Chomsky Hierarchy and Machines

Total Page:16

File Type:pdf, Size:1020Kb

Chomsky Hierarchy and Machines Context-sensitive languages (CSL) Phrase-structure grammars A phrase-structure grammar (unrestricted grammar) is a 4-tuple G = (V, , R, S), where • V is the rule alphabet, which contains nonterminals and terminals. • (the set of terminals) is a subset of V, • R (the set of rules) is a finite subset of V*(V - )V* V*, represented as • S (the start symbol) is an element of V - . is also called a production Phrase-structure grammars Let G = (V, , R, S), be a phrase structure grammar If is a production, we say Stands for the reflexive transitive closure An example S ABC AB 0AD AB 1AE DC B0C EC B1C D0 0D D1 1D E0 0E E1 1E AB C 0B B0 1B B1 L(G) = ? Context-sensitive grammars (CSG) Let G = (V, , R, S), be a phrase-structure grammar If all productions of G satisfy the condition that is at least as long as then G is called a context-sensitive grammar L(G) is called a context-sensitive language Context-sensitive languages (CSL) • The class of languages generated by phrase-structure grammars are called recursively enumerable languages • The class of CSLs is a proper subset of recursively enumerable languages • Almost any language one can think of is context-sensitive • Proofs of languages are not CSLs are based on diagonalization An example S ACaB | aa | a Ca aaC CB DaaB aD Da AD ACa AC Aa aB Ba AB aa L(G) = ? Normal form Each production is of the form: A , Variable A is replaced in the context Written as: A / Theorem: Every CSL is generated by a grammar in which all productions of the form A , where A is a variable and , , are strings of grammar symbols and is not empty. Normal form Given a CSG, G = (V, , R, S), Step1: construct a new grammar G1 = (V1, , R1, S), as follows: Let V1 = V + Add to R1 all productions s.t. (V-) if is in R, let ` be the string replacing all terminal strings a of by a non terminal a`. Add to V1 a` Add to R1 productions ` and a` a Normal form Step2: Let w(G) = max {|| | G} construct a new grammar G2 = (V2, , R2, S), from G1 such that G2 satisfies w(G2) 2. Given a rule: A1 … Am B1 … Bn , m n If n 2, OK If 2 m < n, create two rules A1 … Am B1 … Bm-1X X Bm … Bn If m = 1 and n 3, create n-1 rules: A1 B1X1 X1 B2X2 … Xn-2 Bn-1Bn If m = n and n 3, create n-1 rules: A1A2 B1X1 X1A3 B2X2 …. Xn-2An Bn-1Bn Normal form Step3: create G3 = (V3, , R3, S), as follows: If A , OK If AB CD and A = C or B = D, OK If AB CD and A C and B D, replace it with the following four rules: AB A1B A1B A1B1 A1B1 CB1 CB1 CD G3 is in normal form Turing Machine M = (Q, , , , q0, B, F) where Q: finite set of states : finite set of input symbols : finite set of tape symbols, : the transition function : Q → Q {L, R} q0: the start state B: the blank symbol, special symbol in and not in F: set of final states, a subset of Q Instantaneous Description (ID) or Configuration X1…Xi-1qXi…Xn where q is the current state, the tape head is scanning Xi, and X1…Xn the tape content between the leftmost and rightmost non-blank symbols. A move is a relation between IDs. Let X1…Xi-1qXi…Xn be an ID. If (q,Xi) = (p,Y,L) then X1…Xi-1qXi…Xn |— X1…Xi-2pXi-1Y…Xn . If (q,Xi) = (p,Y,L) then X1…Xi-1qXi…Xn |— X1…Xi-1YpXi+1…Xn The language accepted by Turing machine M, denoted by L(M) is * {w | w in and q0w * p for some p in F and and in *} L(M) is called a recursively enumerable language A Turing machine halts if there is no move from the current state Theorem: If L is L(G) for unrestricted grammar G = (V, T, P, S), then L is a r.e. language Proof: construct a two-tape Turing machine M to recognize L. Tape1 – input, w L is placed on tape1 Tape2 – holds sentential form of G, initialize to S M repeatedly does the following: 1) Nondeterministically select a position i in 2) Nondeterministically select a production of G 3) If appears beginning in position i of , replace by , shift as needed 4) Compare result with content of tape1, if they match accept, if not go to step1 All sentential forms appear on tape2. Also, only sentential forms can appear on tape2. so, L(M) = L Theorem: If L is a r.e. language, then L = L(G) for some unrestricted grammar G Proof: let M = (Q, ∑, , , q0, B, F), Construct G = (V, ∑, P, A1) as follows: V = ((∑{}) X ) {A1, A2, A3}, and following productions: 1) A1 q0A2 2) A2 [a,a]A2 3) A2 A3 4) A3 [,B]A3 5) A3 6) q[a,X] [a,Y]p for each a in ∑{} and q in Q and X and Y in , such that (q, X) = (p,Y,R) 7) [b,Z]q[a,X] p[b,Z][a,Z] for each X, Y, Z in , q in Q, and a, b in ∑{} such that (q,X) = (p,Y,L) 8) [a,X]q qaq, q[a,X] qaq, and q for each a in ∑{}, X in , and q in F Recursive sets are those languages accepted by a TM that halts on all inputs. Recursive sets are a proper subset of the class of recursively enumerable sets. Linear Bounded Autamata A linear bounded automaton (LBA) is a nondeterministic TM satisfying the following conditions 1. Its input alphabet includes two special symbols ¢ and $, the left and right endmarkers respectively 2. It has no move left from ¢ or right from $, nor may it write another symbol over ¢ or $. 1. If L is a CSL, then L is accepted by some LBA 2. If L = L(M) for some LBA, then L – {} is a CSL 3. Every CSL is recursive Hierarchy Theorem The regular sets are properly contained in the CFLs, the CFLs not containing are properly contained in the CSLs, and the CSLs are properly contained in the r.e. sets Chomsky Hierarchy and Machines Language Grammar Machine (recognizer) Right-linear Right-linear NFA, DFA Left-linear Regular Context-free Context-free PDA Context- Context- LBA sensitive sensitive Recursively Unrestricted Turing enumerable machine.
Recommended publications
  • Nooj Computational Devices Max Silberztein
    NooJ Computational Devices Max Silberztein To cite this version: Max Silberztein. NooJ Computational Devices. Formalising Natural Languages With NooJ, Jun 2012, Paris, France. hal-02435921 HAL Id: hal-02435921 https://hal.archives-ouvertes.fr/hal-02435921 Submitted on 11 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NOOJ COMPUTATIONAL DEVICES MAX SILBERZTEIN Introduction NooJ’s linguistic development environment provides tools for linguists to construct linguistic resources that formalize 7 types of linguistic phenomena: typography, orthography, inflectional and derivational morphology, local and structural syntax, and semantics. NooJ also provides a set of parsers that can process any linguistic resource for these 7 types, and apply it to any corpus of texts in order to extract examples, annotate matching sequences, perform statistical analyses, etc.1 NooJ’s approach to Linguistics is peculiar in the world of Computational Linguistics: instead of constructing a large single grammar to describe a particular natural language (e.g. “a grammar of English”), NooJ users typically construct, edit, test and maintain a large number of local (small) grammars; for instance, there is a grammar that describes how to conjugate the verb to be, another grammar that describes how to state a date in English, another grammar that describes the heads of Noun Phrases, etc.
    [Show full text]
  • The Mathematics of Syntactic Structure: Trees and Their Logics
    Computational Linguistics Volume 26, Number 2 The Mathematics of Syntactic Structure: Trees and their Logics Hans-Peter Kolb and Uwe MÈonnich (editors) (Eberhard-Karls-UniversitÈat Tubingen) È Berlin: Mouton de Gruyter (Studies in Generative Grammar, edited by Jan Koster and Henk van Riemsdijk, volume 44), 1999, 347 pp; hardbound, ISBN 3-11-016273-3, $127.75, DM 198.00 Reviewed by Gerald Penn Bell Laboratories, Lucent Technologies Regular languages correspond exactly to those languages that can be recognized by a ®nite-state automaton. Add a stack to that automaton, and one obtains the context- free languages, and so on. Probably all of us learned at some point in our univer- sity studies about the Chomsky hierarchy of formal languages and the duality be- tween the form of their rewriting systems and the automata or computational re- sources necessary to recognize them. What is perhaps less well known is that yet another way of characterizing formal languages is provided by mathematical logic, namely in terms of the kind and number of variables, quanti®ers, and operators that a logical language requires in order to de®ne another formal language. This mode of characterization, which is subsumed by an area of research called descrip- tive complexity theory, is at once more declarative than an automaton or rewriting system, more ¯exible in terms of the primitive relations or concepts that it can pro- vide resort to, and less wedded to the tacit, not at all unproblematic, assumption that the right way to view any language, including natural language, is as a set of strings.
    [Show full text]
  • Hierarchy and Interpretability in Neural Models of Language Processing ILLC Dissertation Series DS-2020-06
    Hierarchy and interpretability in neural models of language processing ILLC Dissertation Series DS-2020-06 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Science Park 107 1098 XG Amsterdam phone: +31-20-525 6051 e-mail: [email protected] homepage: http://www.illc.uva.nl/ The investigations were supported by the Netherlands Organization for Scientific Research (NWO), through a Gravitation Grant 024.001.006 to the Language in Interaction Consortium. Copyright © 2019 by Dieuwke Hupkes Publisher: Boekengilde Printed and bound by printenbind.nl ISBN: 90{6402{222-1 Hierarchy and interpretability in neural models of language processing Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen op woensdag 17 juni 2020, te 13 uur door Dieuwke Hupkes geboren te Wageningen Promotiecommisie Promotores: Dr. W.H. Zuidema Universiteit van Amsterdam Prof. Dr. L.W.M. Bod Universiteit van Amsterdam Overige leden: Dr. A. Bisazza Rijksuniversiteit Groningen Dr. R. Fern´andezRovira Universiteit van Amsterdam Prof. Dr. M. van Lambalgen Universiteit van Amsterdam Prof. Dr. P. Monaghan Lancaster University Prof. Dr. K. Sima'an Universiteit van Amsterdam Faculteit der Natuurwetenschappen, Wiskunde en Informatica to my parents Aukje and Michiel v Contents Acknowledgments xiii 1 Introduction 1 1.1 My original plan . .1 1.2 Neural networks as explanatory models . .2 1.2.1 Architectural similarity . .3 1.2.2 Behavioural similarity .
    [Show full text]
  • The Complexity of Narrow Syntax : Minimalism, Representational
    Erschienen in: Measuring Grammatical Complexity / Frederick J. Newmeyer ... (Hrsg.). - Oxford : Oxford University Press, 2014. - S. 128-147. - ISBN 978-0-19-968530-1 The complexity of narrow syntax: Minimalism, representational economy, and simplest Merge ANDREAS TROTZKE AND JAN-WOUTER ZWART 7.1 Introduction The issue of linguistic complexity has recently received much attention by linguists working within typological-functional frameworks (e.g. Miestamo, Sinnemäki, and Karlsson 2008; Sampson, Gil, and Trudgill 2009). In formal linguistics, the most prominent measure of linguistic complexity is the Chomsky hierarchy of formal languages (Chomsky 1956), including the distinction between a finite-state grammar (FSG) and more complicated types of phrase-structure grammar (PSG). This dis- tinction has played a crucial role in the recent biolinguistic literature on recursive complexity (Sauerland and Trotzke 2011). In this chapter, we consider the question of formal complexity measurement within linguistic minimalism (cf. also Biberauer et al., this volume, chapter 6; Progovac, this volume, chapter 5) and argue that our minimalist approach to complexity of derivations and representations shows simi- larities with that of alternative theoretical perspectives represented in this volume (Culicover, this volume, chapter 8; Jackendoff and Wittenberg, this volume, chapter 4). In particular, we agree that information structure properties should not be encoded in narrow syntax as features triggering movement, suggesting that the relevant information is established at the interfaces. Also, we argue for a minimalist model of grammar in which complexity arises out of the cyclic interaction of subderivations, a model we take to be compatible with Construction Grammar approaches. We claim that this model allows one to revisit the question of the formal complexity of a generative grammar, rephrasing it such that a different answer to the question of formal complexity is forthcoming depending on whether we consider the grammar as a whole, or just narrow syntax.
    [Show full text]
  • What Was Wrong with the Chomsky Hierarchy?
    What Was Wrong with the Chomsky Hierarchy? Makoto Kanazawa Hosei University Chomsky Hierarchy of Formal Languages recursively enumerable context- sensitive context- free regular Enduring impact of Chomsky’s work on theoretical computer science. 15 pages devoted to the Chomsky hierarchy. Hopcroft and Ullman 1979 No mention of the Chomsky hierarchy. 450 INDEX The same with the latest edition of Carmichael, R. D., 444 CNF-formula, 302 Cartesian product, 6, 46 Co-Turing-recognizableHopcroft, language, 209 Motwani, and Ullman (2006). CD-ROM, 349 Cobham, Alan, 444 Certificate, 293 Coefficient, 183 CFG, see Context-free grammar Coin-flip step, 396 CFL, see Context-free language Complement operation, 4 Chaitin, Gregory J., 264 Completed rule, 140 Chandra, Ashok, 444 Complexity class Characteristic sequence, 206 ASPACE(f(n)),410 Checkers, game of, 348 ATIME(t(n)),410 Chernoff bound, 398 BPP,397 Chess, game of, 348 coNL,354 Chinese remainder theorem, 401 coNP,297 Chomsky normal form, 108–111, 158, EXPSPACE,368 198, 291 EXPTIME,336 Chomsky, Noam, 444 IP,417 Church, Alonzo, 3, 183, 255 L,349 Church–Turing thesis, 183–184, 281 NC,430 CIRCUIT-SAT,386 NL,349 Circuit-satisfiability problem, 386 NP,292–298 CIRCUIT-VALUE,432 NPSPACE,336 Circular definition, 65 NSPACE(f(n)),332 Clause, 302 NTIME(f(n)),295 Clique, 28, 296 P,284–291,297–298 CLIQUE,296 PH,414 Sipser 2013Closed under, 45 PSPACE,336 Closure under complementation RP,403 context-free languages, non-, 154 SPACE(f(n)),332 deterministic context-free TIME(f(n)),279 languages, 133 ZPP,439 P,322 Complexity
    [Show full text]
  • Reflection in the Chomsky Hierarchy
    Journal of Automata, Languages and Combinatorics 18 (2013) 1, 53–60 c Otto-von-Guericke-Universit¨at Magdeburg REFLECTION IN THE CHOMSKY HIERARCHY Henk Barendregt Institute of Computing and Information Science, Radboud University, Nijmegen, The Netherlands e-mail: [email protected] Venanzio Capretta School of Computer Science, University of Nottingham, United Kingdom e-mail: [email protected] and Dexter Kozen Computer Science Department, Cornell University, Ithaca, New York 14853, USA e-mail: [email protected] ABSTRACT The class of regular languages can be generated from the regular expressions. These regular expressions, however, do not themselves form a regular language, as can be seen using the pumping lemma. On the other hand, the class of enumerable languages can be enumerated by a universal language that is one of its elements. We say that the enumerable languages are reflexive. In this paper we investigate what other classes of the Chomsky Hierarchy are re- flexive in this sense. To make this precise we require that the decoding function is itself specified by a member of the same class. Could it be that the regular languages are reflexive, by using a different collection of codes? It turns out that this is impossi- ble: the collection of regular languages is not reflexive. Similarly the collections of the context-free, context-sensitive, and computable languages are not reflexive. Therefore the class of enumerable languages is the only reflexive one in the Chomsky Hierarchy. In honor of Roel de Vrijer on the occasion of his sixtieth birthday 1. Introduction Let (Σ∗) be a class of languages over an alphabet Σ.
    [Show full text]
  • Noam Chomsky
    Noam Chomsky “If you’re teaching today what you were teaching five years ago, either the field is dead or you are.” Background ▪ Jewish American born to Ukranian and Belarussian immigrants. ▪ Attended a non-competitive elementary school. ▪ Considered dropping out of UPenn and moving to British Palestine. ▪ Life changed when introduced to linguist Zellig Harris. Contributions to Cognitive Science • Deemed the “father of modern linguistics” • One of the founders of Cognitive Science o Linguistics: Syntactic Structures (1957) o Universal Grammar Theory o Generative Grammar Theory o Minimalist Program o Computer Science: Chomsky Hierarchy o Philosophy: Philosophy of Mind; Philosophy of Language o Psychology: Critical of Behaviorism Transformational Grammar – 1955 Syntactic Structures - 1957 ▪ Made him well-known within the ▪ Big Idea: Given the grammar, linguistics community you should be able to construct various expressions in the ▪ Revolutionized the study of natural language with prior language knowledge. ▪ Describes generative grammars – an explicit statement of what the classes of linguistic expressions in a language are and what kind of structures they have. Universal Grammar Theory ▪ Credited with uncovering ▪ Every sentence has a deep structure universal properties of natural that is mapped onto the surface human languages. structure according to rules. ▪ Key ideas: Humans have an ▪ Language similarities: innate neural capacity for – Deep Structure: Pattern in the mind generating a system of rules. – Surface Structure: Spoken utterances – There is a universal grammar that – Rules: Transformations underlies ALL languages Chomsky Hierarchy ▪ Hierarchy of classes of formal grammars ▪ Focuses on structure of classes and relationship between grammars ▪ Typically used in Computer Science and Linguistics Minimalist Program – 1993 ▪ Program NOT theory ▪ Provides conceptual framework to guide development of linguistic theory.
    [Show full text]
  • The Evolution of the Faculty of Language from a Chomskyan Perspective: Bridging Linguistics and Biology
    doi 10.4436/JASS.91011 JASs Invited Reviews e-pub ahead of print Journal of Anthropological Sciences Vol. 91 (2013), pp. 1-48 The evolution of the Faculty of Language from a Chomskyan perspective: bridging linguistics and biology Víctor M. Longa Area of General Linguistics, Faculty of Philology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain e-mail: [email protected] Summary - While language was traditionally considered a purely cultural trait, the advent of Noam Chomsky’s Generative Grammar in the second half of the twentieth century dramatically challenged that view. According to that theory, language is an innate feature, part of the human biological endowment. If language is indeed innate, it had to biologically evolve. This review has two main objectives: firstly, it characterizes from a Chomskyan perspective the evolutionary processes by which language could have come into being. Secondly, it proposes a new method for interpreting the archaeological record that radically differs from the usual types of evidence Paleoanthropology has concentrated on when dealing with language evolution: while archaeological remains have usually been regarded from the view of the behavior they could be associated with, the paper will consider archaeological remains from the view of the computational processes and capabilities at work for their production. This computational approach, illustrated with a computational analysis of prehistoric geometric engravings, will be used to challenge the usual generative thinking on language evolution, based on the high specificity of language. The paper argues that the biological machinery of language is neither specifically linguistic nor specifically human, although language itself can still be considered a species-specific innate trait.
    [Show full text]
  • Complexity of Natural Languages
    Complexity of natural languages Computational complexity: the expressive power of (and the resources needed in order to process) classes of languages Linguistic complexity: what makes individual constructions or sentences more difficult to understand This is the dog, that worried the cat, that killed the rat, that ate the malt, that lay in the house that Jack built. This is the malt that the rat that the cat that the dog worried killed ate. The Chomsky hierarchy of languages A hierarchy of classes of languages, viewed as sets of strings, ordered by their “complexity”. The higher the language is in the hierarchy, the more “complex” it is. In particular, the class of languages in one class properly includes the languages in lower classes. There exists a correspondence between the class of languages and the format of phrase-structure rules necessary for generating all its languages. The more restricted the rules are, the lower in the hierarchy the languages they generate are. The Chomsky hierarchy of languages Recursively enumerable languages Context-sensitive languages Context-free languages Regular languages The Chomsky hierarchy of languages Regular (type-3) languages: Grammar: right-linear or left-linear grammars Rule form: A → α where A ∈ V and α ∈ Σ∗ · V ∪ {}. Computational device: finite-state automata The Chomsky hierarchy of languages Context-free (type-2) languages: Grammar: context-free grammars Rule form: A → α where A ∈ V and α ∈ (V ∪ Σ)∗ Computational device: push-down automata The Chomsky hierarchy of languages Context-sensitive
    [Show full text]
  • Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems Gheorghe P˘aun(A,B) Mario J. P´erez-Jim´enez(B,C) Takashi Yokomori(D) (A)Institute of Mathematics of the Romanian Academy PO Box 1-764 – 014700 Bucharest – Romania [email protected], [email protected] (B)Department of Computer Science and Artificial Intelligence Univ. of Sevilla – Avda Reina Mercedes s/n – 41012 Sevilla – Spain [email protected] (D)Department of Mathematics Faculty of Education and Integrated Arts and Sciences Waseda University – 1-6-1 Nishiwaseda – Shinjyuku-ku Tokyo 169-8050 – Japan [email protected] Abstract. Insertion-deletion operations are much investigated in lin- guistics and in DNA computing and several characterizations of Turing computability were obtained in this framework. In this note we contribute to this research direction with a new characterization of this type, as well as with representations of regular and context-free languages, mainly starting from context-free insertion systems of as small as possible complexity. For instance, each recur- sively enumerable language L can be represented in a way similar to the celebrated Chomsky-Sch¨utzenberger representation of context-free lan- guages, i.e., in the form L = h(L(γ) ∩ D), where γ is an insertion system of weight (3, 0) (at most three symbols are inserted in a context of length zero), h is a projection, and D is a Dyck language. A similar represen- tation can be obtained for regular languages, involving insertion systems of weight (2,0) and star languages, as well as for context-free languages – this time using insertion systems of weight (3, 0) and star languages.
    [Show full text]
  • Implementation of Unrestricted Grammar in to the Recursively Enumerable Language Using Turing Machine
    The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 3 ||Pages|| 56-59 ||2013|| ISSN: 2319 – 1813 ISBN: 2319 – 1805 Implementation of Unrestricted Grammar in To the Recursively Enumerable Language Using Turing Machine 1,Jainendra Singh, 2, Dr. S.K. Saxena 1,Department of Computer Science, Maharaja Surajmal Institute 2,Department of Computer Engineering, Delhi Technological University -------------------------------------------------------Abstract------------------------------------------------------- This paper presents the implementation of the unrestricted grammar in to recursively enumerable language for JFLAP platform. Automata play a major role in compiler design and parsing. The class of formal languages that work for the most complex problems belongs to the set of Recursively Enumerable Language (REL).RELs are accepted by the type of automata as Turing Machine. Turing Machines are the most powerful computational machines and are the theoretical basis for modern computers. Turing Machine works for all classes of languages including regular language, CFL as well as Recursive Enumerable Languages. Unrestricted grammar are much more powerful than restricted forms like the regular and context free grammars. In facts, unrestricted grammars corresponds to the largest family of languages so we can hope to recognize by mechanical means; that is unrestricted grammars generates exactly the family of recursively enumerable languages. Turing Machine is used to implementation of unrestricted grammar & RELs for JFLAP
    [Show full text]
  • Theory of Computation
    Theory of Computation Todd Gaugler December 14, 2011 2 Contents 1 Mathematical Background 5 1.1 Overview . .5 1.2 Number System . .5 1.3 Functions . .6 1.4 Relations . .6 1.5 Recursive Definitions . .8 1.6 Mathematical Induction . .9 2 Languages and Context-Free Grammars 11 2.1 Languages . 11 2.2 Counting the Rational Numbers . 13 2.3 Grammars . 14 2.4 Regular Grammar . 15 3 Normal Forms and Finite Automata 17 3.1 Review of Grammars . 17 3.2 Normal Forms . 18 3.3 Machines . 20 3.3.1 An NFA λ ..................................... 22 4 Regular Languages 23 4.1 Computation . 24 4.2 The Extended Transition Function . 24 4.3 Algorithms . 26 4.3.1 Removing Non-Determinism . 26 4.3.2 State Minimization . 26 4.3.3 Expression Graph . 26 4.4 The Relationship between a Regular Grammar and the Finite Automaton . 26 4.4.1 Building an NFA corresponding to a Regular Grammar . 27 4.4.2 Closure . 27 4.5 Review for the First Exam . 28 4.6 The Pumping Lemma . 28 5 Pushdown Automata and Context-Free Languages 31 5.1 Pushdown Automata . 31 5.2 Variations on the PDA Theme . 34 5.3 Acceptance of Context-Free Languages . 36 3 CONTENTS CONTENTS 5.4 The Pumping Lemma for Context-Free Languages . 36 5.5 Closure Properties of Context- Free Languages . 37 6 Turing Machines 39 6.1 The Standard Turing Machine . 39 6.2 Turing Machines as Language Acceptors . 40 6.3 Alternative Acceptance Criteria . 41 6.4 Multitrack Machines . 42 6.5 Two-Way Tape Machines .
    [Show full text]