The Demise of the Gene Stuart A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NSABB June-July 2005 Meeting Agenda
First Meeting of the National Science Advisory Board for Biosecurity June 30 – July 1, 2005 Hyatt Regency Bethesda 7400 Wisconsin Ave. Bethesda, Maryland, 20814 USA Hotel Phone: 301-657-1234 Agenda Webcast: To watch the live webcast of the meeting, click here. The webcast can only be viewed when the meeting is in session at 8:00am-6:00pm on June 30 and at 8:00am-1:30pm on July 1 Eastern Time. You will need RealOne Player to view the webcast. If you do not already have RealOne Player on your computer, download here. Presentation slides: To access the following PowerPoint presentations, click on the presentation titles below. June 30, 2005 Opening Remarks and Swearing in Ceremony Elias Zerhouni, M.D. Director of the National Institutes of Health (NIH) Chair's Remarks and Agenda Overview Dennis L. Kasper, M.D. NSABB Chair Harvard Medical School Introduction of NSABB Members NSABB Structure and Operations Thomas Holohan, M.D. NSABB Executive Director, NIH Office of Biotechnology Activities Break Perspectives on Biosecurity in the Life Sciences NSABB Voting Members Impetus for NSABB: Enhancing Biosecurity on the Life Sciences Rajeev Venkayya, M.D. Special Assistant to the President, Senior Director for Biological and Chemical Defense White House Homeland Security Council Perspectives on Biosecurity in the Life Sciences NSABB Ex Officio Members Lunch Session I- The Development of Criteria for Identifying Dual Use Research and Research Results Introduction: Issues of Relevance to Criteria Development Arturo Casadevall, M.D., Ph.D. Professor of Medicine and of Microbiology & Immunology and Chief of Infectious Diseases Albert Einstein College of Medicine National Research Council Perspective: Experiments of Concern Ron Atlas, Ph.D. -
Michael S. Brown, MD
DISTINGUISHED PHYSICIANS AND Michael S. Brown, M.D. Sir Richard Roberts, Ph.D. Winner, 1985 Nobel Prize in Physiology or Medicine Winner, 1993 Nobel Prize in Physiology or Medicine MEDICAL SCIENTISTS MENTORING Winner, 1988 Presidential National Medal of Science A globally prominent biochemist and molecular biologist, DELEGATES HAVE INCLUDED... Dr. Brown received the world’s most prestigious medical Dr. Roberts was awarded the Nobel Prize for his prize for his work describing the regulation of the groundbreaking contribution to discovering RNA splicing. cholesterol metabolism. His work laid the foundation for Dr. Roberts is dedicating his future research to GMO crops the class of drugs now called statins taken daily by more than 20 million and food sources, and demonstrating the effect they have on humanity. — GRANDg MASTERS — people worldwide. Ferid Murad, M.D., Ph.D. Mario Capecchi, Ph.D. Boris D. Lushniak, M.D., M.P.H Winner, 1998 Nobel Prize in Physiology or Medicine Academy Science Director The Surgeon General of the United States (acting, 2013-2014) Winner, 2007 Nobel Prize in Physiology or Medicine A world-renowned pioneer in biochemistry, Dr. Murad’s Winner, 2001 National Medal of Science Rear Admiral Lushniak, M.D., M.P.H., was the United award-winning research demonstrated that nitroglycerin Winner, 2001 Lasker Award States’ leading spokesperson on matters of public health, and related drugs help patients with heart conditions by Winner, 2003 Wolf Prize in Medicine overseeing the operations of the U.S. Public Health Service releasing nitric oxide into the body, thus relaxing smooth Mario Capecchi, Ph.D., a biophysicist, is a Distinguished Commissioned Corps, which consists of approximately muscles by elevating intracellular cyclic GMP, leading to vasodilation and Professor of Human Genetics at the University of Utah School of Medicine. -
A Review of J. Craig Venter's a Life Decoded
A peer-reviewed electronic journal published by the Institute for Ethics and Emerging Technologies ISSN 1541-0099 17(1) – March 2008 A review of J. Craig Venter’s A Life Decoded Randy Mayes, Duke University Journal of Evolution and Technology - Vol. 17 Issue 1 – March 2008 - pgs 71-72 http://jetpress.org/v17/mayes.htm In the early 1980s, a number of researchers suggested sequencing and mapping the human genome to help the science community better understand diseases and evolution. Following the announcement that the human genome had been sequenced, scientists wrote in peer-reviewed journals that we are not as hardwired as was once believed, and that the sequencing of the genome was just the beginning. Today, researchers have a new set of goals. In popular journalism, however, the science was lost in the shuffle. The media focused more on the dynamics of the conflicting philosophies of the private and public projects. This emphasis is also clear in the titles of several books chronicling the Human Genome Project, all appearing prior to the recent release of Craig Venter’s autobiography, A Life Decoded: My Genome: My Life (2007). Readers will find that Robert Cook-Deegan’s The Gene Wars (1995) and The Common Thread by Sir John Sulston and Georgina Ferry (2002), both written by insiders, are biased towards the philosophy of the public project, a commons approach. Sulston is a socialist who grows runner beans and drives a second hand car. By contrast, Venter travels in Lear jets and conducts business from his yacht. Three other books are more objective. -
The Nature of Inheritance
I THE NATURE OF INHERITANCE The consequences of the blending theory, as drawn by Darwin. Difficulties felt by Darwin. Particulate inheritance. Conservation of the variance. Theories of evolution worked by mutations. Is all inheritance particulate ? Nature and frequency of observed mutations. But at present, after drawing up a rough copy on this subject, my conclusion is that external conditions do extremely little, except in causing mere variability. This mere variability (causing the child not closely to resemble its parent) I look at as very different from the formation of a marked variety or new species. DARWIN, 1856. (Life and Letters, ii, 87.) As Samuel Butler so truly said: 'To me it seems that the "Origin of " Variation ", whatever it is, is the only true Origin of Species 'V w. BATESON, 1909. The consequences of the blending theory THAT Charles Darwin accepted the fusion or blending theory of inheritance, just as all men accept many of the undisputed beliefs of their time, is universally admitted. That his acceptance of this theory had an important influence on his views respecting variation, and consequently on the views developed by himself and others on the possible causes of organic evolution, was not, I think, apparent to himself, nor is it sufficiently appreciated in our own times. In the course of the present chapter I hope to make clear the logical con- sequences of the blending theory, and to show their influence, not only on the development of Darwin's views, but on the change of attitude towards these, and other suppositions, necessitated by the acceptance of the opposite theory of particulate inheritance. -
Population Genetics
Population Genetics The “Modern Synthesis” of evolution is Darwinism enlightened by the understanding of molecular genetics which has been gained since Darwin. The key to understanding how evolution occurs is a move from viewing genetics in terms of individuals and their alleles to -- the frequencies of those alleles among the genes of all individuals comprising a population. We know about genes and particulate inheritance . Darwin did not. He was neither the first not the last to accept blended inheritance . He wrote before Mendel had described recessive traits. To explain evolution, he fell back into a second error: the inheritance of acquired traits. Most phenotypes, resulting from the influence of many genes, do seem to be inherited as if blended. Without a mechanism for particulate inheritance, it was hard to establish the concept. Mendel’s genetics disappeared into the literature until the beginning of the 20 th century. The rediscovery of Mendelian genetics led to a number of leading biologists claiming that evolution resulted from inheritance of mutations. Evolution, in this view, moved rapidly and by jumps, rather than gradually, as Darwin had believed. Failures to accept “ the modern synthesis ” of Mendelian genetics and Darwinian evolution persisted into and after WWII - e.g. Lysenko. To understand the modern synthesis, we need to consider the genetics of populations, rather than individuals. Consider a Punnett square for a single trait cross: (male) ½A ½a ½A AA Aa (female) ½a Aa aa in describing this cross, we have shown the effects of meiosis: 1/2 the sperm carry A, 1/2 a, and similarly for the eggs. -
Humankind 2.0: the Technologies of the Future 6. Biotech
Humankind 2.0: The Technologies of the Future 6. Biotech Piero Scaruffi, 2017 See http://www.scaruffi.com/singular/human20.html for the full text of this discussion A brief History of Biotech 1953: Discovery of the structure of the DNA 2 A brief History of Biotech 1969: Jon Beckwith isolates a gene 1973: Stanley Cohen and Herbert Boyer create the first recombinant DNA organism 1974: Waclaw Szybalski coins the term "synthetic biology” 1975: Paul Berg organizes the Asilomar conference on recombinant DNA 3 A brief History of Biotech 1976: Genentech is founded 1977: Fred Sanger invents a method for rapid DNA sequencing and publishes the first full DNA genome of a living being Janet Rossant creates a chimera combining two mice species 1980: Genentech’s IPO, first biotech IPO 4 A brief History of Biotech 1982: The first biotech drug, Humulin, is approved for sale (Eli Lilly + Genentech) 1983: Kary Mullis invents the polymerase chain reaction (PCR) for copying genes 1986: Leroy Hood invents a way to automate gene sequencing 1986: Mario Capecchi performs gene editing on a mouse 1990: William French Anderson’s gene therapy 1990: First baby born via PGD (Alan Handyside’s lab) 5 A brief History of Biotech 1994: FlavrSavr Tomato 1994: Maria Jasin’s homing endonucleases for genome editing 1996: Srinivasan Chandrasegaran’s ZFN method for genome editing 1996: Ian Wilmut clones the first mammal, the sheep Dolly 1997: Dennis Lo detects fetal DNA in the mother’s blood 2000: George Davey Smith introduces Mendelian randomization 6 A brief History of Biotech -
On Jim Watson's APOE Status: Genetic Information Is Hard to Hide
European Journal of Human Genetics (2009) 17, 147–150 & 2009 Macmillan Publishers Limited All rights reserved 1018-4813/09 $32.00 www.nature.com/ejhg LETTERS 15.6 (95% CI, 10.9–22.5) and 4.3 (95% CI, 3.3–5.5) for APOE e4 homozygotes and e4/e3 heterozygotes respectively, 6 On Jim Watson’s APOE compared to e3 homozygotes. The meta-analytic odds ratios in population-based Caucasian samples were 11.8 status: genetic (95% CI, 7.0–19.8) and 2.8 (95% CI, 2.3–3.5), respec- tively.6 In a large Rotterdam (Netherlands), population- information is hard to based prospective study of people aged 55 years or above, it hide was estimated that 17% of the overall risk of AD could be attributed to the e4 allele, with 3% (95% CI, 0–6%) of cases attributed to the e4/e4 genotype, and 14% (95% CI, 7–21%) European Journal of Human Genetics (2009) 17, 147–149; 7 to the e4/e3 genotype. doi:10.1038/ejhg.2008.198; published online 22 October 2008 A recent investigation of LD for 50 SNPs in and surrounding APOE in 550 Caucasians identified multiple SNPs in the TOMM40 gene B15 kb upstream of APOE, and The recent publication and release to public databases of at least one SNP in the other surrounding genes LU, PVRL2, Dr James Watson’s sequenced genome,1 with the exception APOC1, APOC4 and CLPTM1 were associated with LOAD of all gene information about apolipoprotein E (ApoE), risk.8 In particular, the C allele of SNP rs157581 in provides a pertinent example of the challenges concerning TOMM40 is in strong LD (r240.6) with the C allele of privacy and the complexities of informed consent in the rs429358 in APOE, which defines the e4 allele. -
Synthetic Biology - Mapping the Patent Landscape Paul Oldham 1,2 Stephen Hall 3 1
bioRxiv preprint doi: https://doi.org/10.1101/483826; this version posted November 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Synthetic Biology - Mapping the Patent Landscape Paul Oldham 1,2 Stephen Hall 3 1. Industrial Fellow, Manchester Institute of Innovation Research, Alliance Manchester Business School, Manchester University. 2 Senior Visiting Fellow, Institute for the Advanced Study of Sustainability, United Nations University 3. Information System Services, Lancaster University Abstract This article presents the global patent landscape for synthetic biology as a new and emerging area of science and technology. The aim of the article is to provide an overview of the emergence of synthetic biology in the patent system and to contribute to future research by providing a high quality tagged core dataset with 7,424 first filings and 71,887 family members. This dataset is intended to assist with evidence based exploration of synthetic biology in the patent system and with advancing methods for the analysis of new and emerging areas of science and technology. The starting point for the research is recognition that traditional methods of patent landscape analysis based on key word searches face limitations when addressing new and emerging areas of science and technology. Synthetic biology can be broadly described as involving the design, synthesis and assembly of biological parts, circuits, pathways, cells and genomes. As such synthetic biology can be understood as emerging from a combination of overlaps and convergences between existing fields and disciplines, such as biotechnology, genetic engineering, protein engineering and systems biology. -
Scientists Create Cell Based on Man-Made Genetic Instructions
25-5-2010 Scientists create cell based on man-m… Scientists create cell based on man•made genetic instructions By David Brown Friday, M ay 21, 2010; A03 Scientists reported Thursday that they have created a cell controlled entirely by man•made genetic instructions •• the latest step toward creating life from scratch. The achievement is a landmark in the emerging field of "synthetic biology," which aims to control the behavior of organisms by manipulating their genes. Although the ultimate goal of creating artificial organisms is still far off, the experiment points to a future in which microbes could be manufactured with novel functions, such as the ability to digest pollutants or produce fuels. Some ethicists fear that the strategy could also be used to produce biological weapons and other dangerous life forms. In a paper published online by the journal Science, researchers from the J. Craig Venter Institute described using off•the•shelf chemicals and the DNA sequence of Mycoplasma mycoides's genes to make an artificial copy of the bacterium's genome. The scientists then transplanted that genome into the cell of a different (but closely related) microbe. The donor genome reprogrammed the recipient cell, which went on to replicate and divide. The result was new colonies of Mycoplasma mycoides. "We think these are the first synthetic cells that are self• replicating and whose genetic heritage started in the computer. That changes conceptually how I think about life," said J. Craig Venter, 63, who gained fame a decade ago as the co•sequencer of the human genome. His institute has laboratories and offices in Rockville and San Diego. -
Craig Venter's Bugs Might Save the World
May 30, 2012 Craig Venter’s Bugs Might Save the World By WIL S. HYLTON In the menagerie of Craig Venter’s imagination, tiny bugs will save the world. They will be custom bugs, designer bugs — bugs that only Venter can create. He will mix them up in his private laboratory from bits and pieces of DNA, and then he will release them into the air and the water, into smokestacks and oil spills, hospitals and factories and your house. Each of the bugs will have a mission. Some will be designed to devour things, like pollution. Others will generate food and fuel. There will be bugs to fight global warming, bugs to clean up toxic waste, bugs to manufacture medicine and diagnose disease, and they will all be driven to complete these tasks by the very fibers of their synthetic DNA. Right now, Venter is thinking of a bug. He is thinking of a bug that could swim in a pond and soak up sunlight and urinate automotive fuel. He is thinking of a bug that could live in a factory and gobble exhaust and fart fresh air. He may not appear to be thinking about these things. He may not appear to be thinking at all. He may appear to be riding his German motorcycle through the California mountains, cutting the inside corners so close that his kneepads skim the pavement. This is how Venter thinks. He also enjoys thinking on the deck of his 95-foot sailboat, halfway across the Pacific Ocean in a gale, and while snorkeling naked in the Sargasso Sea surrounded by Portuguese men-of-war. -
10Th Anniversary of the Human Genome Project
Grand Celebration: 10th Anniversary of the Human Genome Project Volume 3 Edited by John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto (Eds.) Grand Celebration: 10th Anniversary of the Human Genome Project Volume 3 This book is a reprint of the special issue that appeared in the online open access journal Genes (ISSN 2073-4425) in 2014 (available at: http://www.mdpi.com/journal/genes/special_issues/Human_Genome). Guest Editors John Burn University of Newcastle UK James R. Lupski Baylor College of Medicine USA Karen E. Nelson J. Craig Venter Institute (JCVI) USA Pabulo H. Rampelotto Federal University of Rio Grande do Sul Brazil Editorial Office Publisher Assistant Editor MDPI AG Shu-Kun Lin Rongrong Leng Klybeckstrasse 64 Basel, Switzerland 1. Edition 2016 MDPI • Basel • Beijing • Wuhan ISBN 978-3-03842-123-8 complete edition (Hbk) ISBN 978-3-03842-169-6 complete edition (PDF) ISBN 978-3-03842-124-5 Volume 1 (Hbk) ISBN 978-3-03842-170-2 Volume 1 (PDF) ISBN 978-3-03842-125-2 Volume 2 (Hbk) ISBN 978-3-03842-171-9 Volume 2 (PDF) ISBN 978-3-03842-126-9 Volume 3 (Hbk) ISBN 978-3-03842-172-6 Volume 3 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons License (CC-BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. -
Bacterial Artificial Chromosomes (Bacs) Became the Most Broadly Used Resource for Several Reasons
Bacterial Artificial Chromosomes STC Production on Human BACs Archive Provided for Historical Purposes Home STC Project History 1995 Meeting Articles Contacts Links HGP Sequences HGP Research Several types of DNA library resources were sponsored by the DOE before and during the Human Genome Program (HGP). These included both prokaryotic and eukaryotic vector systems, and clone libraries representing single chromosomes. Bacterial Artificial Chromosomes (BACs) became the most broadly used resource for several reasons. The large size was a good match for capabilities of high throughput sequencing centers. As contrasted to some earlier resources, chimerism (having gene segments from multiple chromosome sites combined in one clone) is substantially if not completely absent. With some interesting exceptions , the BACS are stable in their bacterial hosts. In support of the functional analysis of genes, the BACs are very useful for making transgenic animals with segments of human DNAs. A brief history of BAC development is available in a preface to a 2003 issue of Methods in Molecular Biology , wherein details of BAC related protocols reside. One particular BAC project was crucial to the timely completion of human genome sequencing. (See history .) In a 1996 initiative, the DOE Office of Biological and Environmental Research sponsored the production of sequence tag connectors (STCs) for the BACs being used in human genome sequencing. (STCs are sequence reads at the ends of cloned DNA segments; they mark the boundaries of the cloned DNA.) This publicly available resource has served both the international public collaboration and Celera Genomics Inc . in the generation of the human genome sequence. The BACs representing a genome can together serve as a scaffold on which much shorter DNA sequence assemblies can be located.