Ethanol from Sugar Beets: a Process and Economic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal, Morphological and Cytotoxicity Characterization of Hardwood Lignins Isolated by In-Situ Sodium Hydroxide-Sodium Bisulfate Method
Natural Resources, 2020, 11, 427-438 https://www.scirp.org/journal/nr ISSN Online: 2158-7086 ISSN Print: 2158-706X Thermal, Morphological and Cytotoxicity Characterization of Hardwood Lignins Isolated by In-Situ Sodium Hydroxide-Sodium Bisulfate Method Ahmed Geies1, Mohamed Abdelazim2*, Ahmed Mahmoud Sayed1, Sara Ibrahim2 1Chemistry Department, Faculty of science, Assiut University, Assiut, Egypt 2Chemical and Biotechnological Laboratories, Sugar Industry Technology Research Institute, Assiut University, Assiut, Egypt How to cite this paper: Geies, A., Abdela- Abstract zim, M., Sayed, A.M. and Ibrahim, S. (2020) Thermal, Morphological and Cyto- In the present work, lignin is isolated from three different agro-industrial toxicity Characterization of Hardwood waste, sweet sorghum, rice straw and sugarcane bagasse using in-situ sodium Lignins Isolated by In-Situ Sodium Hy- hydroxide-sodium bisulfate methodology. Characterization was performed droxide-Sodium Bisulfate Method. Natural using fourier transform infrared analysis (FTIR), scan electron microscopy Resources, 11, 427-438. https://doi.org/10.4236/nr.2020.1110025 (SEM), thermo gravimetric analysis (TGA). The SEM micrographs showed sponge-like structure except for sugarcane bagasse lignin reveals rock-like Received: August 29, 2020 structure. The FTIR indicates the presence of hydroxyl, carbonyl and me- Accepted: October 10, 2020 thoxyl groups in the lignin structure. TGA thermograms were relatively same Published: October 13, 2020 and sugarcane bagasse lignin was found the most thermally stable up to Copyright © 2020 by author(s) and 201˚C as compared to both of soda and kraft sugarcane bagasse lignin and its Scientific Research Publishing Inc. maximal temperature degradation rate DTGmax was found at 494˚C while This work is licensed under the Creative 450˚C, 464˚C in addition to thermal stabilities up to 173˚C and 180˚C for Commons Attribution International sweet sorghum and rice straw lignins respectively. -
SUGARCANE BIOENERGY in SOUTHERN AFRICA Economic Potential for Sustainable Scale-Up © IRENA 2019
SUGARCANE BIOENERGY IN SOUTHERN AFRICA Economic potential for sustainable scale-up © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-122-5 Citation: IRENA (2019), Sugarcane bioenergy in southern Africa: Economic potential for sustainable scale-up, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements Thanks to Kuda Ndhlukula, Executive Director of the SADC Centre for Renewable Energy and Energy Efficiency (SACREE), for pointing out key sugar-producing countries in southern Africa. IRENA is grateful for support provided by the São Paulo Research Foundation, FAPESP. IRENA particularly appreciates the valuable contributions and unfailing enthusiasm of Jeffrey Skeer, who sadly passed away during the completion of this report. -
Fungal Deterioration of the Bagasse Storage from the Harvested Sugarcane
Peng et al. Biotechnol Biofuels (2021) 14:152 https://doi.org/10.1186/s13068-021-02004-x Biotechnology for Biofuels RESEARCH Open Access Fungal deterioration of the bagasse storage from the harvested sugarcane Na Peng1†, Ziting Yao1†, Ziting Wang1, Jiangfeng Huang1, Muhammad Tahir Khan2, Baoshan Chen1 and Muqing Zhang1* Abstract Background: Sugarcane is an essential crop for sugar and ethanol production. Immediate processing of sugarcane is necessary after harvested because of rapid sucrose losses and deterioration of stalks. This study was conducted to fll the knowledge gap regarding the exploration of fungal communities in harvested deteriorating sugarcane. Experi- ments were performed on simulating production at 30 °C and 40 °C after 0, 12, and 60 h of sugarcane harvesting and powder-processing. Results: Both pH and sucrose content declined signifcantly within 12 h. Fungal taxa were unraveled using ITS ampli- con sequencing. With the increasing temperature, the diversity of the fungal community decreased over time. The fungal community structure signifcantly changed within 12 h of bagasse storage. Before stored, the dominant genus (species) in bagasse was Wickerhamomyces (W. anomalus). Following storage, Kazachstania (K. humilis) and Saccharo- myces (S. cerevisiae) gradually grew, becoming abundant fungi at 30 °C and 40 °C. The bagasse at diferent tempera- tures had a similar pattern after storage for the same intervals, indicating that the temperature was the primary cause for the variation of core features. Moreover, most of the top fungal genera were signifcantly correlated with environ- mental factors (pH and sucrose of sugarcane, storage time, and temperature). In addition, the impact of dominant fungal species isolated from the deteriorating sugarcane on sucrose content and pH in the stored sugarcane juice was verifed. -
Relationships Among Impurity Components, Sucrose, and Sugarbeet Processing Quality
2 Journal of Sugar Beet Research Vol. 52 Nos. 1 & 2 Relationships Among Impurity Components, Sucrose, and Sugarbeet Processing Quality L. G. Campbell and K.K. Fugate USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58102-2765 Corresponding author: Larry Campbell ([email protected]) DOI: 10.5274/jsbr.52.1.2 ABSTRACT Sodium, potassium, amino-nitrogen, and invert sugar are nat- urally-occurring constituents of the sugarbeet root, referred to as impurities, which impede sucrose extraction during rou- tine factory operations. Three germplasm lines selected for low sodium, potassium, or amino-nitrogen and a line selected for high amino-nitrogen concentration from the same parental population and two lines selected from another source, one for high and the other for low amino-nitrogen concentration, were the basis for examining relationships among the impurity components and between the impurity components and sucrose concentration, sucrose loss to mo- lasses, and sucrose extraction rate. Concentrations of the three impurity components were altered through selection; however, in no case did this result in a consistent significant increase in sucrose concentration or estimates of the propor- tion of the sucrose that would be extracted. Correlation analyses indicated a larger role for sodium than for potas- sium or amino-nitrogen in determining relative sucrose con- centration. Selection for low sodium concentration, however, did not increase the percent extractable sucrose, relative to the parental population. The probability of significant im- provement in the processing quality of elite germplasm by re- ducing the concentration of individual impurity components appears to be low, based upon the populations examined in this study. -
Biotechnology Statement Sugar Beet Derived Granulated, Brown And
Biotechnology statement Sugar beet derived granulated, brown and liquid sugar produced by our partners, Amalgamated Sugar Company LLC, Spreckels Sugar Company, and Southern Minnesota Beet Sugar Cooperative, and marketed by NSM has been extracted from sugar beets grown from seed utilizing Monsanto event H7-1. The pure sugar does not contain genetically modified DNA and or proteins derived from genetically modified DNA. In the National Bioengineered Food Disclosure Standard (December 21, 2018), described in 7 CFR Part 66, the Agricultural Marketing Service (AMS) has affirmed “that foods with undetectable modified genetic material are not bioengineered foods.” Pursuant to 7 CFR Part 66 §66.9 (b)(2) the refining process completely excludes all genetic components. The sugar has been tested and shown to be PCR negative. The sugar is the same as that produced from traditional beet seed. Therefore, no bioengineered food labeling is required. Powdered sugar is produced by fracturing beet or cane sugar crystals to a defined particle size resulting in the various grades (6X,10X,12X, etc.) and adding a small amount (2- 4% by weight) of cornstarch. The cornstarch is added as an anti-caking agent to promote the flowability of the product. Powdered sugar is produced using two grades of cornstarch. Conventional cornstarch may be derived from genetically modified corn, and the powdered sugar could, therefore, be considered genetically modified. Identity preserved (IP) cornstarch is added to cane sugar to produce a non-GMO powdered sugar and is designated as non-GMO. Granulated and liquid cane sugar provided by National Sugar Marketing LLC (NSM) has been produced from sugar cane that has not been genetically modified nor does it contain genetically modified DNA and or proteins. -
1 BCAP Eligible Materials List As of December 21, 2010 the Eligible
BCAP Eligible Materials List as of December 21, 2010 The eligible material list below provides guidance on types of renewable biomass that may qualify for BCAP matching payments. An eligible material on this list does not indicate qualification for matching payment; qualification for matching payment is based generally on “how” and “when” the material is collected or harvested. This list is not intended to be comprehensive. Other energy crops not listed as ineligible may be eligible materials. Please consult your local FSA office for details. In order to qualify for a matching payment, an eligible material must be collected or harvested directly from the land, in accordance with an approved conservation, forest stewardship or equivalent plan, before transport and delivery to the biomass conversion facility, its campus, or affiliated facilities. Eligible materials do not qualify for matching payment if they are “collected or harvested” after transport and delivery to a biomass conversion facility, its campus, or affiliated facilities, by separating from a higher value material in order to be used for heat, power, bio‐based products or advanced biofuels. Eligible materials do not qualify for matching payments if they are determined by FSA to have an existing market in that distinct region. Woody eligible materials collected or harvested directly from the land are eligible for matching payment only if they are collected or harvested (1) as byproducts of preventative treatments that are removed to reduce hazardous fuels; (2) reduce or contain -
The Case for Neonicotinoids in Pelleted Sugar Beet Seeds
International Confederation of European Beet Growers CONFEDERATION INTERNATIONALE INTERNATIONALE VEREINIGUNG DES BETTERAVIERS EUROPEENS EUROPÄISCHER RÜBENANBAUER * * CONFEDERAZIONE INTERNAZIONALE MIĘDZYNARODOWA KONFEDERACJA DEI BIETICOLTORI EUROPEI EUROPEJSKICH PLANTATORÓW BURAKA 111/9 Boulevard Anspachlaan – B-1000 Brussels Tel: +32 2 504 60 90 – Fax: +32 2 504 60 99 www.cibe-europe.eu D.58/2.4.2018 Brussels, 2nd April 2018 The case for neonicotinoids in pelleted sugar beet seeds Introduction Within the context of the current debate on neonicotinoids, CIBE wishes to explain with the present note that the use of neonicotinoid-treated beet seed pellets is a good agricultural practice in sustainable sugar beet growing. 1. Neonicotinoid seed treatment in sugar beet does not endanger non-target organisms (including pollinators) and the environment Sugar beet is not attractive to pollinators since it does not flower/produce pollen during the growing period used for sugar production. The release of neonicotinoids to the environment via guttation or harvest residues is very low because: sugar beet is a low guttation crop with few and small droplets, and only at high humidity level (>90%); due to this comparative rareness of crop guttation in sugar beet (see illustration below), exposure to neonicotinoids from guttation seems to be unlikely because guttation droplets from sugar beet are unlikely to serve as a preferred source for e.g. water foraging bees; neonicotinoids and their metabolites occur in very low concentrations in the soil after harvest. This low concentration, combined with the fact that practically no flowering plants are found in a beet field during the early stage of crop development (EFSA Peer reviews of the pesticide risk assessment for the active substances imidacloprid & clothianidin, November 2016) and especially after harvest, makes it less likely that non-target organisms in general and pollinators in particular risk being exposed to neonicotinoids (Baker et al 2002). -
Picture Tour: Growing Sugarbeets
1 Picture Tour: Growing Sugarbeets Saginaw Valley Research and Extension Center agbioresearch.msu.edu Images of: Plowing · Planting · Crop emergence · Growth · Fields · Harvest PLOWING Most beet ground is either moldboard or chisel plowed in the fall. Better stands are often achieved if the soil is worked early and seeds are planted into a stale seed bed. Land is tilled in the spring to level the ground and incorporate fertilizer, usually the day before or the day of planting. 2 Sugar beets are typically planted from March 31 to May 15. PLANTING Beets are planted in rowspacings from 15-30". Rows are planted as straight as possible to make it easier to cultivate and harvest. 3 Seed is dropped into the row and pressed firmly into moisture. CROP EMERGENCE Beets generally emerge 1-2 weeks after planting. 4 Leaves emerge in pairs. Beets are most susceptible to injury from frost, wind, disease, herbicides etc. during the first 30 days. 5 GROWTH As beets grow, the leaves develop a waxy coat and the taproot grows downward in search of water and nutrients. During July the root enlarges and stores sugar created by photosynthesis .Sugar beet roots continue to grow until harvest. 6 As beets mature the crown often extends above the surface of the soil. FIELDS Sugar beets will usually fill the rows by the end of June. Beet leaves continue to grow and expand, utilizing all available sunlight. 7 HARVEST Beet leaves are removed prior to harvest with a rotating drum topper. Rubber flails remove leaves and petioles in the topping operation. -
Download PDF (Inglês)
Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 32, No. 01, pp. 23 - 33, January - March, 2015 dx.doi.org/10.1590/0104-6632.20150321s00003146 EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE A. A. Guilherme1*, P. V. F. Dantas1, E. S. Santos1, F. A. N. Fernandes2 and G. R. Macedo1 1Department of Chemical Engineering, Federal University of Rio Grande do Norte, UFRN, Av. Senador Salgado Filho 3.000, Campus Universitário, Lagoa Nova, Bloco 16, Unidade II, 59.078-970, Natal - RN, Brazil. Phone: + (55) 84 3215 3769, Fax: + (55) 84 3215 3770 E-mail: [email protected] 2Department of Chemical Engineering, Federal University of Ceará, UFC, Campus do Pici, Bloco 709, 60455-760, Fortaleza - CE, Brazil. (Submitted: December 2, 2013 ; Revised: March 28, 2014 ; Accepted: March 31, 2014) Abstract - Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to develop relationships between these parameters to understand better and improve this process. The results showed that the alkaline pretreatment, using sodium hydroxide, was able to reduce the amount of lignin in the sugarcane bagasse, leading to a better performance in glucose production after the pretreatment process and enzymatic hydrolysis. -
Erosion Control Products from Sugarcane Bagasse Irina Dinu Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2006 Erosion control products from sugarcane bagasse Irina Dinu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Engineering Commons Recommended Citation Dinu, Irina, "Erosion control products from sugarcane bagasse" (2006). LSU Master's Theses. 126. https://digitalcommons.lsu.edu/gradschool_theses/126 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EROSION CONTROL PRODUCTS FROM SUGARCANE BAGASSE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Engineering Science in The Interdepartmental Program in Engineering Science by Irina Dinu B.S., Alexandru Ioan Cuza University, Iasi, Romania, 2000 December, 2006 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my major professor Dr. Michael Saska for his supervision and guidance throughout this research. Special thanks are expressed to the members of my committee: Dr. Ioan Negulescu, Dr. Peter Rein and Dr. Cristina Sabliov for their advice and support. Also, I would like to extend my thanks to all Audubon Sugar Institute personnel, especially to Lenn Goudeau, Julie King and Michael Robert for the technical support, and to Joy Yoshina for her help and friendship. -
3 Bagasse Caribbean Art and the Debris of the Sugar Plantation
3 Bagasse Caribbean Art and the Debris of the Sugar Plantation Lizabeth Paravisini-Gebert The recent emergence of bagasse—the fibrous mass left after sugarcane is crushed—as an important source of biofuel may seem to those who have experienced the realities of plantation life like the ultimate cosmic irony. Its newly assessed value—one producer of bagasse pellets argues that “sym- bol of what once was waste, now could be farming gold” (“ Harvesting” 2014)—promises to increase sugar producers’ profits while pushing into deeper oblivion the plight of the workers worldwide who continue to pro- duce sugar cane in deplorable conditions and ruined environments. Its newly acquired status as a “renewable” and carbon-neutral source of energy also obscures the damage that cane production continues to inflict on the land and the workers that produce it. The concomitant deforestation, soil erosion and use of poisonous chemical fertilizers and pesticides on land and water continue to degrade the environment of those fated to live and work amid its waste. It obscures, moreover, the role of sugarcane cultivation as the most salient form of power and environmental violence through which empires manifested their hegemony over colonized territories throughout the Caribbean and beyond.1 In the discussion that follows, I explore the legacy of the environmental violence of the sugar plantation through the analysis of the work of a group of contemporary Caribbean artists whose focus is the ruins and debris of the plantation and who often use bagasse as either artistic material or symbol of colonial ruination. I argue—through the analysis of recent work by Ate- lier Morales (Cuba), Hervé Beuze (Martinique), María Magdalena Campos- Pons (Cuba), and Charles Campbell (Jamaica)—that artistic representation in the Caribbean addresses the landscape of the plantation as inseparable from the history of colonialism and empire in the region. -
Proximate, Chemical Compositions and Sensory Properties of Wine Produced from Beetroot (Beta Vulgaris)
Chemical Science Review and Letters ISSN 2278-6783 Research Article Proximate, Chemical Compositions and Sensory Properties of Wine Produced from Beetroot (Beta vulgaris) Ezenwa Mo1*, Eze Ji1 and Okolo Ca2 1Department of Food Science and Technology, University of Nigeria, Nsukka, Nigeria 2Department of Food Science and Technology, Nnamdi Azikiwe University, Awka, Nigeria Abstract Table wine was produced from juice which had been The vitamin and mineral contents of the anaerobic and extracted from washed and peeled beetroot. Fermentation aerobic fermented wine samples were Pro-vitamin A of the juice lasted for 21days at room temperature and (24.16-25.83mg/100mL), Vitamin B1, (0.523- aging for 21days at below 100C. The wine sample 0.433mg/100mL), Vitamin C (1.697- produced under anaerobic and aerobic fermentation was 1.873mg/100mL), Vitamin E (0.315-0.374mg/100mL) coded BN and BA respectively. A commercial table wine and iron content (0.750-0.773mg/100mL), potassium (WBO) was used as reference sample. There were (28.360-29.056 mg/100mL), Magnesium (0.780-0.803 gradual changes in the physicochemical properties of the mg/100mL). The commercial sample was the most must as fermentation (aerobic and anaerobic) and ageing preferred with highest score (7.70) in general lasted. There was reduction in the pH from 4.7 to 3.9, acceptability. The anaerobic fermented wine sample Specific gravity from 1.092 to 1.021, 0Brix from 21.84 to was more preferred with higher score (7.13) in general 6.22 and increase were recorded for alcohol from 0 to 8.4 acceptability.