Spatial Oxygen Heterogeneity in a Hediste Diversicolor Irrigated Burrow Laura Pischedda, Philippe Cuny, Josã© Luis Esteves, Jean-Christophe Poggiale, Franck Gilbert

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Oxygen Heterogeneity in a Hediste Diversicolor Irrigated Burrow Laura Pischedda, Philippe Cuny, Josã© Luis Esteves, Jean-Christophe Poggiale, Franck Gilbert Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow Laura Pischedda, Philippe Cuny, Josã© Luis Esteves, Jean-Christophe Poggiale, Franck Gilbert To cite this version: Laura Pischedda, Philippe Cuny, Josã© Luis Esteves, Jean-Christophe Poggiale, Franck Gilbert. Spa- tial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia, Springer, 2012, vol. 680, pp.109-124. 10.1007/s10750-011-0907-x. hal-00780258 HAL Id: hal-00780258 https://hal.archives-ouvertes.fr/hal-00780258 Submitted on 23 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 6080 To link to this article: DOI: 10.1007/s10750-011-0907-x URL: http://dx.doi.org/10.1007/s10750-011-0907-x To cite this version: Pischedda, Laura and Cuny, Philippe and Esteves, José Luis and Poggiale, Jean-Christophe and Gilbert, Franck Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. (2012) Hydrobiologia, vol. 680 (n° 1). pp. 109-124. ISSN 0018-8158 Any correspondence concerning this service should be sent to the repository administrator: [email protected] DOI 10.1007/s10750-011-0907-x Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow Laura Pischedda • Philippe Cuny • Jose´ Luis Esteves • Jean-Christophe Poggiale • Franck Gilbert Abstract The heterogeneity of oxygen distribution in lumen and wall (up to 2 mm) reflecting the balance a Hediste diversicolor burrow environment was inves- between worm ventilation activity and oxygen con- tigated in a laboratory experiment using a 6-mm thick sumption. The magnitude of the three surrounding tank equipped with oxygen planar optodes. The two- micro-horizons (oxic, oscillating and anoxic) induced dimensional oxygen distribution in a complete burrow by the intermittent worm ventilation was spatially and was monitored every 2 min for 4 h. Oxygen concentra- temporally variable within the structure. Oxygen vari- tions fluctuated over a scale of minutes in the burrow ations appeared to be controlled by distance from the sediment–water interface and the direction of water circulation. Moreover, there was an apparent ‘buffer effect’, induced by the proximity to the overlying water, which reduced the variations of lumen and wall oxygen L. Pischedda Á P. Cuny Á J.-C. Poggiale Laboratoire de Microbiologie, Ge´ochimie et Ecologie in the upper part of the structure. These results highlight Marines (UMR CNRS 6117), Centre d’Oce´anologie de the heterogeneous distribution and dynamics of oxygen Marseille, Universite´ de la Me´diterrane´e, Campus de associated with H. diversicolor burrows and ventilation Luminy, Case 901, 13288 Marseille Cedex 9, France activity. They also highlight the necessity of integrating e-mail: [email protected] this complexity into the current burrow-base models in J.-C. Poggiale order to estimate the ecological importance of burrow- e-mail: [email protected] ing species in coastal ecosystems. J. L. Esteves Centro Nacional Patago´nico, Unidad de Investigacio´n de Keywords Bioturbation Á Bio-irrigation Á Oxygen Oceanografı´a y Meteorologı´a, Laboratorio de heterogeneity Á Hediste diversicolor burrow Á Oceanografı´a Quı´mica y Contaminacio´n de Aguas, CONICET, Bv. Brown 2825, U9120ACF Puerto Madryn, Marine sediments Argentina e-mail: [email protected] Introduction F. Gilbert (&) EcoLab, Laboratoire d’Ecologie Fonctionnelle et Environnement, UPS, INP, Universite´ de Toulouse, Macrobenthic fauna profoundly alter the distribution 118 route de Narbonne, 31062 Toulouse Cedex 9, France of sediment particles, solutes and microbial commu- e-mail: [email protected] nities, especially in coastal marine ecosystems where F. Gilbert benthic organisms are densely distributed (e.g. Franc¸- EcoLab,CNRS, 31055 Toulouse, France ois et al., 2002; Meile & Van Cappellen, 2003; Papaspyrou et al., 2006; Gilbert et al., 2007). Through Due to the lack of data about solute distribution, these sediment reworking and irrigation, a process referred bio-irrigation models do not include the macro- and to as bioturbation (sensu Richter, 1952), the macro- micro-scale heterogeneity of solute distribution within fauna directly affect the decomposition, remineralisa- the burrow and in its immediate vicinity. The introduc- tion and preservation of organic matter in sediments tion of planar optodes into benthic ecology now makes it (Aller, 1994; Reise, 2002). In particular, the gallery- possible to determine the 2D distribution and dynamics diffusor organisms burrow into otherwise anoxic of oxygen, ammonium, pCO2 or pH in sediments (e.g. sediments and actively ventilate them for respiration Glud et al., 1996; Hulth et al., 2002; Stromberg & Hulth, or feeding purposes (e.g. Anderson & Meadows, 1978; 2003; Zhu et al., 2006). With regard to oxygen, so far Osovitz & Julian, 2002). The sediment–water inter- only a few studies have been undertaken using planar face is increased by their burrowing activity, and in optodes to monitor oxygen distribution and dynamics in addition worm ventilation activity greatly enhances macrofaunal burrows. For instance, Timmermann et al. solute exchanges between the sediments and the (2006), Polerecky et al. (2006) and Behrens et al. (2007) overlying water (Fenchel, 1996; Aller, 2001; reported a highly dynamic pattern of oxygen distribution Pischedda et al., 2008). in laboratory experiments with the polychaete Arenicola Macrofaunal burrows have been extensively stud- marina, the sand eel Ammodytes tobianus and the ied in terms of sediment reworking (e.g. Duport et al., Chironomid larvae Chironomus plumosus, respectively. 2006), morphology (e.g. Davey, 1994), irrigation rate In shallow water environments, Wenzho¨fer & Glud, (e.g. Kristensen, 2000), solute distribution and fluxes (2004) reported patchiness and variability of the benthic (e.g. Kristensen & Hansen, 1999), redox oscillations oxygen distribution on a diel scale, primarily induced by (e.g. Sun et al., 2002), mineralisation rate (e.g. Aller, the distinct diel pattern in Hediste diversicolor activity 1994) and associated microbial communities (e.g. and photosynthesis. More precisely, they showed that Papaspyrou et al., 2006). However, the distribution the volume of oxic sediments around burrow structures and dynamics of solutes within a macrofaunal burrow was influenced by these changing environmental con- structure have proven difficult to determine. Conse- ditions, and that oxygen uptake through the burrow quently, methods such as determinations of global walls just after sunset accounted for most of the total exchanges between the entrance and the exit of the oxygen uptake. In those studies, however, the oxygen burrow, or local concentration measurements using distribution and dynamics were only quantified in microelectrode(s) at the burrow openings or localised particular or localised areas of the burrows, and this within or in the vicinity of the burrow structure (e.g. in did not make it possible to define the oxygen heteroge- the burrow wall) have been developed, often in neity in a complete bio-irrigated burrow. association with simultaneous active ventilation Hediste diversicolor (OF Mu¨ller, 1776) is a polychaete recording (e.g. Kristensen, 1989; Forster & Graf, worm widely distributed in estuarine and lagoonal 1995). Based on these data, efforts have been made to habitats from North Africa to North Europe (Mettam, model the solute distribution in actively ventilated 1979; Gillet, 1993) at a density of 500–5,000 individuals burrow environments. Currently, there are two main per square metre (Vedel & Riisgard, 1993). This species types of bio-irrigation models: the diffusive tube- shows high physiological tolerance of extreme variations irrigation model (Aller, 1980), which was further in environmental factors, and can grow and reproduce in improved by authors such as Boudreau & Marinelli different sediment types and also in stressed environ- (1994), Furukawa (2001) and Koretsky et al. (2002), ments (e.g. Bartels-Hardege & Zeeck, 1990; Miron & and the advective pocket-injection model (Meysman Kristensen, 1993; Scaps, 2002). It lives in a semi- et al., 2006). One significant difference between these permanent U- or Y-shaped mucus-lined burrow extend- models is that the former is relevant to muddy ing 6–12 cm into muddy or sandy–muddy sediments. sediments where bio-irrigation is intrinsically driven The worm actively ventilates its burrow structure (Kris- by diffusion across the burrow wall, whereas the latter tensen, 1981; Davey, 1994) with regular alternations of describes sandy sediments where active ventilation by active ventilation periods of *10 min followed by rest worms induces the advective transport of water in the periods of *5 min (Kristensen, 2001). surrounding
Recommended publications
  • The Influence of Hediste Diversicolor (O.F
    Rostock. Meeresbiolog. Beitr. (1993)1 Andreas Bick; Günter Arlt The influence of Hediste diversicolor (O.F. MÜLLER, 1776) on the macro- and meiozoobenthos of a shallow water area of Mecklenburg Bay (Western Baltic Sea) Introduction The purpose of many ecological studies is to identify interactions between faunistic ecosystem components by means of laboratory and field experiments. It has often been shown that abiotic and biotic factors such as competition, disturbance and predation influence the composition and dynamics of macrobenthos communities (REISE, 1977; COMMITO and AMBROSE, 1985; AM- BROSE, 1986; BEUKEMA, 1987; KIKUCHI, 1987; REDMOND and SCOTT, 1989; COMMITO and BANCAVAGE, 1989; MATILA and BONSDORFF, 1989; HILL et al., 1990). Experiments have also been performed to detect interactions between macrofauna and meiofauna (BELL & Coull, 1978; REISE, 1979; GEE et al., 1985; ALONGI and TENORE, 1985). The interactions between Nereidae and infauna that are common in shallow water and are fairly easily handled have been a major topic of study (COMMITO, 1982; REISE, 1979b; COMMITO and SCHRADER, 1985; OLAFSON and PERSSON 1986; RÖNN et al., 1988). The purpose of our studies was to investigate the influence of the omnivorous H. diversicolor on the infauna of a shallow water region in the southern Baltic Sea. H. diversicolor achieves abun- dances of between 5,000 and 15,000 ind m"2 (individual dominances up to 15 %) in the investi- gation area and is thus a major component of the macrofauna. It therefore seemed likely that its carnivorous feeding habits can affect community structure. To detect direct influences on both the macrozoobenthos and meiozoobenthos and to reduce box effects, we performed short term experiments.
    [Show full text]
  • Passarelli Et Al 2012.Pdf
    Journal of Experimental Marine Biology and Ecology 438 (2012) 52–60 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O.F. Müller) trophic pressure Claire Passarelli ⁎, Cédric Hubas, Audrey Nicolas Segui, Julie Grange, Tarik Meziane UMR BOREA-CNRS 7208,Muséum National d'Histoire Naturelle, CP 53, 61 rue Buffon, F-75231 Paris Cedex 05, France article info abstract Article history: In soft-bottom tidal flats, sediment stability is one of the crucial parameters modulating the abundance and com- Received 16 July 2012 position of benthic assemblages. It is dependent on a wide range of variables, both abiotic and biotic. Investigat- Received in revised form 1 October 2012 ing how these variables and their interactions influence sediment stability is therefore essential to understand Accepted 7 October 2012 how benthic assemblages are distributed in their environment. In this context, we designed a microcosm Available online xxxx study to examine how microorganisms and macrofauna interact to alter sediment stability. We cultured a natural microbial community, enriched with diatoms, both alone and together with the common ragworm Hediste Keywords: Diatoms diversicolor, and monitored their effects on photosynthetic biomasses, bacterial abundances, exopolymer secre- Extracellular polymeric substances (EPS) tions and sediment stability. We also assessed the consumption of biofilm by worms using fatty acid biomarkers. Fatty acids Our results demonstrate that even if H. diversicolor fed on diatoms, they stimulated biofilm development, H. diversicolor in terms of photosynthetic biomass and exopolymer production. Also, sediment cohesiveness was enhanced Microphytobenthos when both diatoms and H.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • (Hediste) Diversicolor (Müller, 1776) to Potential Fish Predation
    Smelling Danger – Alarm Cue Responses in the Polychaete Nereis (Hediste) diversicolor (Müller, 1776) to Potential Fish Predation C. Elisa Schaum¤, Robert Batty, Kim S. Last* Scottish Association of Marine Science, Scottish Marine Institute, Dunstaffnage, Scotland Abstract The harbour ragworm, Nereis (Hediste) diversicolor is a common intertidal marine polychaete that lives in burrows from which it has to partially emerge in order to forage. In doing so, it is exposed to a variety of predators. One way in which predation risk can be minimised is through chemical detection from within the relative safety of the burrows. Using CCTV and motion capture software, we show that H. diversicolor is able to detect chemical cues associated with the presence of juvenile flounder (Platichthys flesus). Number of emergences, emergence duration and distance from burrow entrance are all significantly reduced during exposure to flounder conditioned seawater and flounder mucous spiked seawater above a threshold with no evidence of behavioural habituation. Mucous from bottom- dwelling juvenile plaice (Pleuronectes platessa) and pelagic adult herring (Clupea harengus) elicit similar responses, suggesting that the behavioural reactions are species independent. The data implies that H. diversicolor must have well developed chemosensory mechanisms for predator detection and is consequently able to effectively minimize risk. Citation: Schaum CE, Batty R, Last KS (2013) Smelling Danger – Alarm Cue Responses in the Polychaete Nereis (Hediste) diversicolor (Müller, 1776) to Potential Fish Predation. PLoS ONE 8(10): e77431. doi:10.1371/journal.pone.0077431 Editor: Roberto Pronzato, University of Genova, Italy, Italy Received June 10, 2013; Accepted September 2, 2013; Published October 14, 2013 Copyright: © 2013 Schaum et al.
    [Show full text]
  • Burial of Zostera Marina Seeds in Sediment Inhabited by Three Polychaetes: Laboratory and field Studies
    Journal of Sea Research 71 (2012) 41–49 Contents lists available at SciVerse ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Burial of Zostera marina seeds in sediment inhabited by three polychaetes: Laboratory and field studies M. Delefosse ⁎, E. Kristensen Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark article info abstract Article history: The large number of seeds produced by eelgrass, Zostera marina, provides this plant with a potential to disperse Received 4 December 2011 widely and colonise new areas. After dispersal, seeds must be buried into sediment for assuring long-term survival, Received in revised form 25 April 2012 successful germination and safe seedling development. Seeds may be buried passively by sedimentation or actively Accepted 25 April 2012 through sediment reworking by benthic fauna. We evaluated the effect of three polychaetes on the burial rate and Available online 5 May 2012 depth of eelgrass seeds. Burial was first measured in controlled laboratory experiments using different densities of Nereis (Hediste) diversicolor (400–3200 ind m−2), Arenicola marina (20–80 ind m−2), and the invasive Marenzelleria Keywords: – −2 Polychaete viridis (400 1600 ind m ). The obtained results were subsequently compared with burial rates of seed mimics in 2 Ecosystem engineer experimental field plots (1 m ) dominated by the respective polychaetes. High recovery of seeds in the laboratory Invasive species (97–100%) suggested that none of these polychaetes species feed on eelgrass seeds. N. diversicolor transported Zostera marina seeds rapidly (b1 day) into its burrow, where they remained buried at a median depth of 0.5 cm.
    [Show full text]
  • Christina Pavloudi Biologist Scientific Assistant
    Christina Pavloudi Biologist Scientific assistant Contact address University of the Aegean Department of Marine Sciences University Hill Mytilene 81100, Greece Tel: Fax: e-mail: [email protected] Education 2017: PhD on Marine Sciences, University of Ghent, University of Bremen, Hellenic Centre for Marine Research (MARES Joint Doctoral Programme on Marine Ecosystem Health & Conservation) Thesis title: Microbial community functioning at hypoxic sediments revealed by targeted metagenomics and RNA stable isotope probing 2012: MSc on Environmental Biology – Management of Terrestrial and Marine Resources, University of Crete, Hellenic Centre for Marine Research, Natural History Museum of Crete Thesis title: Comparative analysis of geochemical variables, macrofaunal and microbial communities in lagoonal ecosystems 2009: BSc on Biology, Aristotle University of Thessaloniki Thesis title: Comparative study of the organismic assemblages associated with the demosponge Sarcotragus foetidus Schmidt, 1862 in the coasts of Cyprus and Greece Professional Scientific Experience 2018-present: Scientific assistant at the Department of Marine Sciences, University of the Aegean 2017-present: Post-Doc Researcher (RECONNECT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2016-2017: Research assistant (JERICO-NEXT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2013-2015: Research assistant (LifeWatchGreece project), Institute
    [Show full text]
  • Feeding Ecology of European Flounder, Platichthys Flesus, in the Lima Estuary (Nw
    FEEDING ECOLOGY OF EUROPEAN FLOUNDER, PLATICHTHYS FLESUS, IN THE LIMA ESTUARY (NW PORTUGAL) CLÁUDIA VINHAS RANHADA MENDES Dissertação de Mestrado em Ciências do Mar – Recursos Marinhos 2011 CLÁUDIA VINHAS RANHADA MENDES FEEDING ECOLOGY OF EUROPEAN FLOUNDER, PLATICHTHYS FLESUS, IN THE LIMA ESTUARY (NW PORTUGAL) Dissertação de Candidatura ao grau de Mestre em Ciências do Mar – Recursos Marinhos, submetida ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto. Orientador – Prof. Doutor Adriano A. Bordalo e Sá Categoria – Professor Associado com Agregação Afiliação – Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Co-orientador – Doutora Sandra Ramos Categoria – Investigadora Pós-doutoramento Afiliação – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto Acknowledgements For all the people that helped me out throughout this work, I would like to express my gratitude, especially to: My supervisors Professor Dr. Adriano Bordalo e Sá for guidance, support and advising and Dra. Sandra Ramos for all of her guidance, support, advices and tips during my first steps in marine sciences; Professor Henrique Cabral for receiving me in his lab at FCUL and Célia Teixeira for all the help and advice regarding the stomach contents analysis; Professor Ana Maria Rodrigues and to Leandro from UA for all the patience and disponibility to help me in the macroinvertebrates identification; Liliana for guiding me in my first steps with macroinvertebrates; My lab colleagues for receiving me well and creating such a nice environment to work with. A special thanks to Eva for her disponibility to help me, Ana Paula for her tips regarding macroinvertebrates and my desk partner, Paula for all of our little coffee and cookie breaks and support that helped me keep me motivated during work; My parents for the unconditional support on my path that lead me here and to my brother Nuno for all the companionship.
    [Show full text]
  • Aquaculture Environment Interactions 10:79
    Vol. 10: 79–88, 2018 AQUACULTURE ENVIRONMENT INTERACTIONS Published February 19 https://doi.org/10.3354/aei00255 Aquacult Environ Interact OPENPEN FEATURE ARTICLE ACCESSCCESS Adding value to ragworms (Hediste diversicolor) through the bioremediation of a super-intensive marine fish farm Bruna Marques1, Ana Isabel Lillebø1, Fernando Ricardo1, Cláudia Nunes2,3, Manuel A. Coimbra3, Ricardo Calado1,* 1Department of Biology & CESAM & ECOMARE, 2CICECO − Aveiro Institute of Materials, and 3Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal ABSTRACT: The aim of this study was to evaluate the potential added value of Hediste diversicolor, cultured for 5 mo in sand bed tanks supplied with effluent wa- ter from a super-intensive marine fish farm, by com- paring their fatty acid (FA) profile with that of wild specimens. The polychaetes showed an approximately 35-fold increase in biomass during the experimental period and their FA profile was significantly different from that of wild specimens. In cultivated specimens, the most abundant FA class was that of highly unsatu- rated FA (HUFA), with eicosapentaenoic acid (EPA, 20:5n-3) being the best represented. Similar percent- age (SIMPER) analysis showed an average 20.2% dis- similarity between the FA profile of wild and culti- vated specimens, supporting the view that the culture system employed enables the recovery of high value Ragworms (Hediste diversicolor) on sand filters of a super- nutrients (e.g. EPA and docosahexaenoic acid [DHA, intensive brackish-water fish farm, cultured using the 22:6n-3]) from fish feeds into the tissues of H. diversi- farm’s organic-rich effluent and displaying a greater con- color that would otherwise be lost from the production tent of docosahexaenoic acid (DHA, 22:6n-3) than wild environment.
    [Show full text]
  • Redalyc.Sustainability of Bait Fishing Harvesting in Estuarine Ecosystems
    Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management E-ISSN: 1646-8872 [email protected] Associação Portuguesa dos Recursos Hídricos Portugal Neves de Carvalho, André; Lino Vaz, Ana Sofia; Boto Sérgio, Tânia Isabel; Talhadas dos Santos, Paulo José Sustainability of bait fishing harvesting in estuarine ecosystems – Case study in the Local Natural Reserve of Douro Estuary, Portugal Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management, vol. 13, núm. 2, 2013, pp. 157-168 Associação Portuguesa dos Recursos Hídricos Lisboa, Portugal Available in: http://www.redalyc.org/articulo.oa?id=388340141004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista da Gestão Costeira Integrada 13(2):157-168 (2013) Journal of Integrated Coastal Zone Management 13(2):157-168 (2013) http://www.aprh.pt/rgci/pdf/rgci-393_Carvalho.pdf | DOI:10.5894/rgci393 Sustainability of bait fishing harvesting in estuarine ecosystems – Case study in the Local Natural Reserve of Douro Estuary, Portugal * Sustentabilidade da apanha de isco para pesca nos ecossistemas estuarinos – Caso de estudo na Reserva Natural Local do Estuário do Douro, Portugal André Neves de Carvalho @, 1, 2, Ana Sofia Lino Vaz 1, Tânia Isabel Boto Sérgio 1, Paulo José Talhadas dos Santos 1, 2 ABSTRACT A narrow relationship between marine resources and local populations always existed in fishing communities of coastal areas. In the Portuguese estuaries bait fishing is a common practice in which gatherers collect intertidal species such as seaworms, shrimps, crabs or clams.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hediste diversicolor in littoral gravelly muddy sand and gravelly sandy mud MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin & Dr Matt Ashley 2018-03-22 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1174]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. & Ashley, M. 2018. [Hediste diversicolor] in littoral gravelly muddy sand and gravelly sandy mud. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1174.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page
    [Show full text]
  • Sediment Reworking by the Burrowing Polychaete Hediste Diversicolor Modulated by Environmental and Biological Factors Across the Temperate North Atlantic
    Journal of Experimental Marine Biology and Ecology 541 (2021) 151588 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Sediment reworking by the burrowing polychaete Hediste diversicolor modulated by environmental and biological factors across the temperate North Atlantic. A tribute to Gaston Desrosiers Franck Gilbert a,*, Erik Kristensen b, Robert C. Aller c, Gary T. Banta b,d, Philippe Archambault e,f, R´enald Belley a,e, Luca G. Bellucci g, Lois Calder h, Philippe Cuny i, Xavier de Montaudouin j, Susanne P. Eriksson k, Stefan Forster l, Patrick Gillet m, Jasmin A. Godbold n,o, Ronnie N. Glud p, Jonas Gunnarsson q, Stefan Hulth r, Stina Lindqvist r, Anthony Maire a, Emma Michaud s, Karl Norling k, Judith Renz l, Martin Solan n, Michael Townsend t, Nils Volkenborn c,u, Stephen Widdicombe v, Georges Stora i a Laboratoire ´ecologie fonctionnelle et environnement, Universit´e de Toulouse, CNRS, Toulouse INP, Universit´e Toulouse 3 - Paul Sabatier (UPS), Toulouse, France b Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark c School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA d Dept. of Science and Environment, Roskilde University, Roskilde, Denmark e Institut des Sciences de la Mer, Universit´e du Qu´ebec a` Rimouski, Qu´ebec, Canada f Qu´ebec-Oc´ean, Universit´e Laval (Qu´ebec) G1V 0A6, Canada g Institute of Marine Sciences, National Research Council, via Gobetti
    [Show full text]
  • Reprodução E Crescimento Do Poliqueta Hediste Diversicolor (O.F
    Reprodução e crescimento do poliqueta Hediste diversicolor (O.F. Müller, 1776) sob diferentes condições ambientais Renato Manuel da Encarnação Bagarrão 2013 I II Reprodução e crescimento do poliqueta Hediste diversicolor (O.F. Müller, 1776) sob diferentes condições ambientais Renato Manuel da Encarnação Bagarrão Dissertação para obtenção do Grau de Mestre em Aquacultura Dissertação de Mestrado realizada sob a orientação da Doutora Ana Margarida Paulino Violante Pombo 2013 III IV Reprodução e crescimento do poliqueta Hediste diversicolor (O.F. Müller, 1776) sob diferentes condições ambientais 2013 Copyright © Renato Manuel da Encarnação Bagarrão Escola Superior de Turismo e Tecnologia do Mar Instituto Politécnico de Leiria A Escola Superior de Turismo e Tecnologia do Mar e o Instituto Politécnico de Leiria têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. V VI AGRADECIMENTOS ______________________________________________________ Agradecimentos À professora e minha orientadora, Ana Pombo, pelo auxílio e disponibilidade no decorrer deste trabalho, sempre que foi necessário; Aos colegas António Santos e Ricardo Freire, por toda a paciência, ajuda e apoio prestado
    [Show full text]