Advances in quantum machine learning J. C. Adcock, E. Allen, M. Day*, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. B. Price, S. Stanisic December 10, 2015 Quantum Engineering Centre for Doctoral Training, University of Bristol, UK *Corresponding author:
[email protected] arXiv:1512.02900v1 [quant-ph] 9 Dec 2015 \We can only see a short distance ahead, but we can see plenty there that needs to be done." Alan Turing \Computing machinery and intelligence." Mind (1950): 433-460. \The question of whether machines can think... is about as relevant as the question of whether submarines can swim." Edsger W. Dijkstra \The threats to computing science." (1984). Preface Created by the students of the Quantum Engineering Centre for Doctoral Training, this document summarises the output of the `Cohort Project' postgraduate unit. The unit's aim is to get all first year students to investigate an area of quantum technologies, with a scope broader than typical research projects. The area of choice for the 2014/15 academic year was quantum machine learning. The following document offers a hybrid discussion, both reviewing the current field and suggest- ing directions for further research. It is structured such that Sections 1.1 and 1.2 briefly introduce classical machine learning and highlight useful concepts also relevant to quantum machine learning. Sections2 and3 then examine previous research in quantum machine learning algorithms and im- plementations, addressing algorithms' underlying principles and problems. Section4 subsequently outlines challenges specifically facing quantum machine learning (as opposed to quantum computa- tion in general). Section5 concludes by identifying areas for future research and particular problems to be overcome.