Naturalized Alien Flora of the World: Species Diversity, Taxonomic and Phylogenetic Patterns, Geographic Distribution and Global Hotspots of Plant Invasion

Total Page:16

File Type:pdf, Size:1020Kb

Naturalized Alien Flora of the World: Species Diversity, Taxonomic and Phylogenetic Patterns, Geographic Distribution and Global Hotspots of Plant Invasion Preslia 89: 203–274, 2017 203 Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion Naturalizovaná nepůvodní flóra světa: druhová diverzita, taxonomické a fylogenetické složení, geogra- fické zákonitosti a globální ohniska rostlinných invazí Petr P y š e k1,2,3,JanPergl1,Franz Essl4,3,Bernd Lenzner4,Wayne Dawson5, Holger K r e f t6, Patrick W e i g e l t6, Marten Winter7, John K a r t e s z8,Misako Nishino8,LiubovA.Antonova9, Julie F. B a r c e l o n a10,FranciscoJ.Cabezas11, Dairon C á r d e n a s12,JulianaCárdenas-Toro13,14,NicolásCastańo12, Eduardo Chacón4,15, Cyrille Chatelain16, Stefan Dullinger4, Aleksandr L. E b e l17, Estrela Figueiredo18,19,NicolFuentes20, Piero Genovesi21,22, Quentin J. Groom23, Lesley Henderson24, Inderjit25, Andrey K u p r i y a n o v26, Silvana Masciadri27,NoëlieMaurel28,Jan Meerman29,Olga Morozova30, Dietmar Moser4,DanielNickrent31, Pauline M. N o w a k32, Shyama P a g a d33, Annette Patzelt34, Pieter B. P e l s e r10, Hanno Seebens35, Wen-sheng S h u36, Jacob Thomas37, Mauricio V e l a y o s11, Ewald W e b e r38,JanJ.Wieringa39,40,MaríaP. Baptiste13 &Markvan Kleunen28,41 1Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected]; 2Department of Ecology, Faculty of Science, Charles University, CZ-128 44 Viničná 7, Prague 2, Czech Republic; 3Centre for Invasion Biology, Department of Botany & Zool- ogy, Stellenbosch University, Matieland 7602, South Africa; 4Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, 1030 Wien, Austria, e-mail: [email protected], [email protected]; 5DepartmentofBiosci- ences, Durham University, South Road, Durham, DH1 2LF, United Kingdom, e-mail: [email protected]; 6Biodiversity, Macroecology & Biogeography, University of Goettingen, Büsgenweg 1, D-37077 Göttingen, Germany, e-mail: [email protected], [email protected]; 7German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany, e-mail: [email protected]; 8Biota of North America Program (BONAP), 9319 Bracken Lane, Chapel Hill, North Carolina, 27516, USA; 9Institute for Aquatic and Ecological Problems, Far East Branch, Russian Academy of Sciences, 680000 Khabarovsk, Russia; 10School of Biological Sciences, University of Canterbury, Private Bag 4800, Christ- church 8140, New Zealand; 11Departamento de Biodiversidad y Conservación, Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; 12Instituto Amazónico de Investigaciones Científicas Sinchi, Herbario Amazónico Colombiano, Bogotá, Colombia; 13Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia; 14Arts Faculty, Monash University, Melbourne, Australia; 15Escuela de Biología, Universidad de Costa Rica, 11501 San José, Costa Rica; 16Conservatoire et jardin botaniques de la Ville de Genčve, Genčve, Switzerland; 17Laboratory of Plant doi: 10.23855/preslia.2017.203 204 Preslia 89: 203–274, 2017 Taxonomy and Phylogeny, Tomsk State University, Lenin Prospect 36, 634050 Tomsk, Russia; 18Department of Botany, P.O. Box 77000, Nelson Mandela Metropolitan Univer- sity, Port Elizabeth, 6031 South Africa; 19Centre for Functional Ecology, Departamento de Cięncias da Vida, Universidade de Coimbra, 3001-455 Coimbra, Portugal; 20Departa- mento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; 21Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy; 22Chair IUCN Species Survival Commission’s Invasive Species Specialist Group (ISSG), Rome, Italy; 23Botanic Garden Meise, Domein van Bouchout, B-1860, Meise, Belgium; 24ARC-Plant Protection Research Institute, Pretoria 0001, South Africa; 25Department of Environ- mental Studies, Centre for Environmental Management of Degraded Ecosystems, Uni- versity of Delhi, Delhi 110007, India; 26Institute of Human Ecology, Siberian Branch of Russian Academy of Sciences, Prospect Leningradasky 10, 650065 Kemerovo, Russia; 27Oceanología, Facultad de Ciencias, Universidad de la República, Iguá, 4225, CP 11400, Montevideo, Uruguay; 28Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany, e-mail: mark.vankleunen@ uni-konstanz.de; 29Belize Tropical Forest Studies, P.O. Box 208, Belmopan, Belize; 30Institute of Geography, Russian Academy of Sciences, Staromonetny 29, 119017 Mos- cow, Russia; 31Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, USA; 32Department of Geography, University Marburg, Deutsch- hausstraße 10, D-35032 Marburg, Germany; 33IUCN Species Survival Commission’s Invasive Species Specialist Group (ISSG), University of Auckland, New Zealand; 34Oman Botanic Garden, Diwan of Royal Court, 122 Muscat, Oman; 35Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; 36State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-sen University, Guang- zhou 510275, China; 37Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; 38Institute of Biochemistry and Biology, University of Potsdam, D-14469 Potsdam, Germany; 39Naturalis Biodiver- sity Center (Botany Section), Darwinweg 2, 2333 CR Leiden, the Netherlands; 40Biosys- tematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; 41Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China Pyšek P., Pergl J., Essl F., Lenzner B., Dawson W., Kreft H., Weigelt P., Winter M., Kartesz J., Nishino M., Antonova L. A., Barcelona J. F., Cabezas F. J., Cárdenas D., Cárdenas-Toro J., Castańo N., Chacón E., Chatelain C., Dullinger S., Ebel A. L., Figueiredo E., Fuentes N., Genovesi P., Groom Q. J., Henderson L., Inderjit, Kupriyanov A., Masciadri S., Maurel N., Meerman J., Morozova O., Moser D., Nickrent D., Nowak P. M., Pagad S., Patzelt A., Pelser P. B., Seebens H., Shu W., Thomas J., Velayos M., Weber E., Wieringa J. J., Baptiste M. P. & van Kleunen M. (2017): Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. – Preslia 89: 203–274. Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 482 mainland and 362 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well Pyšek et al.: Naturalized alien flora of the world 205 as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). Eng- land, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of natu- ralization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturaliza- tion on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album,
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Review with Checklist of Fabaceae in the Herbarium of Iraq Natural History Museum
    Review with checklist of Fabaceae in the herbarium of Iraq natural history museum Khansaa Rasheed Al-Joboury * Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq. GSC Biological and Pharmaceutical Sciences, 2021, 14(03), 137–142 Publication history: Received on 08 February 2021; revised on 10 March 2021; accepted on 12 March 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.14.3.0074 Abstract This study aimed to make an inventory of leguminous plants for the purpose of identifying the plants that were collected over long periods and stored in the herbarium of Iraq Natural History Museum. It was found that the herbarium contains a large and varied number of plants from different parts of Iraq and in different and varied environments. It was collected and arranged according to a specific system in the herbarium to remain an important source for all graduate students and researchers to take advantage of these plants. Also, the flowering and fruiting periods of these plants in Iraq were recorded for different regions. Most of these plants begin to flower in the spring and thrive in fields and farms. Keywords: Fabaceae; Herbarium; Iraq; Natural; History; Museum 1. Introduction Leguminosae, Fabaceae or Papilionaceae, which was called as legume, pea, or bean Family, belong to the Order of Fabales [1]. The Fabaceae family have 727 genera also 19,325 species, which contents herbs, shrubs, trees, and climbers [2]. The distribution of fabaceae family was variety especially in cold mountainous regions for Europe, Asia and North America, It is also abundant in Central Asia and is characterized by great economic importance.
    [Show full text]
  • Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium
    plants Article Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium Múcio Mágno de Melo Farnezi 1, Enilson de Barros Silva 1,* , Lauana Lopes dos Santos 1, Alexandre Christofaro Silva 1, Paulo Henrique Grazziotti 1 , Jeissica Taline Prochnow 1, Israel Marinho Pereira 1 and Ivan da Costa Ilhéu Fontan 2 1 Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; [email protected] (M.M.d.M.F.); [email protected] (L.L.d.S.); [email protected] (A.C.S.); [email protected] (P.H.G.); [email protected] (J.T.P.); [email protected] (I.M.P.) 2 Federal Institute of Minas Gerais - Campus São João Evangelista, Av. Primeiro de Junho, 1043, Centro, São João Evangelista 39.705-000, Minas Gerais, Brazil; [email protected] * Correspondence: [email protected] Received: 14 December 2019; Accepted: 13 January 2020; Published: 15 January 2020 Abstract: Cadmium (Cd) is a very toxic heavy metal occurring in places with anthropogenic activities, making it one of the most important environmental pollutants. Phytoremediation plants are used for recovery of metal-contaminated soils by their ability to absorb and tolerate high concentrations of heavy metals. This paper aims to evaluate the potential of grasses in phytolith production in soils contaminated with Cd. The experiments, separated by soil types (Typic Quartzipsamment, Xanthic Hapludox and Rhodic Hapludox), were conducted in a completely randomized design with a distribution of treatments in a 3 4 factorial scheme with three replications. The factors × were three grasses (Urochloa decumbens, Urochloa brizantha and Megathyrsus maximus) and four 1 concentrations of Cd applied in soils (0, 2, 4 and 12 mg kg− ).
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • 24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
    POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice.
    [Show full text]
  • A Pharmacognostical Study of Melilotus Indicus (L.) All. Growing in Egypt
    A Pharmacognostical Study of Melilotus indicus (L.) All. Growing in Egypt A thesis submitted By Yassmin Samir Youssef Mahmoud For the Degree of Master In Pharmaceutical Sciences (Pharmacognosy) Under the Supervision of Prof. Dr.Amal El-SayedKhaleel Professor of Pharmacognosy, Faculty of Pharmacy, Cairo University Dr. MaieSelmyKhader Lecturer of Pharmacognosy, National Organization for Drug Control and Research Pharmacognosy Department Faculty of Pharmacy Cairo University 2019 Abstract "A Pharmacognostical Study of Melilotus indicus (L.) All. Growing in Egypt" Botanical study including macro- and micro-morphological studies of different organs of Melilotus indicus (L.) All. were achieved for authentication and identification of the plant in the entire and powdered forms. The phytochemical study was established including preliminary screening, investigation of the essential oil, quantitative determination of the active constituents, HPLC fingerprint analysis of different plant extractives with assignment of the isolated compounds, UPLC- Mass profile of secondary metabolites of 80% methanolic extract and investigation of the polysaccharide content.Seven compounds have been isolated and identified via physical, chromatographic and spectral data namely; a hydrocarbon (nonacosane), a fatty acid (palmitic acid), a benzopyrane (coumarin), a flavonoid (kaempferol), flavonoid glycosides (trifolin and robinin) and o-coumaric acid.UPLC/Ms analysis led to the identification of 14 compounds from which 5 compounds were identified for the first timein
    [Show full text]
  • SUSTAINABLE TOURISM for the HOUTMAN ABROLHOS ISLANDS Progress Update July 2020
    SUSTAINABLE TOURISM FOR THE HOUTMAN ABROLHOS ISLANDS Progress update July 2020 On 6 October 2017, the Premier, Hon Mark McGowan Progress towards achieving the Government’s For more information about the IPT or the sustainable MLA, announced that the State Government’s vision sustainable tourism vision for the Abrolhos has tourism project, please visit the DBCA website at: for the Abrolhos Islands was to create a world-class included: dbca.wa.gov.au/houtman-abrolhos-islands-national-park tourism experience while maintaining world’s • Creation of the Houtman Abrolhos Islands National best-practice environmental management. Park (national park) Planning for the Abrolhos land and waters Following this, a whole-of-Government planning • Development of an interagency Strategic Direction The Houtman Abrolhos Islands Strategic Direction process commenced to develop the most appropriate 2020–24 2020–24 management framework for the marine and terrestrial • Development of a draft Visitor Master Plan for the The Strategic Direction outlines the State Government’s areas of the Abrolhos and an Interagency Project Team national park vision and goals for management of the Abrolhos (lands (IPT) was established to ensure the effective delivery of • Commencement of a management plan for the and waters) with interagency collaboration between the Government’s commitment. The membership of the national park DBCA, DPIRD and the Western Australian Museum as a IPT includes agencies with legislative responsibilities or • Planning for the development of visitor facilities key focus. Other agencies supporting the realisation of an interest in the management of the Abrolhos, including initially in the Wallabi group the vision for the Abrolhos include Tourism WA, City of the Department of Biodiversity, Conservation and Greater Geraldton, Abrolhos Islands Bodies Corporate, Attractions (DBCA), Department of Primary Industries • Licensing of commercial tour operators in the national Mid West Development Commission, Department of and Regional Development (DPIRD), Western Australian park.
    [Show full text]
  • Euphorbiaceae) No Estado De São Paulo, Brasil
    OTÁVIO LUIS MARQUES DA SILVA Estudo taxonômico de Euphorbia L. (Euphorbiaceae) no Estado de São Paulo, Brasil Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. SÃO PAULO 2014 OTÁVIO LUIS MARQUES DA SILVA Estudo taxonômico de Euphorbia L. (Euphorbiaceae) no Estado de São Paulo, Brasil Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. ORIENTADORA: DRA. MARIA BEATRIZ ROSSI CARUZO Ficha Catalográfica elaborada pelo NÚCLEO DE BIBLIOTECA E MEMÓRIA Silva, Otávio Luis Marques da S586e Estudo taxonômico de Euphorbia L.(Euphorbiaceae) no Estado de São Paulo, Brasil / Otávio Luis Marques da Silva -- São Paulo, 2014. 162 p. il. Dissertação (Mestrado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2014 Bibliografia. 1. Euphorbiaceae. 2. Taxonomia. 3. Flora. I. Título CDU: 582.757.2 Dedico este trabalho à minha orientadora, à Dra. Inês Cordeiro e à minha família. In Memorian à Aracy M. Fevereiro e Waki Kodama “A tarefa não é tanto ver aquilo que ninguém viu, mas pensar o que ninguém ainda pensou sobre aquilo que todo mundo vê.” (Arthur Schopenhauer) AGRADECIMENTOS Me faltam palavras para expressar a minha felicidade frente à realização de um trabalho que foi desenvolvido com tanto carinho e dedicação, e de uma forma tão prazerosa e gratificante.
    [Show full text]
  • Synopsis of Euphorbia (Euphorbiaceae) in the State of São Paulo, Brazil
    Phytotaxa 181 (4): 193–215 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.181.4.1 Synopsis of Euphorbia (Euphorbiaceae) in the state of São Paulo, Brazil OTÁVIO LUIS MARQUES DA SILVA1,3, INÊS CORDEIRO1 & MARIA BEATRIZ ROSSI CARUZO2 ¹Instituto de Botânica, Secretaria do Meio Ambiente, Cx. Postal 3005, 01061-970, São Paulo, SP, Brazil ²Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil 3Author for correspondence. Email: [email protected] Abstract Euphorbia is the largest genus of Euphorbiaceae and is among the giant genera of Angiosperms. In the state of São Paulo, the genus is represented by 23 species occurring in savannas, high altitude fields, and anthropic areas. This work includes an identification key, photographs, and comments on morphology, habitat, and geographical distribution. We reestablish Euphorbia chrysophylla and recognize Leptopus brasiliensis as a synonym of Euphorbia sciadophila. Six new records for the state of São Paulo are presented: Euphorbia adenoptera, E. bahiensis, E. chrysophylla, E. cordeiroae, E. foliolosa and E. ophthalmica. Eight lectotypes are designated. Key words: Neotropical flora, nomenclatural notes, taxonomy Resumo Euphorbia é o maior gênero de Euphorbiaceae e está entre os maiores de Angiospermas. No Estado de São Paulo, está rep- resentado por 23 espécies ocorrendo no cerrado, campos de altitude e áreas antrópicas. Este trabalho inclui uma chave de identificação, comentários sobre morfologia, habitat e distribuição geográfica. Reestabelecemos Euphorbia chrysophylla e reconhecemos Leptopus brasiliensis como sinônimo de Euphorbia sciadophila. Seis novas ocorrências para o Estado de São Paulo são apresentadas: Euphorbia adenoptera, E.
    [Show full text]
  • Field Release of the Gall Mite, Aceria Drabae
    United States Department of Field release of the gall mite, Agriculture Aceria drabae (Acari: Marketing and Regulatory Eriophyidae), for classical Programs biological control of hoary Animal and Plant Health Inspection cress (Lepidium draba L., Service Lepidium chalapense L., and Lepidium appelianum Al- Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Field release of the gall mite, Aceria drabae (Acari: Eriophyidae), for classical biological control of hoary cress (Lepidium draba L., Lepidium chalapense L., and Lepidium appelianum Al-Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Abrolhos Painted Button-Quail (Turnix Varius Scintillans) Interim Recovery Plan
    Abrolhos Painted Button-Quail (Turnix varius scintillans) Interim Recovery Plan Wildlife Management Program No. 63 Western Australia Department of Biodiversity, Conservation and Attractions May 2018 Wildlife Management Program No. 63 Abrolhos Painted Button-Quail (Turnix varius scintillans) Interim Recovery Plan Western Australia Department of Biodiversity, Conservation and Attractions Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Foreword Recovery plans are developed within the framework laid down in the Department of Biodiversity, Conservation and Attractions Corporate Policy Statement No. 35 (Parks and Wildlife, 2015b) and Corporate Guideline No. 36 (Parks and Wildlife, 2015a). Interim recovery plans outline the recovery actions that are needed to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. This interim recovery plan was approved by the Department of Biodiversity, Conservation and Attractions, Western Australia. Approved interim recovery plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community, and the completion of recovery actions. Information in this interim recovery plan was accurate as of May 2018. Interim recovery plan preparation:
    [Show full text]