Dissecting Robotics — Historical Overview and Future Perspectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control Applied to Nanomedicine
IEEE Transactions on Nanotechnology, Vol. 2, no. 2, June 2003 82 Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control applied to Nanomedicine Adriano Cavalcanti, Member, IEEE Germany only the Federal Ministry of Education and Research Abstract—The author presents a new approach within has announced 50 million Euros to be invested in the years advanced graphics simulations for the problem of nano-assembly 2002-2006 in research and development on nanotechnology automation and its application for medicine. The problem under [21]. More specifically the firm DisplaySearch predicts rapid study concentrates its main focus on nanorobot control design for assembly manipulation and the use of evolutionary competitive market growth from US$ 84 million today to $ 1.6 Billion in agents as a suitable way to warranty the robustness on the 2007 [20]. A first series of commercially nanoproducts has proposed model. Thereby the presented paper summarizes as well been announced also as foreseeable for 2007, and to reach this distinct aspects of some techniques required to achieve a goal of build organic electronics, firms are forming successful nano-planning system design and its simulation collaborations and alliances that bring together new visualization in real time. nanoproducts through the joint effort from companies such as IBM, Motorola, Philips Electronics, PARC, Xerox, Hewlett Index Terms—Biomedical computing, control systems, genetic algorithms, mobile robots, nanotechnology, virtual reality. Packard, Dow Chemical, Bell Laboratories, Intel Corp., just to quote a few ones [13], [20]. Building patterns and manipulating atoms with the use of I.INTRODUCTION Scanning Probe Microscope (SPM) such as Atomic Force he presented paper describe the design and simulation of Microscopy and Scanning Tunneling Microscopy has been Ta mobile nanorobot in atomic scales to perform used with satisfactory success as a promising approach for the biomolecular assembly manipulation for nanomedicine [12]. -
Artificial Intelligence, Automation, and Work
Artificial Intelligence, Automation, and Work The Economics of Artifi cial Intelligence National Bureau of Economic Research Conference Report The Economics of Artifi cial Intelligence: An Agenda Edited by Ajay Agrawal, Joshua Gans, and Avi Goldfarb The University of Chicago Press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2019 by the National Bureau of Economic Research, Inc. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations in critical articles and reviews. For more information, contact the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637. Published 2019 Printed in the United States of America 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 ISBN-13: 978-0-226-61333-8 (cloth) ISBN-13: 978-0-226-61347-5 (e-book) DOI: https:// doi .org / 10 .7208 / chicago / 9780226613475 .001 .0001 Library of Congress Cataloging-in-Publication Data Names: Agrawal, Ajay, editor. | Gans, Joshua, 1968– editor. | Goldfarb, Avi, editor. Title: The economics of artifi cial intelligence : an agenda / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, editors. Other titles: National Bureau of Economic Research conference report. Description: Chicago ; London : The University of Chicago Press, 2019. | Series: National Bureau of Economic Research conference report | Includes bibliographical references and index. Identifi ers: LCCN 2018037552 | ISBN 9780226613338 (cloth : alk. paper) | ISBN 9780226613475 (ebook) Subjects: LCSH: Artifi cial intelligence—Economic aspects. Classifi cation: LCC TA347.A78 E365 2019 | DDC 338.4/ 70063—dc23 LC record available at https:// lccn .loc .gov / 2018037552 ♾ This paper meets the requirements of ANSI/ NISO Z39.48-1992 (Permanence of Paper). -
China's Space Robotic Arm Programs
SITC Bulletin Analysis October 2013 China’s Space Robotic Arm Programs Kevin POLLPETER Deputy Director, Study of Innovation and Technology in China Project UC Institute on Global Conflict and Cooperation On July 20, 2013, China launched three satellites on a Long March 4C launch vehicle, ostensibly to test space debris observation and space robotic arm technologies. The three satellites, Chuangxin-3, Shiyan-7, and Shijian-15, drew the attention of satellite tracking enthusiasts when two of them began conducting orbital maneuvers with each other and an additional satellite that had been launched in 2005. The maneuvers began on August 1 and involved one satellite acting as the target and another satellite, most likely equipped with a robotic arm, grappling the target satellite. Exactly which two of the three satellites were involved in the maneuvers is unknown. Based on data from the U.S. Strategic Command’s Space-Track.org website, however, the largest satellite of the three, possibly the Shijian-15, fired its thrusters to move to the smallest of the three satel- lites, possibly the Chuangxin-3, which remained in a set orbit.1 The third satellite, possibly the Shiyan-7, does not appear to be involved in the test. These maneuvers continued until August 17 and resulted in the largest satellite closing in on and then away from the smallest satellite. On August 18, the largest satellite changed orbits and closed in on a completely separate satellite, the Shijian-7, that had been launched in 2005. These maneuvers have caused concern that the tests go beyond the stated objectives and are actually a cover for testing on-orbit anti-satellite (ASAT) technologies. -
Detecting Automation of Twitter Accounts: Are You a Human, Bot, Or Cyborg?
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. X, XXXXXXX 2012 1 Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? Zi Chu, Steven Gianvecchio, Haining Wang, Senior Member, IEEE, and Sushil Jajodia, Senior Member, IEEE Abstract—Twitter is a new web application playing dual roles of online social networking and microblogging. Users communicate with each other by publishing text-based posts. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots, which appear to be a double-edged sword to Twitter. Legitimate bots generate a large amount of benign tweets delivering news and updating feeds, while malicious bots spread spam or malicious contents. More interestingly, in the middle between human and bot, there has emerged cyborg referred to either bot-assisted human or human-assisted bot. To assist human users in identifying who they are interacting with, this paper focuses on the classification of human, bot, and cyborg accounts on Twitter. We first conduct a set of large-scale measurements with a collection of over 500,000 accounts. We observe the difference among human, bot, and cyborg in terms of tweeting behavior, tweet content, and account properties. Based on the measurement results, we propose a classification system that includes the following four parts: 1) an entropy-based component, 2) a spam detection component, 3) an account properties component, and 4) a decision maker. It uses the combination of features extracted from an unknown user to determine the likelihood of being a human, bot, or cyborg. Our experimental evaluation demonstrates the efficacy of the proposed classification system. -
2.1: What Is Robotics? a Robot Is a Programmable Mechanical Device
2.1: What is Robotics? A robot is a programmable mechanical device that can perform tasks and interact with its environment, without the aid of human interaction. Robotics is the science and technology behind the design, manufacturing and application of robots. The word robot was coined by the Czech playwright Karel Capek in 1921. He wrote a play called “Rossum's Universal Robots” that was about a slave class of manufactured human-like servants and their struggle for freedom. The Czech word robota loosely means "compulsive servitude.” The word robotics was first used by the famous science fiction writer, Isaac Asimov, in 1941. 2.1: What is Robotics? Basic Components of a Robot The components of a robot are the body/frame, control system, manipulators, and drivetrain. Body/frame: The body or frame can be of any shape and size. Essentially, the body/frame provides the structure of the robot. Most people are comfortable with human-sized and shaped robots that they have seen in movies, but the majority of actual robots look nothing like humans. Typically, robots are designed more for function than appearance. Control System: The control system of a robot is equivalent to the central nervous system of a human. It coordinates and controls all aspects of the robot. Sensors provide feedback based on the robot’s surroundings, which is then sent to the Central Processing Unit (CPU). The CPU filters this information through the robot’s programming and makes decisions based on logic. The same can be done with a variety of inputs or human commands. -
Design and Implementation of Home Automation System
DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI A Project Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfilment of the Requirements for the Degree Master of Science in Computer Science By Irwin Soni 2018 SIGNATURE PAGE PROJECT: DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI AUTHOR: Irwin Soni DATE SUBMITTED: Spring 2018 Computer Science Department Dr. Yu Sun Project Committee Chair Computer Science Dr. Sampath Jayarathna Computer Science ii ACKNOWLEDGEMENT First and foremost, I would like to thank God for blessing me with such amazing people who have been there to support me in all that I have achieved. To my parents, who have filled my life with immense love, happiness and shaping me into the person I have become today. I would like to thank Dr. Yu Sun, my project advisor, for his selfless support and enlightening guidance. Working with Dr. Sun was such a valuable experience of learning computer science and life at the same time. I would also like to thank Dr. Sampath Jayarathna for his review, suggestions and encouragement. I would also like to thank my classmates for their companionship and friendship. iii ABSTRACT Home automation system achieved great popularity in the last decades as it increases the comfort and quality of life. Smartphone applications are used to control and monitor the home appliances using different types of communication techniques. As mobile devices continue to grow in popularity and functionality, the demand for advanced ubiquitous mobile applications in our daily lives also increases. The paper deals with the design and implementation of a flexible and low-cost Home Automation System for various mobile devices that leverages mobile technology to provide essential functionalities to our homes and associated control operations. -
Design and Construction of a Robotic Arm for Industrial Automation
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 05, May - 2017 Design and Construction of a Robotic Arm for Industrial Automation Md. Tasnim Rana*, Anupom Roy Department of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna- Khulna University of Engineering & Technology, Khulna- 9203, BANGLADESH 9203, BANGLADESH Abstract - The main concentration of the work was to make a assembly. In some circumstances, close emulation of the cost efficient autonomous robotic arm in terms of industrial human hand is desired, as in robots designed to conduct bomb automation. It is a type of mechanical arm, usually disarmament and disposal. In case of firefighting or rescue programmable, with similar functions to a human arm; the arm operation where human life is in danger robotic arm can be may be a unit mechanism or may be a part of a more complex used as a rescue device. This can be functioned as required robotic process. The end effector or robotic hand can be designed to perform any desired task such as welding, gripping, and can do works risky for human being. In case of rapid spinning etc., depending on the application. For detective production the time limit for production will be shorten with investigations and bomb disposal it can be used as an essential the use of robotic arm. machine. In industry any kind of work which should be accurate and works continuously, normal programming algorithms and 2. BACKGROUND mechanical function can do the job perfectly .It can sense the co- At first robot was developed by Leo nartho the vence. -
Robots, Automation, and Employment: Where We Are
WORKING PAPER SERIES ROBOTS, AUTOMATION, AND EMPLOYMENT: WHERE WE ARE Lukas Wolters PhD Candidate MIT Political Science [email protected] MIT Work of the Future Working Paper 05-2020 Date: May 26, 2020 400 Main Street, E19-733, Cambridge, MA 02139 Robots, Automation, and Employment: Where We Are∗ Lukas Woltersy May 26, 2020 Introduction “Robots will destroy our jobs – and we’re not ready for it” titled The Guardian in early 2017.1 Headlines like this have become more and more common over the past couple of years, with newspapers and media outlets reporting that “the robots are coming! And they are going to take all our jobs,“2 asserting that “sometime in the next 40 years, robots are going to take your job,”3 and that “robots may steal as many as 800 million jobs in the next 13 years,”4 and proclaiming gloomy headlines such as “automation threatening 25% of jobs in the US,”5 and “robots to replace up to 20 million factory jobs by 2030.”6 While idea that technology can render human labor obsolete is not new, and concerns about technological unemployment go back at least to Keynes (1930; p. 3) who in 1930 wrote about potential unemployment “due to our discovery of means of economizing the use of labor outrunning the pace at which we can find new uses for labor,” the recent proliferation of reports warning about the potential effect of new technologies, particularly advances in machine learning and robotics, on employment stands out in terms of the number of jobs allegedly under threat of replacement by machines and obsolescence. -
Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration Kaushik Phasale1, Praveen Kumar2, Akshay Raut3, Ravi Ranjan Singh4, Amit Nichat5 1,2,3,4Students, 5Assitant Proffesor, Deparatment of Mechanical Engineering, JSPM’s Bhivarabai Sawant Institute of Technology & Research, Wagholi, Pune, Maharasthra, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper deals with the “Design, The use of robots in library is becoming more popular in Manufacturing and Analysis of Robotic Arm with SCARA recent years. The trend seems to continue as long as the Configuration”. In the modern world, robotics has become robotics technology meets diverse and challenging needs in popular, useful and has achieved great successes in several educational purpose. The prototype consists of robotic arm along with grippers capable of moving in the three axes and fields of humanity. Every industrialist cannot afford to an ATMEGA 8 microcontroller. Software such as AVR Studio transform his unit from manual to semi-automatic or fully is used for programming, PROTESUS is used for simulation automatic as automation is not that cheap in India. The basic and PROGISP is used for dumping the program. RFID is used objective of this project is to develop a versatile and low cost for identifying the books and it has two IR Sensors for robotic arm which can be utilized for Pick and Place detecting the path. This robot is about 4 kg in weight and it is operation. Here controlling of the robot has been done by capable of picking and placing a book of weight one kg.s. -
Computer Vision Based Robotic Arm Controlled Using Interactive GUI
Intelligent Automation & Soft Computing Tech Science Press DOI:10.32604/iasc.2021.015482 Article Computer Vision Based Robotic Arm Controlled Using Interactive GUI Muhatasim Intisar1, Mohammad Monirujjaman Khan1,*, Mohammad Rezaul Islam1 and Mehedi Masud2 1Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka-1229, Bangladesh 2Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia ÃCorresponding Author: Mohammad Monirujjaman Khan. Email: [email protected] Received: 24 November 2020; Accepted: 19 December 2020 Abstract: This paper presents the design and implementation of a robotic vision system operated using an interactive Graphical User Interface (GUI) application. As robotics continue to become a more integral part of the industrial complex, there is a need for automated systems that require minimal to no user training to operate. With this motivation in mind, the system is designed so that a beginner user can operate the device with very little instruction. The application allows users to determine their desired object, which will be picked up and placed by a robotic arm into the target location. The application allows users to filter objects based on color, shape, and size. The filtering along the three parameters is done by employing a Hue-Saturation-Value (HSV) mode color detection algorithm, shape detection algorithm, size determining algorithm. Once the target object is identi- fied, a centroid detection algorithm is employed to find the object’s center coor- dinates. An inverse kinematic algorithm is used to ascertain the robotic arm’sjoint positions for picking the object. The arm then goes through a set of preset posi- tions to pick up the object, place the object, and then return the arm to the initial position. -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
A Review of Motion Planning Algorithms for Robotic Arm Systems
This is a repository copy of A Review of Motion Planning Algorithms for Robotic Arm Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168146/ Version: Accepted Version Proceedings Paper: Liu, Shuai and Liu, Pengcheng orcid.org/0000-0003-0677-4421 (Accepted: 2020) A Review of Motion Planning Algorithms for Robotic Arm Systems. In: 8th International Conference on Robot Intelligence Technology and Applications (proceedings). The 8th International Conference on Robot Intelligence Technology and Applications, 11-13 Dec 2020, Cardiff. IEEE , GBR . (In Press) Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Review of Motion Planning Algorithms for Robotic Arm Systems Shuai Liu[0000-0001-6939-494X] and Pengcheng Liu[0000-0003-0677-4421] Department of Computer Science, University of York, York YO10 5GH, United Kingdom [email protected] Abstract. Motion planning plays a vital role in the field of robotics.