Chapter 9 the effects of chronic administration of a synthetic progestin on adenohypophyseal function are reported, including the effects on the GH-IGF-I axis. The presence of progesterone receptors in mammary gland tissue of dogs allows for a targeted endocrine therapy with progesterone receptor blockers in dogs with progestin- induced mammary-derived GH overproduction. The effects of treatment with the progesterone receptor blocker aglépristone in Beagle dogs with progestin-induced mammary- derived GH excess are reported in Chapter 10. In Chapter 11 the results of the studies are summarized and discussed. 18 Chapter 2 General introduction Part of this review has been published: Ghrelin, an endogenous growth hormone secretagogue with diverse endocrine and nonendocrine effects S.F.M. Bhatti1, L.M.L. Van Ham1, J.A. Mol2, H.S. Kooistra2. American Journal of Veterinary Research, 2006;67:180-188. 1Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium 2Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands 21 Chapter 2 22 General introduction General introduction - Part I: Pituitary growth hormone secretion
Recommended publications
  • The Role of Growth Hormone in the Regulation of the Anaerobic Energy System and Physical Function Viral Chikani MBBS, FRACP
    The Role of Growth Hormone in the Regulation of the Anaerobic Energy System and Physical Function Viral Chikani MBBS, FRACP A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Medicine Abstract Growth hormone (GH) regulates energy metabolism and body composition in adult life. Adults with GH deficiency (GHD) suffer from lack of energy and from impaired physical functioning. GH supplementation improves sprinting in recreational athletes, a performance measure dependent on the anaerobic energy system (AES). The AES underpins the initiation of all physical activities including those of daily living. The physiological and functional significance of GH in regulation of the AES is unknown. This thesis tests the hypothesis that GH positively regulates the AES and aspects of physical functioning in adult life. The key objectives are to 1) investigate whether anaerobic capacity is impaired in adults with GHD and improved by GH replacement, ii) characterise facets of physical function that are AES-dependent and GH responsive and iii) identify GH-regulated genes governing anaerobic metabolism in skeletal muscle. Exercise capacity, body composition, physical function and quality of life (QoL) were studied in 19 adults with GHD before and after GH replacement. Anaerobic capacity was assessed by the 30- second Wingate test, and aerobic capacity by the VO2max test. Physical function was assessed by the stair-climb test, chair-stand test, and 7-day pedometry. QoL was assessed by a GHD-specific questionnaire. Lean body mass (LBM) was quantified by dual-energy x-ray absorptiometry. Muscle biopsies were obtained before and after 1 and 6 months of GH replacement.
    [Show full text]
  • Pharmacological Modulation of Ghrelin to Induce Weight Loss: Successes and Challenges
    Current Diabetes Reports (2019) 19:102 https://doi.org/10.1007/s11892-019-1211-9 OBESITY (KM GADDE, SECTION EDITOR) Pharmacological Modulation of Ghrelin to Induce Weight Loss: Successes and Challenges Martha A. Schalla1 & Andreas Stengel1,2 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review Obesity is affecting over 600 million adults worldwide and has numerous negative effects on health. Since ghrelin positively regulates food intake and body weight, targeting its signaling to induce weight loss under conditions of obesity seems promising. Thus, the present work reviews and discusses different possibilities to alter ghrelin signaling. Recent Findings Ghrelin signaling can be altered by RNA Spiegelmers, GHSR/Fc, ghrelin-O-acyltransferase inhibitors as well as antagonists, and inverse agonists of the ghrelin receptor. PF-05190457 is the first inverse agonist of the ghrelin receptor tested in humans shown to inhibit growth hormone secretion, gastric emptying, and reduce postprandial glucose levels. Effects on body weight were not examined. Summary Although various highly promising agents targeting ghrelin signaling exist, so far, they were mostly only tested in vitro or in animal models. Further research in humans is thus needed to further assess the effects of ghrelin antagonism on body weight especially under conditions of obesity. Keywords Antagonist . Ghrelin-O-acyl transferase . GOAT . Growth hormone . Inverse agonist . Obesity Abbreviations GHRP-2 Growth hormone–releasing peptide-2 ACTH Adrenocorticotropic hormone GHRP-6 Growth hormone–releasing peptide 6 AZ-GHS-22 Non-CNS penetrant inverse agonist 22 GHSR Growth hormone secretagogue receptor AZ-GHS-38 CNS penetrant inverse agonist 38 GOAT Ghrelin-O-acyltransferase BMI Body mass index GRLN-R Ghrelin receptor CpdB Compound B icv Intracerebroventricular CpdD Compound D POMC Proopiomelanocortin DIO Diet-induced obesity sc Subcutaneous GH Growth hormone SPM RNA Spiegelmer WHO World Health Organization.
    [Show full text]
  • ( 12 ) United States Patent
    US010317418B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,317 ,418 B2 Goosens (45 ) Date of Patent: * Jun . 11 , 2019 (54 ) USE OF GHRELIN OR FUNCTIONAL 7 , 479 ,271 B2 1 / 2009 Marquis et al . GHRELIN RECEPTOR AGONISTS TO 7 ,632 , 809 B2 12 / 2009 Chen 7 ,666 , 833 B2 2 /2010 Ghigo et al. PREVENT AND TREAT STRESS -SENSITIVE 7 , 901 ,679 B2 3 / 2011 Marquis et al . PSYCHIATRIC ILLNESS 8 ,013 , 015 B2 9 / 2011 Harran et al . 8 ,293 , 709 B2 10 /2012 Ross et al . (71 ) Applicant: Massachusetts Institute of 9 ,724 , 396 B2 * 8 / 2017 Goosens A61K 38 /27 9 , 821 ,042 B2 * 11 /2017 Goosens .. A61K 39/ 0005 Technology , Cambridge , MA (US ) 10 , 039 ,813 B2 8 / 2018 Goosens 2002/ 0187938 A1 12 / 2002 Deghenghi (72 ) Inventor : Ki Ann Goosens, Cambridge , MA (US ) 2003 / 0032636 Al 2 /2003 Cremers et al. 2004 / 0033948 Al 2 / 2004 Chen ( 73 ) Assignee : Massachusetts Institute of 2005 / 0070712 A1 3 /2005 Kosogof et al. Technology , Cambridge , MA (US ) 2005 / 0148515 Al 7/ 2005 Dong 2005 / 0187237 A1 8 / 2005 Distefano et al. 2005 /0191317 A1 9 / 2005 Bachmann et al. ( * ) Notice : Subject to any disclaimer , the term of this 2005 /0201938 A1 9 /2005 Bryant et al. patent is extended or adjusted under 35 2005 /0257279 AL 11 / 2005 Qian et al. U . S . C . 154 ( b ) by 0 days. 2006 / 0025344 Al 2 /2006 Lange et al. 2006 / 0025566 A 2 /2006 Hoveyda et al. This patent is subject to a terminal dis 2006 / 0293370 AL 12 / 2006 Saunders et al .
    [Show full text]
  • Gastric Motor Effects of Peptide and Non-Peptide Ghrelin Agonists in Mice in Vivo and in Vitro
    Gut Online First, published on April 20, 2005 as 10.1136/gut.2005.065896 1 Gut: first published as 10.1136/gut.2005.065896 on 20 April 2005. Downloaded from Gastric motor effects of peptide and non-peptide ghrelin agonists in mice in vivo and in vitro T. Kitazawa1, B. De Smet, K. Verbeke, I. Depoortere, T. L. Peeters Center for Gastroenterological Research, Catholic University of Leuven, B-3000 Leuven, Belgium 1Dr.T.Kitazawa is associate professor at the Rakuno Gakuen University in Ebetsu, Japan and performed this work during a sabbatical leave in Belgium. http://gut.bmj.com/ on September 30, 2021 by guest. Protected copyright. Address for correspondence: Centre for Gastroenterological Research Gasthuisberg O&N, box 701 B-3000 Leuven Belgium E-mail: [email protected] Keywords ghrelin, gastric emptying, breath test, organ bath, electrical field stimulation Copyright Article author (or their employer) 2005. Produced by BMJ Publishing Group Ltd (& BSG) under licence. 2 Gut: first published as 10.1136/gut.2005.065896 on 20 April 2005. Downloaded from Abstract The gastroprokinetic activities of ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R), prompted us to compare ghrelin’s effect with that of synthetic peptide (GHRP-6) and non-peptide (capromorelin) GHS-R agonists both in vivo and in vitro. Methods. In vivo, the dose-dependent effects (1-150 nmol/kg) of ghrelin, GHRP-6 and capromorelin on gastric emptying were measured by the 14C octanoic breath test which was adapted for use in mice. The effect of atropine, L-NAME or D-Lys3-GHRP-6 (GHS-R antagonist) on the gastroprokinetic effect of capromorelin was also investigated.
    [Show full text]
  • Growth Hormone Secretagogues: History, Mechanism of Action and Clinical Development
    Growth hormone secretagogues: history, mechanism of action and clinical development Junichi Ishida1, Masakazu Saitoh1, Nicole Ebner1, Jochen Springer1, Stefan D Anker1, Stephan von Haehling 1 , Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany Abstract Growth hormone secretagogues (GHSs) are a generic term to describe compounds which increase growth hormone (GH) release. GHSs include agonists of the growth hormone secretagogue receptor (GHS‐R), whose natural ligand is ghrelin, and agonists of the growth hormone‐releasing hormone receptor (GHRH‐R), to which the growth hormone‐ releasing hormone (GHRH) binds as a native ligand. Several GHSs have been developed with a view to treating or diagnosisg of GH deficiency, which causes growth retardation, gastrointestinal dysfunction and altered body composition, in parallel with extensive research to identify GHRH, GHS‐R and ghrelin. This review will focus on the research history and the pharmacology of each GHS, which reached randomized clinical trials. Furthermore, we will highlight the publicly disclosed clinical trials regarding GHSs. Address for correspondence: Corresponding author: Stephan von Haehling, MD, PhD Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany Robert‐Koch‐Strasse 40, 37075 Göttingen, Germany, Tel: +49 (0) 551 39‐20911, Fax: +49 (0) 551 39‐20918 E‐mail: [email protected]‐goettingen.de Key words: GHRPs, GHSs, Ghrelin, Morelins, Body composition, Growth hormone deficiency, Received 10 September 2018 Accepted 07 November 2018 1. Introduction testing in clinical trials. A vast array of indications of ghrelin receptor agonists has been evaluated including The term growth hormone secretagogues growth retardation, gastrointestinal dysfunction, and (GHSs) embraces compounds that have been developed altered body composition, some of which have received to increase growth hormone (GH) release.
    [Show full text]
  • The Veterinary Journal the Veterinary Journal 172 (2006) 515–525
    The Veterinary Journal The Veterinary Journal 172 (2006) 515–525 www.elsevier.com/locate/tvjl Effects of growth hormone secretagogues on the release of adenohypophyseal hormones in young and old healthy dogs Sofie F.M. Bhatti a,*, Luc Duchateau b, Luc M.L. Van Ham a, Sarne P. De Vliegher c, Jan A. Mol d, Ad Rijnberk d, Hans S. Kooistra d a Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium b Department of Physiology, Biochemistry and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium c Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium d Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 8, NL-3508 TD Utrecht, The Netherlands Abstract The effects of three growth hormone secretagogues (GHSs), ghrelin, growth hormone-releasing peptide-6 (GHRP-6), and growth hormone-releasing hormone (GHRH), on the release of adenohypophyseal hormones, growth hormone (GH), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), luteinising hormone (LH), prolactin (PRL) and on cortisol were investi- gated in young and old healthy Beagle dogs. Ghrelin proved to be the most potent GHS in young dogs, whereas in old dogs GHRH administration was associated with the highest plasma GH concentrations. The mean plasma GH response after administration of ghrelin was significantly lower in the old dogs compared with the young dogs. The mean plasma GH concentration after GHRH and GHRP-6 administration was lower in the old dogs compared with the young dogs, but this difference did not reach statistical significance.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0243197 A1 G00 Sens (43) Pub
    US 20160243 197A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0243197 A1 G00 sens (43) Pub. Date: Aug. 25, 2016 (54) USE OF GHRELIN ORFUNCTIONAL Publication Classification GHRELIN RECEPTORAGONSTS TO PREVENT AND TREAT STRESS-SENSITIVE (51) Int. Cl. PSYCHATRC LLNESS A638/22 (2006.01) GOIN33/74 (2006.01) (71) Applicant: Massachusetts Institute of Technology, A613 L/435 (2006.01) Cambridge, MA (US) (52) U.S. Cl. CPC ............... A61K 38/22 (2013.01); A61 K3I/435 (72) Inventor: Ki Ann Goosens, Cambridge, MA (US) (2013.01); G0IN33/74 (2013.01); G0IN (73) Assignee: Massachusetts Institute of Technology, 2800/7004 (2013.01); G0IN 2800/54 (2013.01); Cambridge, MA (US) G0IN 2333/575 (2013.01) (21) Appl. No.: 15/052,110 (57) ABSTRACT (22) Filed: Feb. 24, 2016 The invention relates to methods of treating stress-sensitive psychiatric diseases arising from trauma in a Subject by Related U.S. Application Data enhancing ghrelin signaling in the BLA of the Subject. The (60) Provisional application No. 62/119,898, filed on Feb. invention also relates to methods of reversing ghrelin resis 24, 2015. tance. Patent Application Publication Aug. 25, 2016 Sheet 1 of 18 US 2016/0243.197 A1 itediate Baseline Sarapie Auditory fear critioning Sarpie at 8, it, 36, 60, i28, atti i8 it long-term context long-terra Aisitory ear Recai Fair Recai F.G. 1A Patent Application Publication Aug. 25, 2016 Sheet 2 of 18 US 2016/0243.197 A1 10. a 30 s t 60 5 40 s { 200 t 3. 2 8 Minutes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0288163 A1 Fraser Et Al
    US 2011 02881 63A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0288163 A1 Fraser et al. (43) Pub. Date: Nov. 24, 2011 (54) METHODS OF USING MACROCYCLC 60/622,005, filed on Oct. 27, 2004, provisional appli MODULATORS OF THE GHRELIN cation No. 60/642,271, filed on Jan. 7, 2005. RECEPTOR Publication Classification (76) Inventors: Graeme L. Fraser, Quebec (CA); (51) Int. Cl. Hamid R. Hoveyda, Quebec (CA); A 6LX 3L/395 (2006.01) Mark L. Peterson, Quebec (CA) A6IP 43/00 (2006.01) (21) Appl. No.: 13/173,929 (52) U.S. Cl. ........................................................ S14/450 (57) ABSTRACT (22) Filed: Jun. 30, 2011 The present invention provides novel conformationally-de fined macrocyclic compounds that have been demonstrated to Related U.S. Application Data be selective modulators of the ghrelin receptor (growth hor (60) Division of application No. 12/333,026, filed on Dec. mone secretagogue receptor, GHS-R1a and Subtypes, iso 11, 2008, which is a continuation of application No. forms and variants thereof). Methods of synthesizing the 1 1/149,512, filed on Jun. 10, 2005, now Pat. No. 7,491, novel compounds are also described herein. These com 695, which is a continuation-in-part of application No. pounds are useful as agonists of the ghrelin receptor and as 10/872,142, filed on Jun. 18, 2004, now Pat. No. 7,521, medicaments for treatment and prevention of a range of medi 420. cal conditions including, but not limited to, metabolic and/or endocrine disorders, gastrointestinal disorders, cardiovascu (60) Provisional application No.
    [Show full text]
  • Review Article
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2017, 68, 6, 797-805 www.jpp.krakow.pl Review article H. ZATORSKI 1, P. MOSINSKA 1, M. STORR 2, J. FICHNA 1 RELAMORELIN AND OTHER GHRELIN RECEPTOR AGONISTS - FUTURE OPTIONS FOR GASTROPARESIS, FUNCTIONAL DYSPEPSIA AND PROTON PUMP INHIBITORS-RESISTANT NON-EROSIVE REFLUX DISEASE 1Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; 2Center of Endoscopy, Starnberg, Germany There is an unmet need for effective pharmacological therapies for the treatment of gastroparesis and other upper gastrointestinal (GI) motility disorders, which reduce patients’ quality of life and are a burden to the healthcare system. Ghrelin is an endogenous growth hormone secretagogue receptor ligand and has been shown to exert prokinetic effects on GI motility. Nevertheless, considering the short half-life of ghrelin its use in clinical practice is limited. Thus, ghrelin receptor agonists with enhanced pharmacokinetics were developed; they accelerate gastric emptying and improve symptoms of gastroparesis in animal models and humans. This review summarizes the current knowledge on relamorelin, a potent ghrelin mimetic, and other analogs which are in preclinical or clinical development stages for the management of upper GI disorders. Key words: gastroparesis, gastrointestinal motility, ghrelin, functional dyspepsia, non-erosive reflux disease, relamorelin INTRODUCTION (scleroderma) disorders. Currently, treatment in gastroparesis focuses on the management of an underlying cause, if identified, Upper gastrointestinal (GI) disorders are amongst others such as optimization of glucose levels in diabetics as well as characterized by inadequate and uncoordinated GI muscular stimulation of gastric emptying and dietary therapy with motility. These disorders may be caused by endogenous or restoration of fluid and electrolytes (4).
    [Show full text]
  • Growth Hormone Secretagogues in Anti-Doping
    POMPEU FABRA UNIVERSITY Department of Experimental and Health Sciences ASSESSMENT OF GROWTH HORMONE SECRETAGOGUES IN ANTI-DOPING PhD thesis Armand Pinyot Comelles Neurosciences Research Programme Municipal Institute of Medical Research IMIM-Institut Hospital del Mar d’investigacions Mèdiques Barcelona, July 2012 POMPEU FABRA UNIVERSITY Department of Experimental and Health Sciences Doctoral Programme: Health and Life Sciences ASSESSMENT OF GROWTH HORMONE SECRETAGOGUES IN ANTI-DOPING Memòria presentada per Armand Pinyot Comelles per a optar al títol de Doctor per la Universitat Pompeu Fabra. Aquesta tesis ha estat realitzada sota la codirecció del Dr. Jordi Segura Noguera i el Dr. Ricardo Gutiérrez Gallego, en el grup d’Investigació en Bioanàlisi i Serveis Analítics, programa de Neurociències de l’IMIM-Institut Hospital del Mar d’Investigacions Mèdiques. Programa de Doctorat en Ciències de la Salut i de la Vida de la Universitat Pompeu Fabra. Dr Jordi Segura Dr Ricardo Gutiérrez Armand Pinyot Noguera Gallego Comelles Director de tesis Director de tesis Doctorand Barcelona, Juliol 2012 Agraïments / Acknowledgements Em disposo a presentar la meva tesi. Tot i el temps que fa que somio en poder pronunciar aquestes paraules, ara que va de debò, resulta que són completament falses. Efectivament, la tesi va al meu nom però seria impossible haver-la realitzat sense un llarg reguitzell de gent que m’ha proporcionat el seu suport, ja sigui científic, moral o simplement estant al meu costat un dia en el que no han sortit bé els experiments. Creieu-me si us dic que podria escriure diverses pàgines d’agraïments però resulta que la tesi tracta un altre tema i així, en aquest petit apartat, m’agradaria fer esment a algunes de les moltes persones de les que us parlo.
    [Show full text]
  • 55809682.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography PITUITARY AND MAMMARY GROWTH HORMONE IN DOGS Sofie Bhatti Utrecht, 2006 Wat was dus het leven? Het was warmte, het warmteproduct van vormaannemende ongedurigheid, een koorts van de materie, waarmee het proces van onophoudelijke ontbinding en herstel der onhoudbaar ingewikkeld, onhoudbaar kunstig opgebouwde eiwitmoleculen gepaard ging. Thomas Mann, “De Toverberg” (1875-1955) Voor mijn ouders Voor Sarne PITUITARY AND MAMMARY GROWTH HORMONE IN DOGS Hypofysair en mammair groeihormoon bij de hond (met een samenvatting in het Nederlands) PROEFSCHRIFT Ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op woensdag 17 mei 2006 des namiddags te 14.30 uur door Sofie Fatima Mareyam Bhatti Geboren op 24 november 1973 te Luik, België Promotor Prof. Dr. A. Rijnberk Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands Copromotoren Dr. L. M. L. Van Ham Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Belgium Dr. H. S. Kooistra Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, The Netherlands Dr. ir. J. A. Mol Department of Clinical Sciences of Companion Animals, Faculty of Veterinary
    [Show full text]
  • Growth Hormone Secretagogue Receptor
    GHSR Growth hormone secretagogue receptor GHSR (Growth hormone secretagogue receptor) is a seven transmembrane G protein-coupled receptor with high expression in the anterior pituitary, pancreatic islets, thyroid gland, heart and various regions of the brain. Two types of GHS-R are accepted to be present, GHS-R1a and GHS-R1b. Ghrelin is a gastric polypeptide displaying strong GH-releasing activity by activation of the GHS-R1a located in the hypothalamus-pituitary axis. GHS-R1a is a G-protein-coupled receptor that, upon the binding of ghrelin or synthetic peptidyl and non-peptidyl ghrelin-mimetic agents known as GHS, preferentially couples to Gq, ultimately leading to increased intracellular calcium content. Beside the potent GH-releasing action, ghrelin and GHS influence food intake, gut motility, sleep, memory and behavior, glucose and lipid metabolism, cardiovascular performances, cell proliferation, immunological responses and reproduction. www.MedChemExpress.com 1 GHSR Inhibitors, Agonists & Antagonists Alexamorelin Met 1 Anamorelin ((D-Mrp)-Ala-Trp-(D-Phe)) Cat. No.: HY-P0166A (RC-1291; ONO-7643) Cat. No.: HY-14734 Alexamorelin Met 1 is one of the metabolites of Anamorelin (RC-1291) is a potent ghrelin receptor alexamorelin. The heptapeptide agonist with EC50 value of 0.74 nM in the FLIPR Ala-His-D-2-methyl-Trp-Ala-Trp-D-Phe-Lys-NH2 assay. (Alexamorelin) is a synthetic molecule which inhibits growth hormone secretagogue binding in vitro. Purity: 99.82% Purity: 99.62% Clinical Data: No Development Reported Clinical Data: Launched Size: 1 mg, 5 mg, 10 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 50 mg, 100 mg, 200 mg Anamorelin Fumarate Anamorelin hydrochloride (ONO-7643 Fumarate; RC1291 Fumarate) Cat.
    [Show full text]