Manufacturing Execution Systems (MES)

Total Page:16

File Type:pdf, Size:1020Kb

Manufacturing Execution Systems (MES) Manufacturing Execution Systems (MES) Industry specific Requirements and Solutions ZVEI - German Electrical and Electronic Manufactures‘ Association Automation Division Lyoner Strasse 9 60528 Frankfurt am Main Germany Phone: + 49 (0)69 6302-292 Fax: + 49 (0)69 6302-319 E-mail: [email protected] www.zvei.org ISBN: 978-3-939265-23-8 CONTENTS Introduction and objectives IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII5 1. Market requirements and reasons for using MES IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII6 2. MES and normative standards (VDI 5600 / IEC 62264) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII8 3. Classification of the process model according to IEC 62264 IIIIIIIIIIIIIIIIIIIIIIIIII 12 3.1 Resource Management IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII13 3.2 Definition Management IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII14 3.3 Detailed Scheduling IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII14 3.4 Dispatching IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII15 3.5 Execution Management IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII15 3.6 Data Collection IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII16 IMPRINT 3.7 Tracking IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII16 3.8 Analysis IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII17 Manufacturing Execution Systems (MES) 4. Typical MES modules and related terms IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII18 Industry specific Requirements and Solutions 4.1 Overview IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII18 4.2 Short description of typical MES modules and MES-related terms IIIIIIIIIIIIIIIIIIIIII20 Publisher: ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e.V. 5. Deployment, purpose, and environment of MES modules based on (German Electrical and Electronic Manufactures‘ Association) typical application examples IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 26 Automation Division 5.1 Production of active pharmaceutical ingredients IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII26 5.2 Food and beverages - brewing industry IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII30 Contact: 5.3 Refineries and petrochemical industry IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII36 Carolin Theobald 5.4 Chemicals / specialty chemicals IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII40 Lyoner Strasse 9 60528 Frankfurt am Main 5.5 Serial production (automotive industry and suppliers) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII48 Germany 5.6 Machine / plant construction (made-to-order construction) IIIIIIIIIIIIIIIIIIIIIIIIIIII54 Phone: +49 (0)69 6302-429 5.7 Paper / Metal IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII58 Fax: +49 (0)69 6302-319 E-mail: [email protected] 6. Essential similarities and differences between MES applications in the process www.zvei.org and manufacturing industries IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 62 6.1 Similarities IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII62 Design: 6.2 Differences IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII64 NEEDCOM GmbH www.needcom.de 7. Practical advice for approaching MES projects IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 65 8. Added value and benefits IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 70 Printing: Berthold Druck GmbH 8.1 Biopharma case study: comprehensive plant automation – ERP-MES-DCS IIIIIIIIIIIIIII72 www.berthold-gmbh.de 8.2 Food and beverage case study: energy data acquisition as decision support for investments IIIIIIIIIIIIIIIIIIIIIIIIIII73 ISBN: 978-3-939265-23-8 8.3 Refinery case study: long term planning and scheduling IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII74 8.4 Automotive industry case study: order management for powertrain assembly IIIIIIIIIII76 Frankfurt, July 2011 8.5 Single-part manufacturing case study: MES from engineering to transportation logistics 78 8.6 Paper industry case study: production efficiency improvements IIIIIIIIIIIIIIIIIIIIIIII81 © ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e. V. 9. Summary and outlook IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 83 Despite careful control, ZVEI does not assume any liability for the content. Literature IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 85 List of Figures IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 85 List of Tables IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 86 INTRODUCTION AND OBJECTIVES Introduction and objectives This brochure was created by the ZVEI Working Group „Manufacturing Execution Systems“, in the Numerous company or industry-specific software solutions and products have been developed to manage Automation Division, assisted by the following: administration and organization of manufacturing processes. Although they are generally presented as MES (Manufacturing Execution System), the scope of these solutions ranges from „My Excel Sheet” to comprehensive management, organization, and automated processing of all production-related processes. Dr. Marcus Adams [email protected] This brochure is not another attempt to define the term Manufacturing Execution System. Rather, in issuing this brochure, the objective of the ZVEI Working Group „MES” is to provide the interested reader and the professional audience with an overview of currently existing or feasible solutions which fulfill differing industry-specific requirements. The objective of this brochure is to promote the utiliza- Dr. Thomas Bangemann [email protected] tion of suitable MES applications for optimized production. The working group has used the „Enterprise-Control Systems Integration – IEC 62264” set of standards as a basis for product and vendor independent presentation of the functionality. Chapters 1 through 3 Herbert Fittler [email protected] provide a short introduction to this standard which is also known as S95. Currently, different terminol- ogy for the same MES terms and tasks is used across industries and even among vendors. Therefore, Chapter 4 classifies the most important terms based on the S95 structure and terminology, providing Christian Friedl [email protected] guidance through the multitude of different terms and products. Based on industry-typical requirements, chapter 5 presents the opportunities and benefits of MES func- tions. Chapter 6 explains the essential similarities and differences of MES applications in the process Dr. Iiro Harjunkoski [email protected] and manufacturing industry. Chapters 7 and 8 provide an outline of the requirement definition and the selection of MES functions, and present their benefits based on specific examples. Chapter 9 summa- rizes this brochure and presents an outlook on future MES solutions. Gottfried Hochfellner [email protected] As presented in chapter 5, already today, comprehensive industry-specific solutions are available, which address the respective requirements by their scalability, modularity, and integration capability. These solutions can contribute significantly to improving the operational excellence of an enterprise. Erdal Kara [email protected] The industrial operators are challenged to maximize this opportunity. Dr. Jürgen Löffler [email protected] Andreas Meyer-Weidlich [email protected] Carolin Theobald [email protected] Max Weinmann [email protected] Dr. Markus Winzenick [email protected] Prof. Martin Wollschlaeger [email protected] Martin Zeller [email protected] 4 5 1 MARKET REQUIREMENTS AND REASONS FOR USING MES 1 MARKET REQUIREMENTS AND REASONS FOR USING MES 1 Market requirements and reasons for using MES The real-time capability of MES spans multiple interdisciplinary requirements (such as order planning and control, material management, PDA, MDC, quality management, and document management) and provides a direct connection with the production process. Furthermore, integration of the extended supply chain and global procurement as well as the regional In order to evaluate the state of the art and the development of MES solutions, the place of MES in the corporate sales presence in developing markets is required. history of automation must be considered. Today’s MES solutions include former CIM components such as CAP (Computer Aided Planning), CAM (Computer Aided Manufacturing), CAQ (Computer Aided MES is not only the operational link between „production” and „enterprise” but also links all partners Quality Assurance), PDA (Production Data Acquisition), MDA (Machine Data Acquisition), and PTR / T&A within the supply chain. This enables a continuous, holistic, and manageable value stream. (Personnel Time Recording, Time & Attendance). On this basis, MES is emerging as a strategic element for flexible and integrated production. A MES However, these CIM components were not thoroughly integrated into the corporate processes. Instead, combines all tasks of modern production management in a comprehensive software system for today. they were mostly used as single purpose applications on department level. Due to increasing corporate At the same time, this system is the operational platform for any enterprise evolving towards the „digi- CAP integration as well as better understanding of internal and external
Recommended publications
  • Lean Manufacturing in a High Containment Environment
    IPT 32 2009 11/3/10 15:48 Page 74 Manufacturing Lean Manufacturing in a High Containment Environment By Georg Bernhard A case study of how Pfizer’s Right First Time strategy helped overcome at Pfizer Global daunting capacity challenges at its new large-scale containment facility Manufacturing at Illertissen, Germany, while Six Sigma and Lean strategies enabled the site to achieve previously unknown levels of efficiency. In late 2006, Pfizer launched its smoking cessation film-coated tablets. All of the process stages (granulation, product varenicline, known as Chantix® in the US tableting and coating) are controlled and monitored from and Champix® across Europe. According to IMS a separate control room so that employees do not come benchmarks, Champix® was the fastest product launch in into contact with dust that might be generated during the the European pharmaceutical industry, with marketing tablet production run. Transport is handled by automated, in 16 European countries in a five-month period. As well and entirely robotic, laser-guided vehicles. Operators as creating rapid and unprecedented consumer demand, monitor and control all containment room activities from the product launch also brought capacity challenges for a separate control room. Pfizer Inc’s small-scale IllertissenCONtainment (ICON) facility in Illertissen, Germany. The facility’s innovative IT systems integration enabled an extraordinary 85 per cent level of automation (LoA), A strategic site in Pfizer’s global manufacturing network, outstripping even the ICON facility’s extremely high 76 per Illertissen is focused on oral solid dosage forms and is a cent LoA. Thus, in NEWCON, all process sequences centre of excellence in containment production.
    [Show full text]
  • Automationml 2.0 (CAEX 2.15)
    Application Recommendation Provisioning for MES and ERP – Support for IEC 62264 and B2MML Release Date: November 7, 2018 ID: AR-MES-ERP Version: 1.1.0 Compatibility: AutomationML 2.0 (CAEX 2.15) Provisioning for MES and ERP Author: Bernhard Wally [email protected] Business Informatics Group, CDL-MINT, TU Wien AR-MES-ERP 1.1.0 2 Provisioning for MES and ERP Table of Content Table of Content .............................................................................................................................................. 3 List of Figures .................................................................................................................................................. 6 List of Tables .................................................................................................................................................... 7 List of Code Listings ..................................................................................................................................... 11 Provided Libraries .................................................................................................................. 12 I.1 Role Class Libraries ............................................................................................................................ 12 I.2 Interface Class Libraries ..................................................................................................................... 12 Referenced Libraries .............................................................................................................
    [Show full text]
  • Standards Action Layout SAV3533.Fp5
    PUBLISHED WEEKLY BY THE AMERICAN NATIONAL STANDARDS INSTITUTE 25 West 43rd Street, NY, NY 10036 VOL. 35, #33 August 13, 2004 Contents American National Standards Call for Comment on Standards Proposals ................................................ 2 Call for Comment Contact Information ....................................................... 6 Final Actions.................................................................................................. 8 Project Initiation Notification System (PINS).............................................. 10 International Standards ISO and IEC Newly Published Standards.................................................... 14 CEN/CENELEC ................................................................................................ 16 Registration of Organization Names in the U.S............................................ 19 Proposed Foreign Government Regulations................................................ 19 Information Concerning ................................................................................. 20 Standards Action is now available via the World Wide Web For your convenience Standards Action can now be down- loaded from the following web address: http://www.ansi.org/news_publications/periodicals/standards _action/standards_action.aspx?menuid=7 American National Standards Call for comment on proposals listed This section solicits public comments on proposed draft new American National Standards, including the national adoption of Ordering Instructions for "Call-for-Comment"
    [Show full text]
  • List of Published Standards
    Report Date : 2021-09-17 Cost Centre(s) : % LIST OF PUBLISHED STANDARDS Page No : 1 Of 3 Total Count: 41 Committee SANS Date Latest Reaffirmation Review/ Number Number Int Ed Ed Sansified Title Approved Amendment due Revision SABS/TC 165 SANS 60654-1:2017/IEC 60654-1:1993 2 1 Y Industrial-process measurement and control 2017-06-23 2022-06-23 equipment - operating conditions - Part 1: Climatic conditions SANS 61131-1:2017/IEC 61131-1:2003 2 Y Programmable controllers Part 1: General 2017-10-13 2022-10-13 information SANS 61131-2:2018/IEC 61131-2:2007 2 Y Programmable controllers Part 2: Equipment 2018-12-07 2023-12-07 requirements and tests SANS 61131-3:2018/IEC 61131-3:2013 2 Y Programmable controllers Part 3: 2018-07-20 2023-07-20 Programming languages SATR 61131-4:2017/IEC TR 61131-4:2004 1 Y Programmable controllers Part 4: User 2017-12-15 2022-12-15 guidelines SANS 61131-5:2018/IEC 61131-5:2000 1 Y Programmable controllers - Part 5: 2018-02-23 2023-02-23 Communications SANS 61131-6:2018/IEC 61131-6:2012 1 Y Programmable controllers - Part 6: Functional 2018-05-25 2023-05-25 safety SANS 61131-7:2018/IEC 61131-7:2000 1 Y Programmable controllers - Part 7:Fuzzy 2018-02-23 2023-02-23 control programming SATR 61131-8:2019/IEC TR 61131-8:2003 1 Y Programmable controllers - Part 8: Guidelines 2019-11-22 2024-11-22 for the application and implementation of programming languages SANS 61131-9:2020/IEC 61131-9:2013 1 Y Programmable controllers - Part 9: Single- 2020-05-29 2025-05-29 drop digital communication interface for small sensors and actuators (SDCI) SANS 61158-3-2:2021/IEC 61158-3-2:2019 2.1 1 Y Industrial communication networks - Fieldbus 2021-07-16 1 I A 2021-07-16 2026-07-16 specifications - Part 3-2: Data-link layer service definition - Type 2 elements.
    [Show full text]
  • Implementation of Lean Six Sigma Methodology on a Wine Bottling Line
    MASTER THESIS The implementation of Lean Six Sigma methodology in the wine sector: an analysis of a wine bottling line in Trentino Master Thesis in Industrial Engineering by Sergio De Gracia Directed by Prof. Roberta Raffaelli Academic Year 2013-2014 Table of Contents Abstract ......................................................................................................................................... 9 Acknowledgements ..................................................................................................................... 10 Introduction ................................................................................................................................ 11 Lean Manufacturing .................................................................................................................... 14 1. Lean Manufacturing ................................................................................................................ 14 1.1. TPS in Lean Manufacturing.......................................................................................... 15 1.2. Types of waste and value added ................................................................................. 16 1.2.1. Value Stream Mapping (VSM) ................................................................................... 18 1.3. Continual Improvement process and KAIZEN ............................................................. 19 1.4. Lean Thinking .............................................................................................................
    [Show full text]
  • JANNE HARJU PLANT INFORMATION MODELS for OPC UA: CASE COPPER REFINERY Master of Science Thesis
    JANNE HARJU PLANT INFORMATION MODELS FOR OPC UA: CASE COPPER REFINERY Master of Science Thesis Examiner: Hannu Koivisto Examiner and topic approved in the Council meeting of Depart of Auto- mation Science and Engineering on 5.11.2014 i i TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Automaatiotekniikan koulutusohjelma HARJU, JANNE: PLANT INFORMATION MODELS FOR OPC UA: CASE COPPER REFINERY Diplomityö, 59 sivua Tammikuu 2015 Pääaine: Automaatio- ja informaatioverkot Tarkastaja: Professori Hannu Koivisto Avainsanat: OPC, UA, ISA-95, CAEX, mallinnus, ADI Isojen laitosten informaation rakenne on usein hankala ihmisen hahmottaa silloin, kun kaikki tieto on yhdessä listassa. Jotta laitoksen informaatiosta saadaan parempi koko- naiskuva, tarvitsee se mallintaa jollakin tekniikalla. Kun laitoksen mallintaa hierarkki- sesti, pystyy sen rakenteen hahmottamaan helpommin. Lisäksi, kun malliin saadaan tuotua mittaussignaaleja ja muuta mittauksiin ja muihin arvoihin liittyvää dataa, saadaan se tehokkaaseen käyttöön. Nykyään paljon käytetty klassinen OPC tuo datan käytettäväksi ylemmille lai- toksen tasoille. OPC tuo mittaukset pelkkänä listana, eikä se tuo mittausten välille mi- tään metatietoa. Tässä työssä on tarkoitus tutkia, miten mallintaa esimerkki laitokset käyttäen klassisen OPC:n seuraajaa OPC UA:ta. Työn tavoitteena on tutkia eri OPC UA:n mallinnustyökaluja, menetelmiä ja itse mallinnusta. Työssä tutustutaan OPC UA:n lisäksi ISA-95:n ja sen OPC UA- malliin ja miten tätä mallia pystyy käyttämään oikean laitoksen mallinnuksessa hyödyksi. ISA-95 lisäksi tutustutaan toiseen malliin nimeltä CAEX. CAEX on alun perin suunniteltu suunnitteludatan tallentamiseen stan- dardoidulla tavalla. CAEX:sta on olemassa myös tutkimuksia OPC UA:n kanssa käytet- täväksi ja tässä työssä tutustutaan, onko mallinnettavien tehtaiden kanssa mahdollista käyttää CAEX:ia hyödyksi. Virallista OPC UA CAEX- mallia ei ole vielä tosin julkais- tu.
    [Show full text]
  • Total Quality Management Course Code: POM-324 Author: Dr
    Subject: Total Quality Management Course Code: POM-324 Author: Dr. Vijender Pal Saini Lesson No.: 1 Vetter: Dr. Sanjay Tiwari Concepts of Quality, Total Quality and Total Quality Management Structure 1.0 Objectives 1.1 Introduction 1.2 Concept of Quality 1.3 Dimensions of Quality 1.4 Application / Usage of Quality for General Public / Consumers 1.5 Application of Quality for Producers or Manufacturers 1.6 Factors affecting Quality 1.7 Quality Management 1.8 Total Quality Management 1.9 Characteristics / Nature of TQM 1.10 The TQM Practices Followed by Multinational Companies 1.11 Summary 1.12 Keywords 1.13 Self Assessment Questions 1.14 References / Suggested Readings 1 1.0 Objectives After going through this lesson, you will be able to: Understand the concept of Quality in day-to-day life and business. Differentiate between Quality and Quality Management Elaborate the concept of Total Quality Management 1.1 Introduction Quality is a buzz word in our lives. When the customer is in market, he or she is knowingly or unknowingly very cautious about the quality of product or service. Imagine the last buying of any product or service, e.g., mobile purchased last time. You must have enquired about various features like RAM, Operating System, Processor, Size, Body Colour, Cover, etc. If any of the features is not available, you might have suddenly changed the brand or have decided not to purchase it. Remember, how our mothers buy fruits, vegetables or grocery items. They are buying fresh and look-wise firm fruits, vegetable and groceries. Simultaneously, they are very conscious about the price of the fruits, vegetable and groceries.
    [Show full text]
  • Centurio.Work - Modular Secure Manufacturing Orchestration
    centurio.work - Modular Secure Manufacturing Orchestration Florian Pauker, Juergen Mangler, Stefanie Rinderle-Ma, Christoph Pollak Austrian Comptetence Center for Digital Production, Vienna, Austria, fjuergen.mangler, florian.pauker, [email protected] University of Vienna, Faculty of Computer Science, Research Group Workflow Systems and Technology, Vienna, Austria, [email protected] Abstract. Organisational and technical processes of manufacturing com- panies are becoming more and more complex while the pressure for flex- ibility increases. The biggest challenge here is still the integration of dif- ferent systems in a coherent transparent way. In order to further vertical integration in the automation pyramid, this paper presents a solution based on use BPM technology, more specifically process modelling and execution based on BPMN to integrate shopfloor with top level planning. Our full-stack solution is currently in active development with our cus- tomers. One main advantage is that through coherent usage of BPMN processes from top to bottom, all monitored data during execution can always be stored in the right context, which saves a lot of effort compared to the state of the art in manufacturing systems. 1 Introduction In today's global competition, manufacturing companies must adapt their tech- nical processes and resources to constantly changing conditions. Additionally the demand to smaller lot size is increasing and so higher flexibility is needed. In this high mix low volume environment, the use of digital tools is becoming increasingly important. Data management in the factory relies on information flows that access different systems. The problem in many manufacturing com- panies is that most software tools are hard-coded stand-alone solutions with no or proprietary software interfaces.
    [Show full text]
  • IEC 62264-4 ® Edition 1.0 2015-12 INTERNATIONAL STANDARD NORME
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-8018009 IEC 62264-4 ® Edition 1.0 2015-12 INTERNATIONAL STANDARD NORME INTERNATIONALE colour inside Enterprise-control system integration – Part 4: Object model attributes for manufacturing operations management integration Intégration des systèmes entreprise-contrôle – Partie 4: Attributs des modèles d'objets pour l'intégration de la gestion des opérations de fabrication ) fr - en ( 12 - 5 :201 4 - 62264 IEC Copyright © IEC, 2015, Geneva, Switzerland. All rights reserved. Sold by SIS under license from IEC and SEK. No part of this document may be copied, reproduced or distributed in any form without the prior written consent of the IEC. This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-8018009 THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur.
    [Show full text]
  • Kpis As the Interface Between Scheduling and Control
    Preprint, 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems June 6-8, 2016. NTNU, Trondheim, Norway KPIs as the interface between scheduling and control Margret Bauer1, Matthieu Lucke2,3, Charlotta Johnsson3, Iiro Harjunkoski2, Jan C. Schlake2 1University of the Witwatersrand, Johannesburg 2050, South Africa (email: [email protected]) 2ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany (email:[email protected]) 3Department of Automatic Control, Lund University, 22100 Lund, Sweden (email [email protected]) Abstract: The integration of scheduling and control has been discussed in the past. While constructing an integrated plant model that may still seem out of reach, scheduling and control systems are increasingly more intertwined. We argue that they are in fact already integrated and give the example of two key performance indicators (KPIs) that are defined in the recent international standard ISO 22400. The focus of this study is on KPIs that consider both planned times and actual times. An amino acid production plant is used in the study, and the production is described from both the scheduling and the control perspective. To illustrate the integration, a schedule is computed containing the planned production times. Resulting measurements from the control system are analyzed for their actual production times using a proposed procedure that detects the start and end time of batches. Using KPIs as the interface between scheduling and control can be used as a strategy for maximizing the plant performance. The study focuses on the process industry. Keywords: Integration between scheduling and control, key performance indicator, distributed control system, planning and scheduling, batch process.
    [Show full text]
  • News for Factory Automation 2/2015 | Technologien + Produkte Xim Fokusx
    Blueprint for Industry 4.0 A clear path to the digitally networked future of industry and production systems is provided by the reference architecture model. Hygienic and Innovative News for The UMB800 ultrasonic sensor series with a stainless steel design meets the needs for applications with hygienic requirements. Factory The Fourth Industrial Revolution Automation Is Driving the World Forward Industry of the future is not just an important topic for companies but also for entire nations – from Asia to Europe and America. 2/2015 News for Factory Automation 2/2015 | Technologien + Produkte xIm Fokusx Life Cycle & Value Stream IEC 62890 Layers Hierarchy Levels Business IEC 62264 // IEC 6151204 Functional Information Communication Integration Asset Connected World Enterprise Work Units Station Development Control Device Maintenance/ Field Device usage Product Type Production Maintenance/ 11 usage Instance Dear Reader, Developing different points of view and forging new paths to continuous communication – these are the challenges we face in the fourth industrial revolution. Taking full advantage of the wealth of information provided by the Internet of Things calls for a broader point of view. Imagine a camera or a mobile device helping you find the reason for an error in your processing 14 plant – or if you could easily get additional computer-generated information about a complex topic. Augmented reality (AR) makes possible new forms of collaboration between human beings and machines. With AR, normally inaccessible areas within a machine, such as a robot cell, are being made accessible so that all of the information about a machine can be displayed. This virtual content is inte- 05 grated into a real-world view, and as a new interface, it provides more efficient communication inside the smart factory.
    [Show full text]
  • Business Plan
    CENELEC/TC 65X/R BUSINESS PLAN CENELEC/TC or SC Secretariat Date TC 65X Germany 2019-03-04 Please ensure this form is annexed to the TC Report to the CENELEC Technical Board if it has been prepared during a meeting, or sent to CCMC promptly after its contents have been agreed by the Committee by correspondence. TC or SC title: Industrial-process measurement, control and automation A Background CLC/TC 65X is the successor of CLC/TC65CX which was founded in 1993. When starting work in 1993 TC 65CX generated a policy statement as basis for its work. The policy statement read: Policy Statement of TC 65CX 1. To take into account and to recognize all work in fieldbus standardization in IEC, to apply the IEC/CENELEC cooperation agreement. 2. To integrate the IEC standard when available (IEC 1158, part 1, 2, ...) according to a time schedule depending on proven technical capabilities. 3. To integrate exisiting standards originated in Europe and fulfilling the scope of IEC SC65C WG6. Focus of the initial work was to establish European Standards for Industrial Fieldbus communication based on R&D work in Europe. First result of TC 65CX activities were EN 50170 and EN 50254. With increasing activities on IEC level (IEC SC 65C) for Industrial Fieldbus communication standardization work was moved to IEC-level. TC 65CX acted as the European mirror committee to IEC SC65C. Following the restructuring of IEC TC65 which included moving several working groups from SC65C to SC65E and TC65, it was necessary to adapt the scope accordingly. Since 2011 the scope of TC 65CX was extended and the name was changed into TC 65X.
    [Show full text]